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Settings

Background

Team Automata: 1

• Systems of communicating components: synchronise over shared actions

• Synchronisation types per action: peer-2-peer, broadcast, . . .
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Goal: Safe communication � no message loss, no inde�nite waiting, . . .

1ter Beek et al., Compositionality of Safe Communication in Systems of Team Automata. ICTAC
2020
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Motivation

Many systems today are highly con�gurable:

• Large sets of similar systems that share a lot of behaviour but di�er in other

con�guration n

. . .

con�guration 2

con�guration 1
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Challenge: System by system analysis of safe communication quickly becomes unfeasible
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Settings

Approach

Featured Team Automata:

• Families (sets) of Team Automata model as a Software Product Line

• Single model parametrised by features 2 (e.g.: µ, b), and a feature model (µ⊕b)
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Goal: Family-based analysis of safe communication

2Classen et al., Featured Transition Systems: Foundations for Verifying Variability-Intensive
Systems and Their Application to LTL Model Checking. IEEE Trans. Softw. Eng. 39 (2013)
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Overview

Team Automata
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(weakly)
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(weakly)
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Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable
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Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

Here: Receptiveness � no message loss

Featured Receptiveness Requirement:

Whenever (a group of) components want to send a message (in a product), there

should be (a group of) components (in the same product) ready to receive the message

in conformance with the synchronisation type

A Featured Team Automata is (weakly) receptive, if it is (weakly) compliant with all its

featured requirements
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Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements
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] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable
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Compliance

Compliance with requirements
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[fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [b ∧ ¬ µ] rcp({u1, u2}, join)

{µ} : (0, 0, 0)
[µ∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S] (1, 0, 1)

{b} : (0, 0, 0)
[b∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S] (2, 0, 0)
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Compliance
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Tool

Online prototype

• Specify

• Generate∗

• Visualise

• Statistics

∗SAT solver to solve fm
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Wrap up

Wrapping up
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Wrap up

Future work
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Wrap up

Thank you for your attention!

Questions?
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