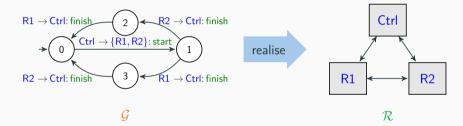
Realisability of Global Models of Interaction

José Proença (CISTER & University of Porto, Portugal)

& Maurice ter Beek (ISTI-CNR, Pisa, Italy)


& Rolf Hennicker (Ludwig-Maximilians-Universität, München, Germany)

December 7 ICTAC 2023

This Talk

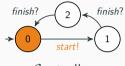
Realisability of Global Models of Interaction

Team Automata (TA) [FM'03,21,23] [ICTAC'20] [CSCW'03] [COORD.'17,20]

Choreographic models

- Choreography Automata
- Multiparty Session Types

Realisability for TA

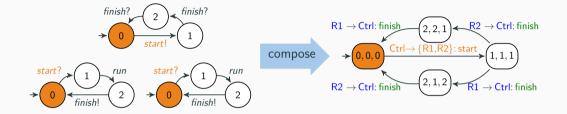

- Preserve requirements
- Realisability conditions
- Implementation

Team Automata (TA)

 $\mathcal{R}unner_2$

Controller

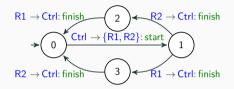
Multiparty synchronisation $Ctr \rightarrow \{R1, R2\}$: start Constrained synchronisation start: $1 \rightarrow 2$ finish: $1 \rightarrow 1$


Should not get stuck

Responsiveness/receptiveness

Encoded as modal mu-calculus

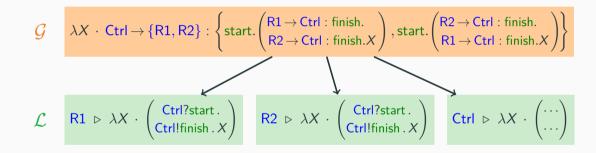
Team Automata (TA)


Multiparty synchronisation $Ctr \rightarrow \{R1, R2\}$: start

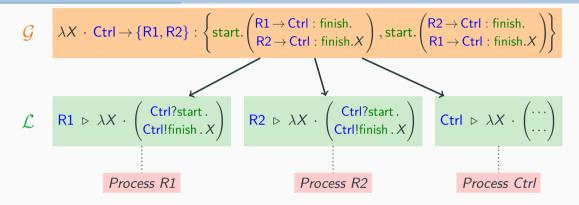
Constrained					
synchronisation					
start: 1 \rightarrow	2				
finish: 1 -	+ 1				

Should not get stuck Responsiveness/receptiveness Encoded as modal mu-calculus

Choreography Automata (CA)

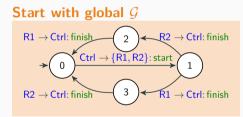

Global model of interactions

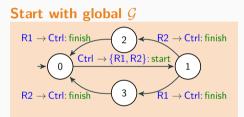
- Several results over the language of CA
- Realising = Projecting the language of CA
- F. Barbanera, I. Lanese, and E. Tuosto, Formal Choreographic Languages @ COORDINATION'22


Multiparty Session Types (MPST)

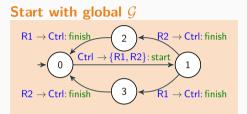
$$\lambda X \, \cdot \, \mathsf{Ctrl} \to \{\mathsf{R1}, \mathsf{R2}\} : \left\{ \mathsf{start.} \begin{pmatrix} \mathsf{R1} \to \mathsf{Ctrl} : \mathsf{finish.} \\ \mathsf{R2} \to \mathsf{Ctrl} : \mathsf{finish.} X \end{pmatrix}, \mathsf{start.} \begin{pmatrix} \mathsf{R2} \to \mathsf{Ctrl} : \mathsf{finish.} \\ \mathsf{R1} \to \mathsf{Ctrl} : \mathsf{finish.} X \end{pmatrix} \right\}$$

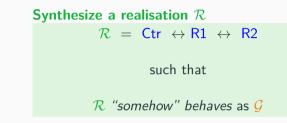
Multiparty Session Types (MPST)




Multiparty Session Types (MPST)

- Use projections to realise
- Often impose syntactic restrictions on global types
- M. Hüttel et al., Foundations of Session Types and Behavioural Contracts. ACM Comp.Surv. 2016 5/15


Realisability for Team Automata



Synthesize a realisation \mathcal{R} $\mathcal{R} = \mathsf{Ctr} \leftrightarrow \mathsf{R1} \leftrightarrow \mathsf{R2}$ such that \mathcal{R} "somehow" behaves as \mathcal{G}

What is Realisability in TA?

