Maurice H. ter Beek<sup>1</sup> <u>Guillermina Cledou</u><sup>2</sup> Rolf Hennicker<sup>3</sup> José Proença<sup>4</sup>

<sup>1</sup>ISTI–CNR, Pisa, Italy

<sup>2</sup>HASLab, INESC TEC & University of Minho, Portugal

<sup>3</sup>Ludwig-Maximilians-Universität München, Munich, Germany

<sup>4</sup>CISTER, ISEP, Polytechnic Institute of Porto, Portugal

FM 2021 25 Nov 2021

### Background

### Team Automata: <sup>1</sup>

- Systems of communicating components: synchronise over shared actions
- Synchronisation types per action: peer-2-peer, broadcast, ...



<u>Goal:</u> Safe communication – no message loss, no indefinite waiting, ...

<sup>&</sup>lt;sup>1</sup>ter Beek et al., Compositionality of Safe Communication in Systems of Team Automata. ICTAC 2020

### Motivation

Many systems today are highly configurable:

• Large sets of similar systems that share a lot of behaviour but differ in other



Challenge: System by system analysis of safe communication quickly becomes unfeasible

### Approach

### Featured Team Automata:

- Families (sets) of Team Automata model as a Software Product Line
- Single model parametrised by features <sup>2</sup> (e.g.:  $\triangle$ ,  $\square$ ), and a feature model ( $\triangle \oplus \square$ )



### Goal: Family-based analysis of safe communication

<sup>&</sup>lt;sup>2</sup>Classen et al., Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking. IEEE Trans. Softw. Eng. 39 (2013)





































Online prototype: http://arcatools.org/feta



Online prototype: http://arcatools.org/feta

# Featured Team Automata Transitions



Transitions are constraint with feature expressions by:

- local feature expressions: characterise the products with all participants present
- fst: characterise the products that satisfy the corresponding synchronisation type

 $fst(\{ A \}, join\} = ([1, 1], [1, 1])$   $fst(\{ A \}, join\} = ([1, *], [1, 1])$ 

Transitions

# Featured Team Automata Transitions



Transitions are constraint with feature expressions by:

- local feature expressions: characterise the products with all participants present
- fst: characterise the products that satisfy the corresponding synchronisation type

$$fst(\{\square\}, join\} = ([1,1], [1,1]) \qquad fst(\{\square\}, join\} = ([1,*], [1,1])$$
$$(0,0,0) \xrightarrow{[]}{} (\{u_1, u_2\}, join, \{s\}) \atop fst[S]} (2,2,0)$$

Transitions

# Featured Team Automata Transitions



Transitions are constraint with feature expressions by:

- local feature expressions: characterise the products with all participants present
- fst: characterise the products that satisfy the corresponding synchronisation type

 $fst(\{\square\}, join\} = ([1, 1], [1, 1]) \qquad fst(\{\square\}, join\} = ([1, *], [1, 1])$  $(0, 0, 0) \xrightarrow{[\square \land \square \land \square \land \square} ](\{u_1, u_2\}, join, \{s\}) \rightarrow fst[S] (2, 2, 0)$ 

Transitions

# Featured Team Automata Transitions



Transitions are constraint with feature expressions by:

- local feature expressions: characterise the products with all participants present
- fst: characterise the products that satisfy the corresponding synchronisation type

 $fst(\{ \texttt{a} \}, join) = ([1, 1], [1, 1]) \qquad fst(\{ \texttt{a} \}, join) = ([1, *], [1, 1])$  $(0, 0, 0) \xrightarrow{[\texttt{a} \land \texttt{a} \land \texttt{a} \land \texttt{a} \land \texttt{a}](\{u_1, u_2\}, join, \{s\})}_{fst[\mathcal{S}]} (2, 2, 0)$ 

Here: Receptiveness – no message loss

Here: Receptiveness - no message loss

### Featured Receptiveness Requirement:

Whenever (a group of) components want to send a message (in a product), there should be (a group of) components (in the same product) ready to receive the message in conformance with the synchronisation type

Here: Receptiveness - no message loss

### Featured Receptiveness Requirement:

Whenever (a group of) components want to send a message (in a product), there should be (a group of) components (in the same product) ready to receive the message in conformance with the synchronisation type

A Featured Team Automata is (weakly) receptive, if it is (weakly) compliant with all its featured requirements



 $[ ] rcp({u_1}, join) \land rcp({u_2}, join) \land [ ] rcp({u_1, u_2}, join)$ 



 $\begin{bmatrix} & ] \operatorname{rcp}(\{u_1\}, join) \land & \operatorname{rcp}(\{u_2\}, join) \land \begin{bmatrix} & ] \operatorname{rcp}(\{u_1, u_2\}, join) \end{bmatrix}$ Featured receptiveness requirements are constraint with feature expression by:



 $\begin{bmatrix} ] \operatorname{rcp}(\{u_1\}, join) \land \operatorname{rcp}(\{u_2\}, join) \land \begin{bmatrix} ] \operatorname{rcp}(\{u_1, u_2\}, join) \end{bmatrix}$ Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present



Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present



 $[\blacksquare \lor \blacksquare] \operatorname{rcp}(\{u_1\}, join) \land \operatorname{rcp}(\{u_2\}, join) \land [$  ]  $\operatorname{rcp}(\{u_1, u_2\}, join)$ 

- local feature expressions: characterise products where the participants are present
- fst: characterise products with the correct number of senders



 $[\blacksquare \lor \blacksquare \land fm] \operatorname{rcp}(\{u_1\}, join) \land \operatorname{rcp}(\{u_2\}, join) \land [ ] \operatorname{rcp}(\{u_1, u_2\}, join)$ 

- local feature expressions: characterise products where the participants are present
- fst: characterise products with the correct number of senders



 $[\blacksquare \lor \blacksquare \land fm] \operatorname{rcp}(\{u_1\}, join) \land \operatorname{rcp}(\{u_2\}, join) \land [ ] \operatorname{rcp}(\{u_1, u_2\}, join)$ 

- local feature expressions: characterise products where the participants are present
- fst: characterise products with the correct number of senders
- reachable states: characterise products where the state is reachable



 $[\blacksquare \lor \blacksquare \land fm] \operatorname{rcp}(\{u_1\}, join) \land [fm] \operatorname{rcp}(\{u_2\}, join) \land [$ 

- local feature expressions: characterise products where the participants are present
- fst: characterise products with the correct number of senders
- reachable states: characterise products where the state is reachable



 $[\blacksquare \lor \blacksquare \land fm] \operatorname{rcp}(\{u_1\}, join) \land [fm] \operatorname{rcp}(\{u_2\}, join) \land [\blacksquare \lor \blacksquare ] \operatorname{rcp}(\{u_1, u_2\}, join)$ 

- local feature expressions: characterise products where the participants are present
- fst: characterise products with the correct number of senders
- reachable states: characterise products where the state is reachable



 $[\blacksquare \lor \blacksquare \land fm] \operatorname{rcp}(\{u_1\}, join) \land [fm] \operatorname{rcp}(\{u_2\}, join) \land [\blacksquare \lor \blacksquare \land \blacksquare \land \neg \blacksquare ] \operatorname{rcp}(\{u_1, u_2\}, join)$ 

- local feature expressions: characterise products where the participants are present
- fst: characterise products with the correct number of senders
- reachable states: characterise products where the state is reachable



 $[\blacksquare \lor \blacksquare \land fm] \operatorname{rcp}(\{u_1\}, join) \land [fm] \operatorname{rcp}(\{u_2\}, join) \land [\blacksquare \lor \blacksquare \land \blacksquare \land \neg \blacksquare \land fm] \operatorname{rcp}(\{u_1, u_2\}, join)$ 

- local feature expressions: characterise products where the participants are present
- fst: characterise products with the correct number of senders
- reachable states: characterise products where the state is reachable

### Compliance with requirements



At state (0, 0, 0):

 $[fm] \operatorname{rcp}(\{u_1\}, join) \land [fm] \operatorname{rcp}(\{u_2\}, join) \land [\blacksquare \land \neg \blacksquare] \operatorname{rcp}(\{u_1, u_2\}, join)$ 

$$\{ \bullet \} : (0,0,0) \xrightarrow{[\bullet \land fm] (\{u_1\}, join, \{s\})} _{fst[S]} (1,0,1)$$
  
$$\{ \bullet \} : (0,0,0) \xrightarrow{[\bullet \land fm] (\{u_1\}, join, \{s\})} _{fst[S]} (2,0,0)$$

### Compliance with requirements



At state (0, 1, 1):

 $[\blacksquare \land \neg \bullet] \operatorname{rcp}(\{u_1\}, join) \land [\blacksquare \land \neg \bullet] \operatorname{rcp}(\{s\}, confirm)$ 

### Compliance with requirements



At state (0, 1, 1):

 $\boldsymbol{\times} [\boldsymbol{\square} \land \neg \boldsymbol{\square}] \operatorname{rcp}(\{u_1\}, join) \land [\boldsymbol{\square} \land \neg \boldsymbol{\square}] \operatorname{rcp}(\{s\}, confirm)$ 

### Weak compliance with requirements



At state (0, 1, 1):

$$[ \frown \land \neg \bullet ] \operatorname{rcp}(\{u_1\}, join) \land [ \frown \land \neg \bullet ] \operatorname{rcp}(\{s\}, confirm)$$

$$\{ \widehat{\blacksquare} \} : (0,1,1) \xrightarrow{[\widehat{\blacksquare} \land \underline{fm}](\{s\}, \operatorname{confirm}, \{u_2\})}_{\mathsf{fst}[\mathcal{S}]} (0,2,0) \xrightarrow{[\widehat{\blacksquare} \land \underline{fm}](\{u_1\}, \operatorname{join}, \{s\})}_{\mathsf{fst}[\mathcal{S}]} (1,2,1)$$

#### Tool

### Online prototype

- Specify
- Generate\*
- Visualise
- Statistics
- \*SAT solver to solve fm



Wrap up

# Wrapping up



Online prototype: http://arcatools.org/feta

Wrap up

### Future work



# Thank you for your attention! Questions?