Can we Communicate?
Using Dynamic Logic to Verify Team Automata

José Proenca (CISTER — ISEP, Porto, Portugal)
& Maurice ter Beek (ISTI-CNR, Pisa, Italy)
& Guillermina Cledou (HASLab, INESC TEC, UM, Braga, Portugal)
& Rolf Hennicker (Ludwig-Maximilians-Universitdt, Miinchen, Germany)

March 7
Formal Methods 2023

This talk

start? @\:un start? @\zun finish'.:/@ finish?
> >
‘ﬁnish! (:) ‘ﬁnish! (: > "‘ start] ‘b’

Runnerq Runners Controller
Multiple synchronisation Properties Automated verification
Team Automata Interactions do Properties as dynamic logic
[FM’03,21] [CSCW'03] [ICTAC'20] not get stuck! Model-Checking with mCRL2
[COORDINATION'17,'20] http://arcatools.org/feta

MR 2

analysing system behaviour /14

http://arcatools.org/feta

We need to talk!

Veerifying if interactions do not get stuck

Interacting systems: Simple Race

finish?

>
start!

Controller

start? @\:un
*‘
restb\@ finish!

Runner

3/14

Interacting systems: Simple Race

Receptiveness

finish? = [f | can talk, will someone listen?

_). = Will | be able to ask initially to start the Race?
start!

Controller = At any point:

if | try to send some message, will it be received?
start? @\:un
restb\@ finish!

Runner

3/14

Interacting systems: Simple Race

Receptiveness

o = [f | can talk, will someone listen?

>
start!

Controller

= Will | be able to ask initially to start the Race?

= At any point:
if | try to send some message, will it be received?

» [f | am listening, will | succeed?

re“»\@ finish! = After asking to start, will | hear if you have finished?
Runner

start? ‘\:un
S (Weak) Responsiveness
>

= At any point:
if I'm ready to receive messages, will any be sent?
3/14

Interacting systems: Simple Race

Receptiveness
finish?

/_\‘ = [f | can talk, will someone listen?
-><) start! = Will | be able to ask initially to start the Race?

Controller :
= At any point:
if | try to send some message, will it be received?

giveUp ‘
start? Gﬁ Responsiveness
_)6 = [f | am listening, will | succeed?
rest\@p = After asking to start, will | hear if you have finished?

finish!
= At any point:

‘Runner
if I'm ready to receive messages, will any be sent?

3/14

Team automata:
multiple synchronisation

Multiple synchronisation: Race with 2 runners

ﬁnbh;/,<:::>

finish?

>
start!

Controller

start? @\:un
> ..
finish!

Runnerq

start? @\:un
> <—(:)
‘ﬁnish!

Runners

4/14

Multiple synchronisation: Race with 2 runners

ﬁnish?/@ finish?
>
() start! (%

Controller

start? @\:un
>
6 finish! .

Runnerq

start? @\:un
> -
finish!

Runners

4/14

Multiple synchronisation: Race with 2 runners

ﬁnish?/@ finish?
>
() start! (%

Controller

start? @\:un
>
6 finish! .

Runnerq

start? @\:un
> -
finish!

Runners

start: 1 — 2 finish: 1 — 1

run: internal

4/14

Multiple synchronisation: Race with 2 runners

ﬁnishz/@ finish?
{c} start {r1,r2}
>
start!

Controller

run @r2 run@ri

start? run
{r1} finish {c} {r2} finish {c}
finish! {r2} finish {c} run @ r1 run @ r2 {r1} finish {c}

Runnerq

start? @\:un run@r1
> S
finish!

Runners

{r2} finish {c} {r1} finish {c} run @ r2

start: 1 — 2 finish: 1 — 1 run: internal 4/14

Challenge for Dynamic Logic

run @r2

{r2} finish {c}

{c} start {r1,r2¥

run@ri run @ r2 \{H} finish {c}

{r2} finish {c}

start: 1 — 2

run@ri

{r1} finish {c} {r2} finish {c}

{r1} finish {c} run @ r2

finish: 1 — 1 run: internal

Formula that
characterises

receptiveness?