Different agents and networks

How much do local agents know? Different network assumptions?

Properties expressible in dynamic logic

- No runner should finish before it has been started by the controller
- Any started runner should be able to finish its run
- Receptiveness and responsiveness

[Can We Communicate? Using Dynamic Logic to Verify Team Automata, with G. Cledou @ FM'23]

Properties expressible with regular expressions

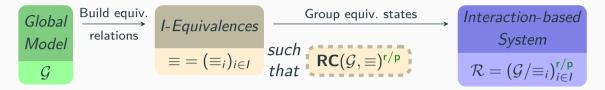
- Runner 1 can <u>finish</u> immediately after Runner 2
- It is not possible to start the race, for runner 1 to finish, and then start another race

Properties and Behavioural Equivalence

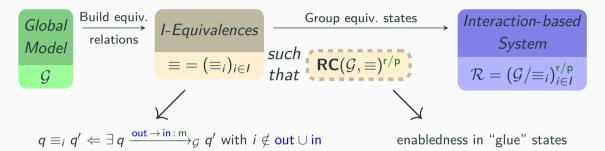
Properties expressible in dynamic logic

- No runner should finish before it has been started by the controller
- Any started runner should be able to finish its run
- Receptiveness and responsiveness

[Can We Communicate? Using Dynamic Logic to Verify Team Automata, with G. Cledou @ FM'23]

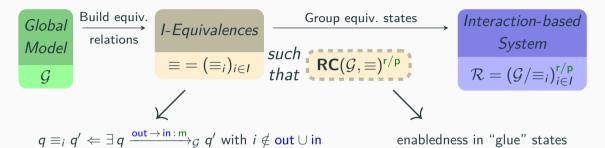

Properties expressible with regular expressions

- Runner 1 can <u>finish</u> immediately after Runner 2
- It is not possible to start the race, for runner 1 to finish, and then start another race


Properties of \mathcal{G} should also hold for \mathcal{R} (and vice-versa)

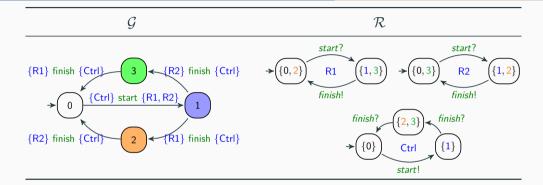
- Dynamic logic: bisimilar (non-deterministic) systems obey the same formulas
- Regular expressions: language equivalent systems include the same expressions

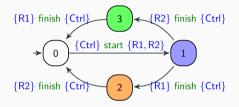
Check realisability and system synthesis



Check realisability and system synthesis

I. Castellani, M. Mukund, and P.S. Thiagarajan, Synthesizing Distributed Transition Systems from Global Specifications @ FSTTCS'99 cf. our paper for details


Check realisability and system synthesis


I. Castellani, M. Mukund, and P.S. Thiagarajan, Synthesizing Distributed Transition Systems from Global Specifications @ FSTTCS'99

Theorems 2/3 If $RC(\mathcal{G},\equiv)^{r/p}$ holds, then $\mathcal{G} \sim \otimes^{r/p} ((\mathcal{G}/\equiv_i)^{r/p})_{i \in I}$ cf. our paper for details

Our Approach to Synthesize a Realisation

Group indistinguishable states R1 : $0 \equiv_{R1} 2$; $1 \equiv_{R1} 3$ R2 : $0 \equiv_{R2} 3$; $1 \equiv_{R2} 2$ Ctrl : $2 \equiv_{Ctrl} 3$

Group indistinguishable states

R1 : $0 \equiv_{R1} 2$; $1 \equiv_{R1} 3$ R2 : $0 \equiv_{R2} 3$; $1 \equiv_{R2} 2$ Ctrl : $2 \equiv_{Ctrl} 3$

Sufficient condition to discover equivalences

```
1. collapse "	au" transitions
```

- 2. \forall label γ , participant k in γ , transition by $k: q \xrightarrow{\gamma \mid_k} q'$ common glue g **indistinguishable** to each q
- 3. \exists common g' **indistinguishable** to each q' s.t.

