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We need to talk!
Verifying if interactions do not get stuck



Interacting systems: Simple Race
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Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?
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Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:
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Interacting systems: Simple Race
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Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:
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Team automata:
multiple synchronisation



Multiple synchronisation: Race with 2 runners
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Challenge for Dynamic Logic

start: 1 → 2 finish: 1 → 1 run: internal

Formula that
characterises

receptiveness?

Φ such that:
M |= Φ

⇔
M is receptive

5/14



Need more information

start: 1 → 2 finish: 1 → 1 run: internal

At each state:
• We only know

which interactions
can occur

• We do NOT know
if anyone wanted
to send (and failed)
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Our approach





++

start: 1 → 2 finish: 1 → 1 run: internal

start: ANY finish: ANY run: ANY

• Instead of:
M |= Φ(

9 states
13 trans

)

• Find:
M++ |=

[Allowed∗] Φ(
27 states
108 trans

)
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Verifying receptiveness



Overview

M++ |= [Allowed∗]Φ

Formal Definition
What is
receptiveness?

Dynamic logic
Foundational
detour

Receptiveness formulas
How to find Φ?
Verification with mCRL2
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Receptiveness Definition

GIVEN
• Team

⟨A1, A2, . . .⟩ + sync
• Reachable state

⟨q1, q2, . . .⟩
• Action

a : outs → ins

IF
• ∃ {Ai | i ∈ Snd}

⊆ {A1, A2, . . .}
• {qi | i ∈ Snd}

can do a!
• |Snd |

∈ outs

THEN
• ∃ {Aj | j ∈ Rcv}

⊆ {A1, A2, . . .}
• {qj | j ∈ Rcv}

can do a?
• |Rcv |

∈ ins

In our Race example
Controller can start! ⇒ both Runners must be able to start?
Runner1 can finish! ⇒ Controller can finish?
Runner2 can finish! ⇒ Controller can finish?
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Process Logic + regular expressions

Dynamic Logic (without propositions and tests)

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | ⟨α⟩ ϕ | [α] ϕ

where α ∈ ACT are structured actions over a set Act:

α := a ∈ Act | α; α | α + α | α∗
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Properties of our faulty runner
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• ⟨start?⟩ true
• ⟨−∗; run⟩ true
• [−∗; start?; finish!] false
• [−∗; start?] ⟨−∗; (finish! + giveUp)⟩ true
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Verifying receptiveness

M++





|=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true


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Verifying receptiveness

M++ |=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true


Responsiveness

M++ |=
[Allowed∗](

(⟨{} finish {c} + {} start {r1, r2}⟩ true)
⇒ (⟨{c} start {r1, r2} + {r1} finish {c} + {r2} finish {c}⟩ true)

)
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Verifying receptiveness

M++ |=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true


Also...
Verified automatically (and efficiently) using the mCRL2 model checker

Proved that this notion of receptiveness (and others) via Dynamic logic matches the
ones in the literature, (e.g., compatibility notions in [Alfaro, Henzinger 2005] (interface
automata) or [Carmona, Kleijn 2013] (multi-component environment))
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Implementation – http://arcatools.org/feta
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Wrap up
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