Can we Communicate? Using Dynamic Logic to Verify Team Automata

José Proença (CISTER – ISEP, Porto, Portugal)

& Maurice ter Beek (ISTI-CNR, Pisa, Italy)

& Guillermina Cledou (HASLab, INESC TEC, UM, Braga, Portugal)

& Rolf Hennicker (Ludwig-Maximilians-Universität, München, Germany)

March 7 Formal Methods 2023

This talk

Multiple synchronisation

Team Automata [FM'03,21] [CSCW'03] [ICTAC'20] [COORDINATION'17,'20] Properties Interactions do not get stuck! Automated verification Properties as dynamic logic Model-Checking with mCRL2 http://arcatools.org/feta

We need to talk!

Verifying if interactions do not get stuck

Receptiveness

- If I can talk, will someone listen?
- Will I be able to ask initially to start the Race?
- At any point:

if I try to send some message, will it be received?

Receptiveness

- If I can talk, will someone listen?
- Will I be able to ask initially to start the Race?
- At any point: if I try to send some message, will it be received?

(Weak) Responsiveness

- If I am listening, will I succeed?
- After asking to start, will I hear if you have finished?
- At any point: if I'm ready to receive messages, will any be sent?

Receptiveness

- If I can talk, will someone listen?
- Will I be able to ask initially to start the Race?
- At any point: if I try to send some message, will it be received?

Responsiveness

- If I am listening, will I succeed?
- After asking to start, will I hear if you have finished?
- At any point: if I'm ready to receive messages, will any be sent?

Team automata: multiple synchronisation

start: $1 \rightarrow 2$ finish: $1 \rightarrow 1$ run: internal

start: $1 \rightarrow 2$ finish: $1 \rightarrow 1$ run: internal

Challenge for Dynamic Logic

Need more information

At each state:

- We only know which interactions can occur
- We do NOT know if anyone wanted to send (and failed)

Our approach

- Instead of: $\begin{array}{c}
 \mathfrak{M} \models \Phi \\
 \begin{pmatrix} 9 \ states \\
 13 \ trans \\
 \end{array}$
- Find: $\mathfrak{M}^{++} \models$ $[Allowed^*] \Phi$ $\begin{pmatrix} 27 \ states \\ 108 \ trans \end{pmatrix}$

$\mathfrak{M}^{++} \models [Allowed^*]\Phi$

Formal Definition

What is receptiveness?

Dynamic logic

Foundational detour

Receptiveness formulas How to find Φ ? Verification with mCRL2

Receptiveness Definition

GIVEN

- Team $\langle A_1, A_2, \ldots \rangle + \text{sync}$
- Reachable state $\langle q_1, q_2, \ldots
 angle$
- Action
 - $\textbf{a}: \textit{outs} \rightarrow \textit{ins}$

IF

- $\exists \{A_i \mid i \in Snd\}$ $\subseteq \{A_1, A_2, \ldots\}$
- {*q_i* | *i* ∈ *Snd*}
 can do *a*!
- |Snd| ∈ outs

THEN

- $\exists \{A_j \mid j \in Rcv\}$ $\subseteq \{A_1, A_2, \ldots\}$
- {q_j | j ∈ Rcv}
 can do a?
- |*Rcv*| ∈ ins

Receptiveness Definition

GIVEN

- Team $\langle A_1, A_2, \ldots \rangle + \text{sync}$
- Reachable state $\langle q_1, q_2, \ldots \rangle$
- Action
 - $\textbf{a}: \textit{outs} \rightarrow \textit{ins}$

IF

- $\exists \{A_i \mid i \in Snd\}$ $\subseteq \{A_1, A_2, \ldots\}$
- {*q_i* | *i* ∈ *Snd*}
 can do *a*!
- |*Snd*| ∈ outs

THEN

- $\exists \{A_j \mid j \in Rcv\}$ $\subseteq \{A_1, A_2, \ldots\}$
- {q_j | j ∈ Rcv}
 can do a?
- |*Rcv*| ∈ ins

In our Race example

Controller can start! \Rightarrow both $\mathcal{R}unners$ must be able to start? $\mathcal{R}unner_1$ can finish! \Rightarrow Controller can finish? $\mathcal{R}unner_2$ can finish! \Rightarrow Controller can finish?

