
QUARP:
Quality Aware Reactive
Programming for the IoT

José Proença & Carlos Baquero

FSEN 2017

Quality Aware
Reactive Programming

for the IoT
2.�Motivation:�
RP�challenges

1.�Context:�
WSN�applications

3.�Solution:�
use�thresholds

slides:�http://quarp.proenca.org

slides: http://quarp.proenca.org

IoT application
(a WSN perspective)

http://quarp.proenca.org

slides: http://quarp.proenca.org

IoT application
(a WSN perspective)

N₃

N₄

N₂ N₁

RFID
READER

{ } x3
N₅

Motion Det.
- sampleRate
- listenPin C₁

N₆

Motion Det.
- sampleRate
- listenPin C₁

Motion Agg.
- interval
- timeout C₁

Coffee Control
- interval
- actuatorPin C₁

RFID Reader
- UARTChannel
- baudrate C₂

Coffee Manager
- webservice
- timeout C₁

RFID Checker
- webservice
- ACL C₃

Screen Manager
- webservice
- timeLock C₂

Motion Reporter
- webservice C₄

Screen Control
- interval
- actuatorPin C₁

Button Sensor
- listenPin C₂

smart�office

http://quarp.proenca.org

slides: http://quarp.proenca.org

IoT application
(a WSN perspective)

N₃

N₄

N₂ N₁

RFID
READER

{ } x3
N₅

Motion Det.
- sampleRate
- listenPin C₁

N₆

Motion Det.
- sampleRate
- listenPin C₁

Motion Agg.
- interval
- timeout C₁

Coffee Control
- interval
- actuatorPin C₁

RFID Reader
- UARTChannel
- baudrate C₂

Coffee Manager
- webservice
- timeout C₁

RFID Checker
- webservice
- ACL C₃

Screen Manager
- webservice
- timeLock C₂

Motion Reporter
- webservice C₄

Screen Control
- interval
- actuatorPin C₁

Button Sensor
- listenPin C₂

smart�office

Sensors

Actuators<events>

Middleware

http://quarp.proenca.org

slides: http://quarp.proenca.org

IoT application
(a WSN perspective)

N₃

N₄

N₂ N₁

RFID
READER

{ } x3
N₅

Motion Det.
- sampleRate
- listenPin C₁

N₆

Motion Det.
- sampleRate
- listenPin C₁

Motion Agg.
- interval
- timeout C₁

Coffee Control
- interval
- actuatorPin C₁

RFID Reader
- UARTChannel
- baudrate C₂

Coffee Manager
- webservice
- timeout C₁

RFID Checker
- webservice
- ACL C₃

Screen Manager
- webservice
- timeLock C₂

Motion Reporter
- webservice C₄

Screen Control
- interval
- actuatorPin C₁

Button Sensor
- listenPin C₂

smart�office

Sensors

Actuators<events>

Need to manage the

growing complexity of the

Internet of Everything

Middleware

http://quarp.proenca.org

Quality Aware
Reactive Programming

for the IoT
2.�Motivation:�
RP�challenges

1.�Context:�
WSN�applications

3.�Solution:�
use�thresholds

(Distr
ibute

d)

slides: http://quarp.proenca.org

Reactive programming

e.g., GUIs, web-apps

• for event-driven and interactive applications

• express time-varying values

• automatically manage dependencies between
such values

• abstract over time management

• like spreadsheets:  
change 1 cell => others are recalculated

http://quarp.proenca.org

slides: http://quarp.proenca.org

Example

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

http://quarp.proenca.org

slides: http://quarp.proenca.org

Example

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Stream s1 = new Stream(“1”);
Stream s2 = new Stream(“2”);
Stream s3 = Stream.add(s1,s2);

dependency graph

http://quarp.proenca.org

slides: http://quarp.proenca.org

Challenges

Push vs. Pull behaviour

Order of evaluation

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

“Lifting” operations

avoid “glitches”