® such that:
ME= o
=
2N is receptive

5/14

Need more information

{c} start {r1,r2}

run @ r2 run@ri

{r1} finish {c} {r2} finish {c}

{r2} finish {c} run@ri run @ r2 \{,—ﬂ finish {c}

{r2} finish {c} {r1} finish {c} run @ r2

start: 1 — 2 finish: 1 — 1 run: internal

At each state:
= We only know
which interactions
can occur
= We do NOT know

if anyone wanted
to send (and failed)

6/14

Our approach

{c} start {r1,r2}

run @ r2 run@ri

{r1} finish {c}

{r2} finish {c}

start: ANY finish: ANY

{r2} finish {c} run@r1 run @ r2 \{ﬂ} finish {c}

{r1} ﬁn@

{r2} finish {c}

run: ANY

+

Instead of
ME= o

O states
13 trans

Find:

m):
[A//owed*] 0]
27 states
108 trans

7/14

Verifying receptiveness

M = [Allowed*|d

Formal Definition Dynamic logic Receptiveness formulas
What is Foundational How to find $7
receptiveness? detour Verification with mCRL2

8/14

Receptiveness Definition

GIVEN IF
= Team] .
+ sync C{A1, A, ...} C{A1, A, ...}
= Reachable state " O
can do a! can do a7
= Action " U
: outs — ins € outs € ins

9/14

Receptiveness Definition

GIVEN IF
= Team] .
+ sync Q{Al,Ag,...} g{A]_,A2,...}
= Reachable state] =
can do a! can do a7
= Action . .
: outs — ins € outs € ins
In our Race example
Controller can = both Runners must be able to
Runner; can = Controller can
‘Runner> can = Controller can

9/14

Process Logic + regular expressions

Dynamic Logic (without propositions and tests)

¢ == true | false | =¢ [d1A G2 | pr—¢2 | (0) ¢ | [0]

where v € ACT are structured actions over a set Act:

a:=a€cAct | ;a | a+a o

10/14

Properties of our faulty runner

giveUp @
» (start?) true
? .
start run - <7 ; I’UH) true
> p » [—%; start?; finish!] false

ms:\\<:::> finish! [—*; start?] (—*; (finish! + giveUp)) true

11/14

Verifying receptiveness

{c} start {r1,r2}—f{c} start {r1}~"{c} start J* {}start {r1} {c} start {r2}

689
I

E) , z ++ //\ \(Nﬁsh {c {r2} finish {c}

{r2} finish {c} run @r1 run @r2 \{r1} finish {c}

O

run @ r1\{r2}fi/riish {c} r1} fW

9 |9

[Allowed*|
|: ({c}start {})true = ({c}start{rl, r2})true A
({r1} finish{})true = ({rl} finish{c})true A

({r2} finish{}) true = ({r2} finish{c}) true o

Verifying receptiveness

[Allowed*]
m—l——i— ': ({c}start {})true = ({c}start{rl, r2})true A
({r1} finish{})true = ({rl} finish{c}) true A
({r2} finish{}) true = ({r2} finish{c}) true

Responsiveness
M =
[Allowed*|

({{} finish{c} + {}start{rl,r2})true)
= ({{c}start{rl,r2} + {rl}finish{c} + {r2} finish{c}) true)

12/14

Verifying receptiveness

[Allowed*|
m’t—i——}- IZ ({c}start {})true = ({c}start{rl, r2})true A
({r1} finish{})true = ({rl} finish{c}) true A
({r2} finish{}) true = ({r2} finish{c}) true

Also...
Verified automatically (and efficiently) using the mCRL2 model checker

Proved that this notion of receptiveness (and others) via Dynamic logic matches the

ones in the literature, (e.g., compatibility notions in [Alfaro, Henzinger 2005] (interface

automata) or [Carmona, Kleijn 2013] (multi-component environment))

12/14

Implementation — http://arcatools.org/feta

(F)ETA Specification s} (F)ETA diagram E3
1 //Race example 0 12
2 CA runner (start)(finish) = { (F)System diagram s
start 0
CA
4 0 -—> 1 by start ®
5/ 1 —> 2 by run View mCRL2 evidence 3
6 2 -=—> 0 by finish
! ¥ Verification in mCRL2
9 CA controller (finish)(start) = { Communication Properties' Characterisation in mCRL2
10 start 0
1 0 --> 1 by start Receptiveness:
12 1 ==> 2 by finish
13 2 ==> 0 by finish [(ri_finish|c_finish + r2_run + c_start|rl_start|r2_start + r2_finish|c_finish + ri_run)* 1(
14 } ((<c_start> true) => (<c_start|rl_start|r2_start> true)) &&
1

((<r1_finish> true) => (<ri_finish|c_finish> true)) &&
((<r2_finish> true) => (<r2_finish|c_finish> true))

)

S = (rl:runner, r2:runner, c:controller)

