
Featured Team Automata

Maurice H. ter Beek1 Guillermina Cledou2 Rolf Hennicker3 José Proença4

1ISTI�CNR, Pisa, Italy

2HASLab, INESC TEC & University of Minho, Portugal

3Ludwig-Maximilians-Universität München, Munich, Germany

4CISTER, ISEP, Polytechnic Institute of Porto, Portugal

FM 2021

25 Nov 2021

1 / 49



Settings

Background

Team Automata: 1

• Systems of communicating components: synchronise over shared actions

• Synchronisation types per action: peer-2-peer, broadcast, . . .

0 2
join!

leave!

0 2
join!

leave!

0

join?

leave?

Goal: Safe communication � no message loss, no inde�nite waiting, . . .

1ter Beek et al., Compositionality of Safe Communication in Systems of Team Automata. ICTAC
2020

2 / 49



Settings

Motivation

Many systems today are highly con�gurable:

• Large sets of similar systems that share a lot of behaviour but di�er in other

con�guration n

. . .

con�guration 2

con�guration 1

0 2
join!

leave!

0 2
join!

leave!

0

join?

leave?

Challenge: System by system analysis of safe communication quickly becomes unfeasible

3 / 49



Settings

Approach

Featured Team Automata:

• Families (sets) of Team Automata model as a Software Product Line

• Single model parametrised by features 2 (e.g.: µ, b), and a feature model (µ⊕b)

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

Goal: Family-based analysis of safe communication

2Classen et al., Featured Transition Systems: Foundations for Verifying Variability-Intensive
Systems and Their Application to LTL Model Checking. IEEE Trans. Softw. Eng. 39 (2013)

4 / 49



Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

5 / 49

http://arcatools.org/feta


Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2

join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)

(0, 0, 0)
({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)

(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

6 / 49

http://arcatools.org/feta


Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2
join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)

(0, 0, 0)
({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)

(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable

7 / 49

http://arcatools.org/feta


Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

00 2

join!

join!

leave!

u1 : User

u1 : User⇂b

00 2

join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)

(0, 0, 0)
({}, join,{s})−−−−−−−→ (0, 0, 0)

might not be desirable
8 / 49

http://arcatools.org/feta


Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

9 / 49

http://arcatools.org/feta


Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

10 / 49

http://arcatools.org/feta


Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2
join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 00, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

11 / 49

http://arcatools.org/feta


Overview

Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

00 2
join!

join!

leave!

u1 : User

u1 : User⇂b

00 2
join!

join!

leave!

u2 : User

u2 : User⇂b

00

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 00, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

12 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

13 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b
⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

14 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b
⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

15 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

16 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

17 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

18 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b

⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

19 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

20 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

21 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

22 / 49

http://arcatools.org/feta


Overview

Featured Team Automata

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0

0

2

join!

join!

leave!

u1 : User

u1 : User⇂b

0

0

2

join!

join!

leave!

u2 : User

u2 : User⇂b

0

0

join?

join?

leave?

s : Server

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0

0, 0, 0

2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta

(0, 0, 0)
({u1}, join,{s})−−−−−−−−−→ (2, 0, 0)(0, 0, 0)

({u1,u2}, join,{s})−−−−−−−−−−−→ (2, 2, 0)
(0, 0, 0)

({}, join,{s})−−−−−−−→ (0, 0, 0)
might not be desirable

23 / 49

http://arcatools.org/feta


Building FETA Transitions

Featured Team Automata Transitions

fm = µ⊕b

0

0

2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(a) u1 : User

0

0

2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(b) u2 : User

0

0

1

[b] join?

[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

Transitions are constraint with feature expressions by:

• local feature expressions: characterise the products with all participants present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

24 / 49



Building FETA Transitions

Featured Team Automata Transitions

fm = µ⊕b

00 2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(a) u1 : User

00 2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(b) u2 : User

00 1[b] join?

[b] join?

[⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

Transitions are constraint with feature expressions by:

• local feature expressions: characterise the products with all participants present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

(0, 0, 0)
[

b∧b∧b∧b∧¬ µ

]({u1,u2}, join,{s})−−−−−−−−−−−−−−−−−−−−−→fst[S] (2, 2, 0)
25 / 49



Building FETA Transitions

Featured Team Automata Transitions

fm = µ⊕b

00 2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(a) u1 : User

00 2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(b) u2 : User

00 1[b] join?