Distribution

http://quarp.proenca.org

slides: http://quarp.proenca.org

Glitches
“Momentary view of inconsistent data”

:6 E. Bainomugisha et al.

ally involves calling a registered callback or a method [Sperber 2001a]. Most recent
implementations of reactive programming such as Flapjax [Meyerovich et al. 2009],
Scala.React [Maier et al. 2010], and FrTime [Cooper and Krishnamurthi 2006] use a
push-based model. Languages implementing the push-based model need an efficient
solution to the problem of wasteful recomputations since recomputations take place
every time the input sources change. Also, because propagation of changes is data-
driven, reactions happen as soon as possible [Elliott 2009].

Push Versus Pull. Each of the evaluation models has its advantages and disadvan-
tages. For instance, the pull-based model works well in parts of the reactive system
where sampling is done on event values that change continuously over time [Sperber
2001a]. Additionally, lazy languages using a pull-based approach yield an advantage
with regard to initialisation of behaviours. Since their actual values are computed
lazily on a by-demand basis, initialisation does not have to happen explicitly. Espe-
cially continuous behaviours will already yield a value by the time it is needed. In a
push-based approach, the programmer must initialise behaviours explicitly to make
sure that they hold a value when eagerly evaluating code in which they are used.

A push-based model on the other hand fits well in parts of the reactive system that
require instantaneous reactions. Some reactive programming languages use either a
pull-based or push-based model while others employ both. Another issue with push-
based evaluation are glitches, which are discussed in the next section. The approaches
that combine the two models reap the benefits of the push-based model (efficiency
and low latency) and those of the pull-based model (flexibility of pulling values based
on demand). The combination of the two models has been demonstrated in the Lula
system [Sperber 2001b] and the most recent implementation of Fran [Elliott 2009].

3.3. Glitch Avoidance
Glitch avoidance is another property that needs to be considered by a reactive lan-
guage. Glitches are update inconsistencies that may occur during the propagation of
changes. When a computation is run before all its dependent expressions are eval-
uated, it may result in fresh values being combined with stale values, leading to a
glitch [Cooper and Krishnamurthi 2006]. This can only happen in languages employ-
ing a push-based evaluation model.

Consider an example reactive program below:

var1 = 1
var2 = var1 * 1
var3 = var1 + var2

In this example, the value of the variable var2 is expected to always be the same
as that of var1, and that of var3 to always be twice that of var1. Initially when the
value of var1 is 1, the value of var2 is 1 and var3 is 2. If the value of var1 changes to,
say 2, the value of var2 is expected to change to 2 while the value of var3 is expected
to be 4. However, in a naive reactive implementation, changing the value of var1 to
2 may cause the expression var1 + var2 to be recomputed before the expression var1
* 1. Thus the value of var3 will momentarily be 3, which is incorrect. Eventually, the
expression var1 * 1 will be recomputed to give a new value to var2 and therefore the
value of var3 will be recomputed again to reflect the correct value 4. This behaviour is
depicted in Figure 3.

In the reactive programming literature, such a momentary view of inconsistent data
is known as a glitch [Cooper and Krishnamurthi 2006]. Glitches result in incorrect pro-
gram state and wasteful recomputations and therefore should be avoided by the lan-
guage. Most reactive programming languages eliminate glitches by arranging expres-

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Change to “2”

http://quarp.proenca.org

slides: http://quarp.proenca.org

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1st Calculate ‘+’

3

2

Change to “2” Glitches

http://quarp.proenca.org

slides: http://quarp.proenca.org

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1st Calculate ‘+’

3

2nd Calculate *

2

2

WRONG!

2

Change to “2” Glitches

http://quarp.proenca.org

slides: http://quarp.proenca.org

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2. Calculate ‘+’

4

3. Calculate *

2

2

OK (now!)3rd REcalculate +

2

1. Change to “2” Glitches

http://quarp.proenca.org

slides: http://quarp.proenca.org

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

2 3

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1. Change to “2”

2. Calculate

(distributed view)Glitches

http://quarp.proenca.org

slides: http://quarp.proenca.org

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

2 3

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1. Change to “2”

2. Calculate

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

4

3. Recalculate

2 3

WRONG!