3 STS = {
default = 1 to 1 // or "1..1 to 1..1"
start = 1 to 2

Responsiveness:

[(r1_finish|c_finish + r2_run + c_start|rl_start|r2_start + r2_finish|c_finish + r1_run)*](

213 (<c_finish +
rl_start|r2_start> true)
=
Race example (<r1_finish|c_finish +

c_start|rl_start|r2_start +

r2_finish|c_finish> true) ' " ~—
(F)ETA Examples) M_ g : !
Simple (ETA) Race (ETA) Chat (ETA) Auth (FETA)

Weak Receptiveness: analysing system behaviour 13 /14

http://arcatools.org/feta

mCRL2 full system:

Implementation —

act
rl_start,c_finish,r2_run,c_start,r2_finish,r2_start,rl_finish, rl_run;
proc
(F)ETA Specification ri(s:Int) = 2
1 //Race example (s == 2) = (r1_finish.r1(@)) + n
2 CA runner (start)(finish) 1) = (rl_run.ri(2)) + =
. start 0 0) —> (rl_start.ri(1));
4 0 --> 1 by start r2(s:Int) =
5 1 —=> 2 by run (r2_finish.r2(e)) + 3
6 2 -—> 0 by finish (r2_run.r2(2)) + =5
7} (r2_start.r2(1));
9 CA controller (finish)(si (c_finish.c(0)) +
10 start 0 —> (c_finish.c(2)) +
11 0 -—> 1 by start (s — (c_start.c(1));
12 1 ==> 2 by finish init
2 -—> 0 by finish allow({ finish|c_finish + ri_run)*](
4} rl_start,
c_finish,
16 S = (rl:runner, r2:runnet c_start|r2_start,
17 c_start,
STS = { c_start|r2_start|rl_start,
default = 1 to 1 // or ' r2_finish|rl_finish,
20 start = 1 to 2 c_finish|r2_finish, finish|c_finish + ri_run)x 1(
21 } r2_finish,
r2_start,
rl_finish,
Race example c_start|rl_start,
rl_run, ﬁ
c_finish|r2_finish|rl_finish, P—
(F)ETA Examples ‘ B A
r2_run, [— h\ I 2
Simple (ETA) Race (ETA) Chat (E r2_start|rl_start,
c_finish|rl_finish}, alysing system behaviour 13/14

ri(e) || r2(e) || c(@));

http://arcatools.org/feta

Implement

(F)ETA Specific

1 //Race exal
2 CA runner

3 start 0
4.0 —>1hb
5 1==>2hb
6 2==>0Dhb
7}

9 CA control

10 start 0
11 0 =——>1b
12 1 =-->2b
13 2=—=>00h
14 }

15

16S = (rl:ru
17

18 STS = {

19 default =
20 start =1
21}

Race example

(F)ETA Exampl
Simple (ETA) R:

View mCRL2 evidence

Receptiveness: true

{c} start n K]
run @ rZ run @ "

r1} finish {c} {r2)} finish {c}

(r| finish {c}
(rI)ﬂmsh [G] mnmz

Weak Receptiveness: true

fc} start {n r2}
run @ rZ run @ 2l

{r1} finish {c}

lr| finish {c}
(rﬂﬂmmm run@rz

{rl}’ln\sh{:} run@n run@rz

run@rt {r2} finish {c}

{ra} finish (<} run Qrl run @ n

run@r, {r2} finish {c}

Responsiveness: false

{r2} finish {c}

r2} ﬂmsh (c) run Qrt

run @ ", (rz] finish {c}

{c} start {r1,r2}

{1 finish {c}

+ rl_run)* 1(

Weak Responsiveness: true

{c} start r1 7y
run @ rz run @ Ll

{r2} finish {c}

{r1 finish {c}
lrﬂﬂn(sh {c} runmz

+ rl_run)* 1(

45

1m behaviour 13/14

http://arcatools.org/feta

start? @\:un start? @\:un ﬁnish'.:/@ finish?
> > - >
‘ finish! (: ‘) finish! () . start! (b

Runnery Runners Controller
Multiple synchronisation Properties Automated verification
Team Automata Interactions do Properties as dynamic logic

not get stuck! Model-Checking with mCRL2

[FM'03,21] [CSCW'03] [ICTAC'20]
[COORDINATION'17,'20] Receptiveness & http://arcatools.org/feta

Responsiveness ™
MERT >

analysing system behaviour 14/14

http://arcatools.org/feta

	We need to talk! Verifying if interactions do not get stuck
	Team automata: multiple synchronisation
	Verifying receptiveness