[b] join?

[⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

Transitions are constraint with feature expressions by:

• local feature expressions: characterise the products with all participants present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

(0, 0, 0)
[b∧b∧b

∧b∧¬ µ

]({u1,u2}, join,{s})−−−−−−−−−−−−−−−−−−−−−→fst[S] (2, 2, 0)
26 / 49



Building FETA Transitions

Featured Team Automata Transitions

fm = µ⊕b

00 2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(a) u1 : User

00 2

1

[b] join!

[b] join!

[µ] join! [µ] con�rm?

[⊤] leave!

(b) u2 : User

00 1[b] join?

[b] join?

[⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

Transitions are constraint with feature expressions by:

• local feature expressions: characterise the products with all participants present

• fst: characterise the products that satisfy the corresponding synchronisation type

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

(0, 0, 0)
[b∧b∧b∧b∧¬ µ]({u1,u2}, join,{s})−−−−−−−−−−−−−−−−−−−−−→fst[S] (2, 2, 0)

27 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

Here: Receptiveness � no message loss

Featured Receptiveness Requirement:

Whenever (a group of) components want to send a message (in a product), there

should be (a group of) components (in the same product) ready to receive the message

in conformance with the synchronisation type

A Featured Team Automata is (weakly) receptive, if it is (weakly) compliant with all its

featured requirements

28 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

Here: Receptiveness � no message loss

Featured Receptiveness Requirement:

Whenever (a group of) components want to send a message (in a product), there

should be (a group of) components (in the same product) ready to receive the message

in conformance with the synchronisation type

A Featured Team Automata is (weakly) receptive, if it is (weakly) compliant with all its

featured requirements

29 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

Here: Receptiveness � no message loss

Featured Receptiveness Requirement:

Whenever (a group of) components want to send a message (in a product), there

should be (a group of) components (in the same product) ready to receive the message

in conformance with the synchronisation type

A Featured Team Automata is (weakly) receptive, if it is (weakly) compliant with all its

featured requirements

30 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[

µ ∨ b ∧ fm

] rcp({u1}, join) ∧

[fm]

rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

31 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[

µ ∨ b ∧ fm

] rcp({u1}, join) ∧

[fm]

rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

32 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[

µ ∨ b ∧ fm

] rcp({u1}, join) ∧

[fm]

rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present

• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

33 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b

∧ fm

] rcp({u1}, join) ∧

[fm]

rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present

• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

34 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b

∧ fm

] rcp({u1}, join) ∧

[fm]

rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders

• reachable states: characterise products where the state is reachable

35 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧

[fm]

rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders

• reachable states: characterise products where the state is reachable

36 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧

[fm]

rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

37 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [

µ ∨ b ∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

38 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [µ ∨ b

∧b ∧ ¬ µ ∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

39 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [µ ∨ b ∧b ∧ ¬ µ

∧ fm

] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

40 / 49



Building FETA Requirements for Communication Safety

Featured Receptiveness Requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) s : Server

fst({µ}, join) = ([1, 1], [1, 1]) fst({b}, join) = ([1, ∗], [1, 1])

At state (0, 0, 0):

[µ ∨ b ∧ fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [µ ∨ b ∧b ∧ ¬ µ ∧ fm] rcp({u1, u2}, join)

Featured receptiveness requirements are constraint with feature expression by:

• local feature expressions: characterise products where the participants are present
• fst: characterise products with the correct number of senders
• reachable states: characterise products where the state is reachable

41 / 49



Compliance

Compliance with requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) Server

At state (0, 0, 0):

[fm] rcp({u1}, join) ∧ [fm] rcp({u2}, join) ∧ [b ∧ ¬ µ] rcp({u1, u2}, join)

{µ} : (0, 0, 0)
[µ∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S] (1, 0, 1)

{b} : (0, 0, 0)
[b∧fm] ({u1},join,{s})−−−−−−−−−−−−−→fst[S] (2, 0, 0)