(distributed view)Glitches

http://quarp.proenca.org

slides: http://quarp.proenca.org

Distributed Reactive
Programming

Distributed REScala: An Update Algorithm

for Distributed Reactive Programming

Joscha Drechsler,
Guido Salvaneschi

Technische Universität Darmstadt,
Germany

< lastname >@cs.tu-darmstadt.de

Ragnar Mogk

Technische Universität Darmstadt,
Germany

ragnar.mogk@stud.tu-darmstadt.de

Mira Mezini

Technische Universität Darmstadt,
Germany; Lancaster University, UK

mezini@cs.tu-darmstadt.de

Abstract

Reactive programming improves the design of reactive ap-
plications by relocating the logic for managing dependencies
between dependent values away from the application logic to
the language implementation. Many distributed applications
are reactive. Yet, existing change propagation algorithms are
not suitable in a distributed setting.

We propose Distributed REScala, a reactive language
with a change propagation algorithm that works without
centralized knowledge about the topology of the depen-
dency structure among reactive values and avoids unneces-
sary propagation of changes, while retaining safety guar-
antees (glitch freedom). Distributed REScala enables dis-
tributed reactive programming, bringing the benefits of re-
active programming to distributed applications. We demon-
strate the enabled design improvements by a case study. We
also empirically evaluate the performance of our algorithm
in comparison to other algorithms in a simulated distributed
setting.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords Reactive Programming, Scala, Distributed Pro-
gramming

1. Introduction

Reactive applications actively update their state based on in-
complete input that keeps growing over time. Applications
with a user interface that continuously adapt their state to
user’s inputs or applications with a network interface that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

OOPSLA ’14, October 19 - 21 2014, Portland, OR, USA.
Copyright c⃝ 2014 ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660193.2660240

continuously process incoming network packets fall into this
category. Historically, reactivity has been achieved via call-
backs and inversion of control [14], commonly implemented
using the observer pattern to facilitate modular composition.
While successful in decoupling and thus making compo-
nents reusable, the pattern has several major downsides [22].
It requires a lot of boilerplate code; callback interfaces and
registries are re-implemented over and over; client code is
bloated with declarations that wrap business logic into call-
back instances and bloated further by surrounding those with
statements to register and unregister with these registries.
Another issue is that notifications from multiple callbacks
often arrive in unpredictable order. This makes it hard to
avoid inconsistencies in accordingly updating local state,
leading to bugs and bad user experiences.

Reactive Programming [3] (RP for short) simplifies the
modular implementation and improves code quality of re-
active applications. Languages in this class provide reactive

values, abstractions for values that change over time. These
values can be composed and derived in a declarative way.
Their dependencies are tracked: Changes to any value auto-
matically cause the recalculation of all derived values. Code
quality improves since explicit encoding of the observer pat-
tern and callback registries and maintenance of their state
is not needed. Further, dependencies between values are as-
sessed as a whole when deciding on update orders, so that
inconsistencies due to wrong ordering of state updates do
not occur, regardless of module borders.

The dominating category of software today is distributed
applications. This family includes several types of reactive
applications, including Web applications, monitoring sys-
tems, customer analytics, etc. In such applications, reactions
to updates in state and events often have to happen over mul-
tiple hosts. Remote callbacks in the form of remote observer
patterns or callbacks over publish-subscribe systems are typ-
ically used to implement push notifications in such applica-
tions. They therefore suffer from the same drawbacks that
callbacks and the observer pattern cause in the local setting.
Distributed applications can clearly benefit from RP. How-

OOPSLA’14

http://quarp.proenca.org

slides: http://quarp.proenca.org

DRP: minimise overall time

Figure 7. Visual comparison of update propagation with different algorithms.

