Branching pomsets and event structures (oral communication)

Luc Edixhoven1.2Sung-Shik JongmansJosé Proença3Ilaria Castellani4

¹Open University of the Netherlands ²CWI

³CISTER, ISEP, Polytechnic Institute of Porto ⁴INRIA, Université Côte d'Azur

ICE 2023

Branching pomsets for choreographies

Luc Edixhoven^{1,2} Guillermina Cledou^{3,4}

Sung-Shik Jongmans^{1,2} José Proença⁵

¹ Open University of the Netherlands ² CWI

³ HASLab, INESC TEC ⁴ University of Minho

⁵ CISTER, ISEP, Polytechnic Institute of Porto

ICE 2022

1/23

Some context

Branching pomsets and event structures (oral communication)

Luc Edixhoven^{1,2}

Sung-Shik Jongmans^{1,2}

José Proença³

llaria Castellani⁴

¹Open University of the Netherlands ²CWI

³CISTER, ISEP, Polytechnic Institute of Porto ⁴INRIA, Université Côte d'Azur

ICE 2023

- Branching pomsets: a generic model for concurrency
- Event structures: a brief overview of the landscape
- **Comparison**: relative expressiveness

Branching pomsets and event structures

Basis: partially ordered multisets / pomsets (Pratt 1986)

a set of events

above: $\{a, b, c, d, e, f, g, h\}$

• a partial order on the events

above: the reflexive and transitive closure of the arrows

 a <u>labelling function</u> from events to some set of labels above: omitted / identity (irrelevant for this talk)

Extension: choices

- expressing choices with pomsets requires a set of pomsets
- with many choices, this set may become exponentially large
- solution: add a representation of choices

Choice model: branching structure

• add <u>branching structure</u>; a tree whose leaves are the events

above: $\{a, b, g, h, C_1, C_2\}$, where $C_1 = \{\{c\}, \{d\}\}$ and $C_2 = \{\{e\}, \{f\}\}$

• replace the partial order with a precedence relation, whose reflexive and transitive closure is a partial order

above: the arrows

For comparison: the corresponding set of pomsets

 $\textbf{Semantics}: \text{ refining} \Rightarrow \text{resolving any number of choices}$

Semantics: <u>enabling</u> (followed by <u>firing</u>) \Rightarrow refining s.t. the chosen event is minimal and top-level, resolving no more than necessary

Semantics: <u>enabling</u> (followed by <u>firing</u>) \Rightarrow refining s.t. the chosen event is minimal and top-level, resolving no more than necessary

Also: nested choices

Choice model: conflict relation

 add <u>conflict relation</u>; two conflicting events may not occur together in the same execution

above: $\{(c, d), (e, f)\}$

 most classes of event structures define variations on causality and/or conflicts Landscape (partial): static and dynamic classes of event structures

Arrows represent (strict) inclusion in terms of expressiveness Figure: Arbach et al., Dynamic causality in event structures (2018) Landscape (partial): static and dynamic classes of event structures

Arrows represent (strict) inclusion in terms of expressiveness

Figure: Arbach et al., Dynamic causality in event structures (2018)

Most relevant for this talk: growing and shrinking causality \Rightarrow dynamically adding and removing causalities

Dynamic causality with counters: replaced dynamic causality event structures with a new variant with nice property; the order of events is irrelevant for the resulting causal state

As a result: uniformly defined semantics for all shown classes

Generic proof: inclusion in event structures for resolvable conflict of any class of event structures where the causal state is order-independent, including dynamic counters Comparison

Branching Pomsets

Next up: branching pomsets

Non-inclusion: not all prime event structures expressible as branching pomsets — would need overlapping boxes

Non-inclusion: not all branching pomsets expressible as growing causality event structures — would need disjunctive causality

Non-inclusion: not all branching pomsets expressible as extended bundle event structures — c can be disabled and then re-enabled

Non-inclusion: not all branching pomsets expressible as shrinking causality event structures — c can be disabled and then re-enabled

Consequently: branching pomsets incomparable with prime, growing causality, extended bundle and shrinking causality event structures

Inclusion: subset of branching pomsets, dubbed *tree-like*, can be expressed as prime event structures

Inclusion: same generic proof as for event structures also holds for branching pomsets; they can all be expressed as event structures for resolvable conflict

Inclusion conjecture: dynamic causality event structures (with counters) may be powerful enough to express all branching pomsets; no proof yet

Summary

- branching pomsets as a generic model for concurrency
- comparison with various classes of event structures
- interesting behaviour: incomparable with most, included in some more expressive classes of dynamic event structures

Future work

- proving or disproving the dynamic counters conjecture
- study the expressiveness of branching pomsets with overlapping boxes
- expand static analysis of branching pomsets