42 / 49



Compliance

Compliance with requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) Server

At state (0, 1, 1):

✗

[µ ∧ ¬b] rcp({u1}, join) ∧ [µ ∧ ¬b] rcp({s}, con�rm)

{µ} : (0, 1, 1)
[µ∧fm]({s}, con�rm,{u2})−−−−−−−−−−−−−−−→fst[S] (0, 2, 0)

[µ∧fm]({u1}, join,{s})−−−−−−−−−−−−−→fst[S] (1, 2, 1)

43 / 49



Compliance

Compliance with requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) Server

At state (0, 1, 1):

✗[µ ∧ ¬b] rcp({u1}, join) ∧ [µ ∧ ¬b] rcp({s}, con�rm)

{µ} : (0, 1, 1)
[µ∧fm]({s}, con�rm,{u2})−−−−−−−−−−−−−−−→fst[S] (0, 2, 0)

[µ∧fm]({u1}, join,{s})−−−−−−−−−−−−−→fst[S] (1, 2, 1)

44 / 49



Compliance

Weak compliance with requirements

fm = µ⊕b

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(a) u1 : User

0 2

1
[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

(b) u2 : User

0 1[b] join? [⊤] leave?

[µ] join?

[µ] con�rm!

(c) Server

At state (0, 1, 1):

✗

[µ ∧ ¬b] rcp({u1}, join) ∧ [µ ∧ ¬b] rcp({s}, con�rm)

{µ} : (0, 1, 1)
[µ∧fm]({s}, con�rm,{u2})−−−−−−−−−−−−−−−→fst[S] (0, 2, 0)

[µ∧fm]({u1}, join,{s})−−−−−−−−−−−−−→fst[S] (1, 2, 1)

45 / 49



Tool

Online prototype

• Specify

• Generate∗

• Visualise

• Statistics

∗SAT solver to solve fm

46 / 49



Wrap up

Wrapping up

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0 2
join!

leave!

u1 : User⇂b

0 2
join!

leave!

u2 : User⇂b

0

join?

leave?

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta

Extentions: e.g. check compliance

Featured

Responsiveness

Smarter: which products

derived compliant

teams?
Compositionality

47 / 49

http://arcatools.org/feta


Wrap up

Future work

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

u1 : User

0 2

1[µ] join!

[b] join!

[µ] con�rm?

[⊤] leave!

fm = µ⊕b

u2 : User

0 1

[b
]
jo
in
?

[⊤] leave?

[µ] join?

[µ] con�rm!

s : Server

0 2
join!

leave!

u1 : User⇂b

0 2
join!

leave!

u2 : User⇂b

0

join?

leave?

s : Server⇂b

0, 0, 0 2, 0, 0· · · · · ·

[γ1 ] {}, join, {s}

[γ2 ] {u1}, join, {s}

fm = µ⊕b

[γ3 ] rcp({u1}, join)
[γ4 ] rcp({u2}, join)
[γ5 ] rcp({u1, u2}, join)

0, 0, 0 2, 0, 0· · · · · ·
{u1}, join, {s}

rcp({u1}, join)
rcp({u2}, join)
rcp({u1, u2}, join)

featured
(weakly)
receptive

(weakly)
receptive

Main
Theorem

fst({b}, join) = ([1, ∗], [1, 1])
fst({b}, leave)= ([1, ∗], [1, 1])
. . .

−→ = −→
(diagram commutes)

Previous

work:

This

work:

st(join) = ([1, ∗], [1, 1])
st(leave)= ([1, ∗], [1, 1])
. . .

⇂b
⇂b

⇂b

Featured

Systems

Systems

Featured

Teams

Teams

Featured

Compliance

Compliance

Featured

Synchronisation Types

Synchronisation

Types

Online prototype: http://arcatools.org/feta Extentions: e.g. check compliance

Featured

Responsiveness

Smarter: which products

derived compliant

teams?
Compositionality

48 / 49

http://arcatools.org/feta


Wrap up

Thank you for your attention!

Questions?

49 / 49


	Settings
	Overview
	Building FETA
	Transitions
	Requirements for Communication Safety

	Compliance
	Tool
	Wrap up