4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do

369

count�steps Scala.React

Scala.Rx

ELM

SID-UPCount�messages

http://quarp.proenca.org

slides: http://quarp.proenca.org

DRP: minimise overall time

Figure 7. Visual comparison of update propagation with different algorithms.

4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do

369

Scala.React

Scala.Rx

ELM

SID-UP

Operates�in�rounds�
(no�pipelining)

extra�coordination

count�steps

Count�messages

http://quarp.proenca.org

slides: http://quarp.proenca.org

DRP for the IoT

Operates�in�rounds�
(no�pipelining)

extra�coordination

Minimum�coordination

maximum�concurrency

Data�*can*�be�lost

Avoid�glitches�(and�similar�probs.)

http://quarp.proenca.org

Quality Aware
Reactive Programming

for the IoT

slides: http://quarp.proenca.org

Reactive Programming
with Failure

t1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

Sources�keep�
publishing

Sourc
es

Mixed

Observ
ers

Components�can�
“chose”�

to�ignore�data

Data�lost:�
wait�for�

next�round

http://quarp.proenca.org

slides: http://quarp.proenca.org

“Good enough” inputst1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

1.�Data�
arrives

2.�Input�data�is�
“good�enough”?

3.�Publish�
if�“yes”

http://quarp.proenca.org

slides: http://quarp.proenca.org

t1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

0.35,�0.65

-

not�enough�
input�data

“Good enough” inputs

http://quarp.proenca.org

slides: http://quarp.proenca.org

t1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

0.35,�0.65

14°

not�enough�
input�data

seems�
ok...?

“Good enough” inputs

http://quarp.proenca.org

slides: http://quarp.proenca.org

t1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

0.35,�0.65

14°

not�enough�
input�data

no�glitches?

values�up-to-date?
…

seems�
ok...?

“Good enough” inputs

http://quarp.proenca.org

slides: http://quarp.proenca.org

Need Context

t1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

0.35,�0.65

14°

t1:�16:45

t2:�06:30

w1,2:�16:30

http://quarp.proenca.org

slides: http://quarp.proenca.org

Avoiding glitchest1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

38%

source-ID
+ counter

t1:�87�
t2:�49�
W1,2:�76

h1:�56�
t2:�43�
W1,2:�76

http://quarp.proenca.org

slides: http://quarp.proenca.org

Avoiding glitchest1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

38%

source-ID
+ counter

t1:�87�
t2:�49�
W1,2:�76

h1:�56�
h2:�43�
W1,2:�76

OK

http://quarp.proenca.org

slides: http://quarp.proenca.org

Generalising contextst1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

38%

Ctx-t

Ctx-h
ctx-FL�=�

Ctx-t�+�ctx-h
Qual(ctx-FL)�
≥�threshold

http://quarp.proenca.org

slides: http://quarp.proenca.org

Generalising contextst1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

38%

Ctx-t

Ctx-h

ctx-FL�=��
Ctx-1�+�ctx-2

Qual(ctx)�
≥��

threshold

http://quarp.proenca.org

slides: http://quarp.proenca.org

Ctx-1�+�ctx-2
Qual(ctx)�≥�threshold

Beyond glitches

Geographic�
location

Relaxed�
glitch-freedom

Wall-clock�
Difference

Ok�=�close-by�enough

Ok�=�small�counter�difference

Ok�=�small�time-stamp�difference

http://quarp.proenca.org

slides: http://quarp.proenca.org

Wrapping up

Figure 7. Visual comparison of update propagation with different algorithms.

4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do

369

Distributed�Reactive�
Programming:�

not�optimal�for�the�IoT

t1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw

closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring di�erent notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where di�erent sensors produce values that
are aggregated and displayed by di�erent services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side e�ects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

25°

0.35,�0.65

14°

t1:�16:45

t2:�06:30

w1,2:�16:30

Add�context�to�messages

Combine�and�measure�
contexts

“discard”�instead�of�“wait”
Thank�you!

http://quarp.proenca.org

