
Can we Communicate?
Using Dynamic Logic to Verify Team Automata

José Proença (CISTER – ISEP, Porto, Portugal)
& Maurice ter Beek (ISTI-CNR, Pisa, Italy)
& Guillermina Cledou (HASLab, INESC TEC, UM, Braga, Portugal)
& Rolf Hennicker (Ludwig-Maximilians-Universität, München, Germany)

March 7
Formal Methods 2023

This talk

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

0

2

1
start!

finish?finish?

Controller

Multiple synchronisation
Team Automata
[FM’03,21] [CSCW’03] [ICTAC’20]

[COORDINATION’17,’20]

Properties
Interactions do
not get stuck!

Automated verification
Properties as dynamic logic
Model-Checking with mCRL2
http://arcatools.org/feta

2/14

http://arcatools.org/feta

We need to talk!
Verifying if interactions do not get stuck

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

start? run

finish!rest

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?

3/14

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

start? run

finish!rest

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?

3/14

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

start? run

finish!rest

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

(Weak) Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?
3/14

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

4

start? run

finish!rest

giveUp

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?
3/14

Team automata:
multiple synchronisation

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

start: 1 → 2 finish: 1 → 1 run: internal

4/14

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

start: 1 → 2 finish: 1 → 1 run: internal

4/14

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2 start: 1 → 2 finish: 1 → 1 run: internal 4/14

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2 start: 1 → 2 finish: 1 → 1 run: internal 4/14

Challenge for Dynamic Logic

start: 1 → 2 finish: 1 → 1 run: internal

Formula that
characterises

receptiveness?

Φ such that:
M |= Φ

⇔
M is receptive

5/14

Need more information

start: 1 → 2 finish: 1 → 1 run: internal

At each state:
• We only know

which interactions
can occur

• We do NOT know
if anyone wanted
to send (and failed)

6/14

Our approach





++

start: 1 → 2 finish: 1 → 1 run: internal

start: ANY finish: ANY run: ANY

• Instead of:
M |= Φ(

9 states
13 trans

)

• Find:
M++ |=

[Allowed∗] Φ(
27 states
108 trans

)

7/14

Verifying receptiveness

Overview

M++ |= [Allowed∗]Φ

Formal Definition
What is
receptiveness?

Dynamic logic
Foundational
detour

Receptiveness formulas
How to find Φ?
Verification with mCRL2

8/14

Receptiveness Definition

GIVEN
• Team

⟨A1, A2, . . .⟩ + sync
• Reachable state

⟨q1, q2, . . .⟩
• Action

a : outs → ins

IF
• ∃ {Ai | i ∈ Snd}

⊆ {A1, A2, . . .}
• {qi | i ∈ Snd}

can do a!
• |Snd |

∈ outs

THEN
• ∃ {Aj | j ∈ Rcv}

⊆ {A1, A2, . . .}
• {qj | j ∈ Rcv}

can do a?
• |Rcv |

∈ ins

In our Race example
Controller can start! ⇒ both Runners must be able to start?
Runner1 can finish! ⇒ Controller can finish?
Runner2 can finish! ⇒ Controller can finish?

9/14

Receptiveness Definition

GIVEN
• Team

⟨A1, A2, . . .⟩ + sync
• Reachable state

⟨q1, q2, . . .⟩
• Action

a : outs → ins

IF
• ∃ {Ai | i ∈ Snd}

⊆ {A1, A2, . . .}
• {qi | i ∈ Snd}

can do a!
• |Snd |

∈ outs

THEN
• ∃ {Aj | j ∈ Rcv}

⊆ {A1, A2, . . .}
• {qj | j ∈ Rcv}

can do a?
• |Rcv |

∈ ins

In our Race example
Controller can start! ⇒ both Runners must be able to start?
Runner1 can finish! ⇒ Controller can finish?
Runner2 can finish! ⇒ Controller can finish?

9/14

Process Logic + regular expressions

Dynamic Logic (without propositions and tests)

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | ⟨α⟩ ϕ | [α] ϕ

where α ∈ ACT are structured actions over a set Act:

α := a ∈ Act | α; α | α + α | α∗

10/14

Properties of our faulty runner

0

1

2

3

4

start? run

finish!rest

giveUp
• ⟨start?⟩ true
• ⟨−∗; run⟩ true
• [−∗; start?; finish!] false
• [−∗; start?] ⟨−∗; (finish! + giveUp)⟩ true

11/14

Verifying receptiveness

M++





|=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true


12/14

Verifying receptiveness

M++ |=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true


Responsiveness

M++ |=
[Allowed∗](

(⟨{} finish {c} + {} start {r1, r2}⟩ true)
⇒ (⟨{c} start {r1, r2} + {r1} finish {c} + {r2} finish {c}⟩ true)

)

12/14

Verifying receptiveness

M++ |=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true


Also...
Verified automatically (and efficiently) using the mCRL2 model checker

Proved that this notion of receptiveness (and others) via Dynamic logic matches the
ones in the literature, (e.g., compatibility notions in [Alfaro, Henzinger 2005] (interface
automata) or [Carmona, Kleijn 2013] (multi-component environment))

12/14

Implementation – http://arcatools.org/feta

13/14

http://arcatools.org/feta

Implementation – http://arcatools.org/feta

13/14

http://arcatools.org/feta

Implementation – http://arcatools.org/feta

13/14

http://arcatools.org/feta

Wrap up

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

0

2

1
start!

finish?finish?

Controller

Multiple synchronisation
Team Automata

[FM’03,21] [CSCW’03] [ICTAC’20]

[COORDINATION’17,’20]

Properties
Interactions do
not get stuck!

Receptiveness &
Responsiveness

Automated verification
Properties as dynamic logic
Model-Checking with mCRL2

http://arcatools.org/feta

14/14

http://arcatools.org/feta

	We need to talk! Verifying if interactions do not get stuck
	Team automata: multiple synchronisation
	Verifying receptiveness

