
Can we Communicate?
Using Dynamic Logic to Verify Team Automata

José Proença (CISTER – ISEP, Porto, Portugal)
& Maurice ter Beek (ISTI-CNR, Pisa, Italy)
& Guillermina Cledou (HASLab, INESC TEC, UM, Braga, Portugal)
& Rolf Hennicker (Ludwig-Maximilians-Universität, München, Germany)

March 7
Formal Methods 2023

This talk

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

0

2

1
start!

finish?finish?

Controller

Multiple synchronisation
Team Automata
[FM’03,21] [CSCW’03] [ICTAC’20]

[COORDINATION’17,’20]

Properties
Interactions do
not get stuck!

Automated verification
Properties as dynamic logic
Model-Checking with mCRL2
http://arcatools.org/feta

2/14

http://arcatools.org/feta

We need to talk!
Verifying if interactions do not get stuck

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

start? run

finish!rest

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?

3/14

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

start? run

finish!rest

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?

3/14

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

start? run

finish!rest

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

(Weak) Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?
3/14

Interacting systems: Simple Race

0 1
start!

finish?

Controller

0

1

2

3

4

start? run

finish!rest

giveUp

Runner

Receptiveness
• If I can talk, will someone listen?
• Will I be able to ask initially to start the Race?
• At any point:

if I try to send some message, will it be received?

Responsiveness
• If I am listening, will I succeed?
• After asking to start, will I hear if you have finished?
• At any point:

if I’m ready to receive messages, will any be sent?
3/14

Team automata:
multiple synchronisation

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

start: 1 → 2 finish: 1 → 1 run: internal

4/14

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

start: 1 → 2 finish: 1 → 1 run: internal

4/14

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2 start: 1 → 2 finish: 1 → 1 run: internal 4/14

Multiple synchronisation: Race with 2 runners

0

2

1
start!

finish?finish?

Controller

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2 start: 1 → 2 finish: 1 → 1 run: internal 4/14

Challenge for Dynamic Logic

start: 1 → 2 finish: 1 → 1 run: internal

Formula that
characterises

receptiveness?

Φ such that:
M |= Φ

⇔
M is receptive

5/14

Need more information

start: 1 → 2 finish: 1 → 1 run: internal

At each state:
• We only know

which interactions
can occur

• We do NOT know
if anyone wanted
to send (and failed)

6/14

Our approach

++

start: 1 → 2 finish: 1 → 1 run: internal

start: ANY finish: ANY run: ANY

• Instead of:
M |= Φ(

9 states
13 trans

)

• Find:
M++ |=

[Allowed∗] Φ(
27 states
108 trans

)

7/14

Verifying receptiveness

Overview

M++ |= [Allowed∗]Φ

Formal Definition
What is
receptiveness?

Dynamic logic
Foundational
detour

Receptiveness formulas
How to find Φ?
Verification with mCRL2

8/14

Receptiveness Definition

GIVEN
• Team

⟨A1, A2, . . .⟩ + sync
• Reachable state

⟨q1, q2, . . .⟩
• Action

a : outs → ins

IF
• ∃ {Ai | i ∈ Snd}

⊆ {A1, A2, . . .}
• {qi | i ∈ Snd}

can do a!
• |Snd |

∈ outs

THEN
• ∃ {Aj | j ∈ Rcv}

⊆ {A1, A2, . . .}
• {qj | j ∈ Rcv}

can do a?
• |Rcv |

∈ ins

In our Race example
Controller can start! ⇒ both Runners must be able to start?
Runner1 can finish! ⇒ Controller can finish?
Runner2 can finish! ⇒ Controller can finish?

9/14

Receptiveness Definition

GIVEN
• Team

⟨A1, A2, . . .⟩ + sync
• Reachable state

⟨q1, q2, . . .⟩
• Action

a : outs → ins

IF
• ∃ {Ai | i ∈ Snd}

⊆ {A1, A2, . . .}
• {qi | i ∈ Snd}

can do a!
• |Snd |

∈ outs

THEN
• ∃ {Aj | j ∈ Rcv}

⊆ {A1, A2, . . .}
• {qj | j ∈ Rcv}

can do a?
• |Rcv |

∈ ins

In our Race example
Controller can start! ⇒ both Runners must be able to start?
Runner1 can finish! ⇒ Controller can finish?
Runner2 can finish! ⇒ Controller can finish?

9/14

Process Logic + regular expressions

Dynamic Logic (without propositions and tests)

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | ⟨α⟩ ϕ | [α] ϕ

where α ∈ ACT are structured actions over a set Act:

α := a ∈ Act | α; α | α + α | α∗

10/14

Properties of our faulty runner

0

1

2

3

4

start? run

finish!rest

giveUp
• ⟨start?⟩ true
• ⟨−∗; run⟩ true
• [−∗; start?; finish!] false
• [−∗; start?] ⟨−∗; (finish! + giveUp)⟩ true

11/14

Verifying receptiveness

M++

|=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true

12/14

Verifying receptiveness

M++ |=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true

Responsiveness

M++ |=
[Allowed∗](

(⟨{} finish {c} + {} start {r1, r2}⟩ true)
⇒ (⟨{c} start {r1, r2} + {r1} finish {c} + {r2} finish {c}⟩ true)

)

12/14

Verifying receptiveness

M++ |=
[Allowed∗]

⟨{c} start {}⟩ true ⇒ ⟨{c} start {r1, r2}⟩ true ∧
⟨{r1} finish {}⟩ true ⇒ ⟨{r1} finish {c}⟩ true ∧
⟨{r2} finish {}⟩ true ⇒ ⟨{r2} finish {c}⟩ true

Also...
Verified automatically (and efficiently) using the mCRL2 model checker

Proved that this notion of receptiveness (and others) via Dynamic logic matches the
ones in the literature, (e.g., compatibility notions in [Alfaro, Henzinger 2005] (interface
automata) or [Carmona, Kleijn 2013] (multi-component environment))

12/14

Implementation – http://arcatools.org/feta

13/14

http://arcatools.org/feta

Implementation – http://arcatools.org/feta

13/14

http://arcatools.org/feta

Implementation – http://arcatools.org/feta

13/14

http://arcatools.org/feta

Wrap up

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

0

2

1
start!

finish?finish?

Controller

Multiple synchronisation
Team Automata

[FM’03,21] [CSCW’03] [ICTAC’20]

[COORDINATION’17,’20]

Properties
Interactions do
not get stuck!

Receptiveness &
Responsiveness

Automated verification
Properties as dynamic logic
Model-Checking with mCRL2

http://arcatools.org/feta

14/14

http://arcatools.org/feta

	We need to talk! Verifying if interactions do not get stuck
	Team automata: multiple synchronisation
	Verifying receptiveness