 $g \xrightarrow{\gamma} g'$

1. Realisations of global models with arbitrary multi-interactions supporting any kind of synchronous communication between multiple senders and multiple receivers

Novelty

- 1. Realisations of global models with arbitrary multi-interactions supporting any kind of synchronous communication between multiple senders and multiple receivers
- 2. Correctness notion for realisation based on bisimulation rather than isomorhism, so allowing to deal with non-determinism

Novelty

- 1. Realisations of global models with arbitrary multi-interactions supporting any kind of synchronous communication between multiple senders and multiple receivers
- 2. Correctness notion for realisation based on bisimulation rather than isomorhism, so allowing to deal with non-determinism
- 3. To construct realisations we consider, and analyse, two different localisation styles: rich and poor local actions

Novelty

- 1. Realisations of global models with arbitrary multi-interactions supporting any kind of synchronous communication between multiple senders and multiple receivers
- 2. Correctness notion for realisation based on bisimulation rather than isomorhism, so allowing to deal with non-determinism
- 3. To construct realisations we consider, and analyse, two different localisation styles: rich and poor local actions
- 4. A prototypical tool Ceta checks the realisability conditions and, if they are satisfied, generates local quotients and hence realisations

https://github.com/arcalab/choreo/tree/ceta

https://lmf.di.uminho.pt/ceta

Tooling @ https://lmf.di.uminho.pt/ceta

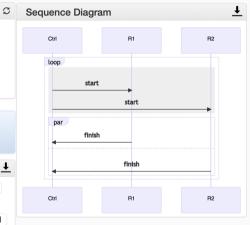
Choreographic Extended Team Automata

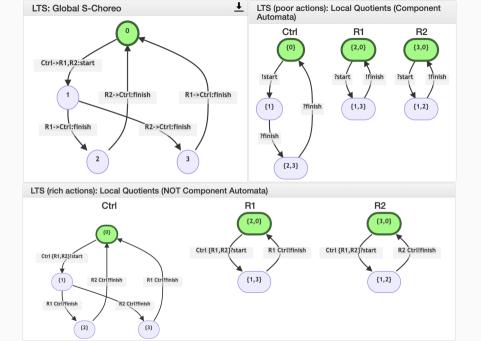
```
Choreography

 1
 // Race example

 2
 (

 3
 (Ctrl->R1,R2: start);

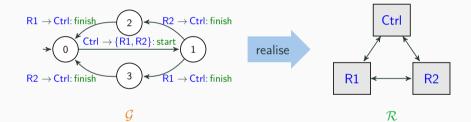

 4
 (R1->Ctrl:finish ||


 5
 R2->Ctrl:finish)

 6
 )*
```

A controller starts 2 runners at the same time, and receives a finish message from each runner at a time.

Exampl	es					<u>†</u> <u>+</u>
Race (simple) Race (R1-first)		Race	Race (once, simple)			
Toss G	iossip	(bad)	Gossip	(good)	Cast-v1	
Cast-v2	ab+	cb+ca	ab;ac	ab ac	ab;cd	ab cd

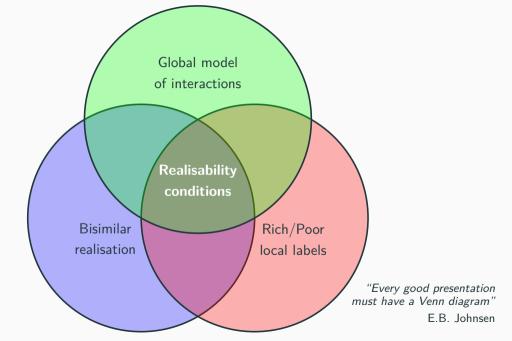


12/15

- compact representation of the global \mathcal{G} e.g., $(Ctrl \rightarrow \{R1, R2\} : start ; (R1 \rightarrow Ctrl : finish || R2 \rightarrow Ctrl : finish))^*$
- other network assumptions (e.g., asynchronous, causal channels, lossy, ...)
- heterogeneous agents (different assumptions/realisations)
- variability: global representation for any number of runners
 (to match the flexibility of synchronisation types, e.g., start: [1] → [2..*])
- refine realisations: can we make the local behaviour *"more specific"*, such that its composition is weakly bisimilar to the global behaviour?

Wrap Up

Realisability of Global Models of Interaction


Team Automata (TA) [FM'03,21,23] [ICTAC'20] [CSCW'03] [COORD.'17,20]

Choreographic models

- Choreography Automata
- Multiparty Session Types

Realisability for TA

- Preserve requirements
- Realisability conditions

Thank you for your attention!

And thanks to the other team members of the work presented here:

