
Implementing Hybrid Semantics

Sergey Goncharova,Renato Nevesb, José Proençac

aFriedrich-Alexander-Universität Erlangen-Nürnberg
bUniversity College London & INESC TEC
cCISTER Research Centre, ISEP

Hybrid systems

Computational objects that closely interact with physical processes

2

Hybrid Programming

Hybrid programming

Applies principles and techniques from programming theory to

model and analyse hybrid systems

Differential equations are added to the palette of classical program

constructs

compositionality, Hoare calculi, different styles of semantics . . .

3

(Cruise controller)

The main contribution

A mathematical basis for ‘running’ hybrid programs

We introduce an imperative, hybrid while-language

with a runnable operational semantics

and with denotational semantics, connected to the former by

soundness and adequacy

Online prototype implementation =⇒ Lince 1

1http://arcatools.org/lince

5

http://arcatools.org/lince

Related work

Previous work on hybrid semantics

Most of the previous work on hybrid semantics is inspired by

automata theory and Kleene algebra

Such approaches inherit non-deterministic behaviour which hinders

simulation capabilities

Moreover, they lead to a non-refined view of divergence

. . . while (true) do { p } = 0

hybrid automata

Differential dynamic logic

6

In our work

We aim at a purely hybrid semantics

i.e. hybrid computation as an independent computational paradigm

Iteration still as a least fixpoint and

satisfying standard axiomatic iteration laws

fixpoint, naturality, codiagonality . . .

7

Main features

Operational semantics

The language

Fix a stock of n-variables X

Linear terms

LTerm(X) 3 r | r · x | t + s

Atomic programs

At(X) 3 x := t | x′1 = t1, . . . , x
′
n = tn for t

Hybrid programs

Prog(X) 3 a | p ; q | if b then p else q | while b do { p }

8

Small-step operational semantics pt. I

Classical programming: p, σ −! p′, σ′

Hybrid programming: p, σ, t −! p′, σ′, t′

The value t tells how far we are in time from the time instant at

which we evaluate p

Special flag to tell whether we surpassed this time instant

state space X ! R

9

Small-step operational semantics pt. II

x := u, σ, t ! skip, σO[uσ/x], t

x̄′ = ū for d, σ, t ! stop, σO[φσ(t)/x̄], 0 if t < dσ

x̄′ = ū for d, σ, t ! skip, σO[φσ(dσ)/x̄], t − dσ if t ≥ dσ

p, σ, t ! stop, σ′, t ′

p; q, σ, t ! stop, σ′, t ′

p, σ, t ! skip, σ′, t ′

p; q, σ, t ! q, σ′, t ′

Solution of diff. eq. with initial cond. σInterpretation of u according to σ

Unfolds into x′1 = u1, . . . , x′n = un

10

Small-step operational semantics pt. III

The reduction process of an infinite while-loop

while true do { p }

terminates if the latter is non-Zeno

See a step-by-step illustration in the paper (Remark 2)

Definition (Zeno)

A system is Zeno if it iterates infinitely many times in finite time.

11

Future work

Future work

• Program equivalence:

(x′ = 1 for 1); (x′ = 1 for 1) = x′ = 1 for 2

• New program constructs: x′ =1/2 1 for 1

• Robustness: small input variations should not result in big

output changes

12

References i

13

	Hybrid Programming
	The main contribution
	Related work
	Main features
	Operational semantics
	Future work