Dynamic Logic (without propositions and tests)

 $\phi ::= \mathsf{true} \mid \mathsf{false} \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2 \mid \langle \alpha \rangle \phi \mid [\alpha] \phi$

where $\alpha \in ACT$ are structured actions over a set *Act*:

 $\alpha := \mathbf{a} \in \mathbf{Act} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$

Properties of our *faulty* runner

- (*start*?) true
- $\langle -^*; run \rangle$ true
- [-*; start?; finish!] false
- $[-^*; start?] \langle -^*; (finish! + giveUp) \rangle$ true

[Allowed*]

 $\begin{cases} \langle \{c\} \ start \ \{\} \rangle \ true & \Rightarrow \ \langle \{c\} \ start \ \{r1, r2\} \rangle \ true \land \\ \langle \{r1\} \ finish \ \{\} \rangle \ true & \Rightarrow \ \langle \{r1\} \ finish \ \{c\} \rangle \ true \land \\ \langle \{r2\} \ finish \ \} \rangle \ true & \Rightarrow \ \langle \{r2\} \ finish \ \{c\} \rangle \ true \end{cases}$

Responsiveness

 $\mathfrak{M}^{++}\models$ [Allowed*] $\begin{array}{l} \left(\left(\left\{ \right\} \text{ finish} \left\{ c \right\} + \left\{ \right\} \text{ start} \left\{ r1, r2 \right\} \right) \text{ true} \right) \\ \Rightarrow \left(\left(\left\{ c \right\} \text{ start} \left\{ r1, r2 \right\} + \left\{ r1 \right\} \text{ finish} \left\{ c \right\} + \left\{ r2 \right\} \text{ finish} \left\{ c \right\} \right) \text{ true} \right) \end{array} \right)$

Also...

Verified automatically (and efficiently) using the mCRL2 model checker

Proved that this notion of receptiveness (and others) via Dynamic logic matches the ones in the literature, (e.g., compatibility notions in [Alfaro, Henzinger 2005] (interface automata) or [Carmona, Kleijn 2013] (multi-component environment))

Implementation – http://arcatools.org/feta

C

(F)ETA Specification 1 //Race example 2 CA runner (start)(finish) = { 3 start 0 4 0 --> 1 by start 5 1 ---> 2 by run 6 2 --> 0 by finish 7 } 8 9 CA controller (finish)(start) = { 10 start 0 11 0 --> 1 by start 12 1 --> 2 by finish 13 2 ---> 0 by finish 14 } 16 S = (r1; runner, r2; runner, c; controller)18 STS = { 19 default = 1 to 1 // or "1..1 to 1..1" 20 start = 1 to 2 21 }

Race example

```
(F)ETA Examples
Simple (ETA) Bace (ETA) Chat (ETA) Auth (FETA)
```

(F)ETA diagram	
(F)System diagram	
(F)CA	
View mCRL2 evidence	
Verification in mCRL2	
Communication Properties' Characterisation in mCR	IL2
Receptiveness:	
<pre>[(r1_finish c_finish + r2_run + c_start r1_star ((cc_start> true) => (cc_start r1_start r2_start r2_start r2_start]r2_si ((<r1_finish> true) => (<r1_finish c_finish> ((<r2_finish> true) => (<r2_finish c_finish>)</r2_finish c_finish></r2_finish></r1_finish c_finish></r1_finish></pre>	t r2_start + r2_finish c_finish + r1_run)*] tart> true)) && true)) && true))
Responsiveness:	
<pre>[(r1_finish c_finish + r2_run + c_start r1_start (<c_finish +<br="">r1_start r2_start> true) => (<r1_finish c_finish +<br="">c_start r1_start r2_start + r2_finish c_finish> true))</r1_finish c_finish></c_finish></pre>	t r2_start + r2_finish c_finish + r1_run)*](
Weak Receptiveness:	analysing system behaviour

Implementation -

mCRL2 full system:

plementation –	act
	ri_start,c_fin
(F)ETA Specification	r1(s:Int) =
<pre>1 //Race example 2 CA runner (start)(finish 3 start 0 4 0> 1 by start 5 1> 2 by run 6 2> 0 by finish 7 b</pre>	(s == 2) -> (s == 1) -> (s == 0) -> r2(s:Int) = (s == 2) -> (s == 1) -> (s == 0) ->
<pre>8 9 CA controller (finish)(! 10 start 0 11 0> 1 by start</pre>	c(s:Int) = (s == 2) -> (s == 1) -> (s == 0) ->
12 1> 2 by finish 13 2> 0 by finish 14 }	<pre>init allow({ r1_start, c_finish</pre>
15 16 S = (r1:runner, r2:runne 17 18 STS = {	c_start r2_s c_start, c_start r2_s
<pre>19 default = 1 to 1 // or 20 start = 1 to 2 21 }</pre>	r2_finish r1 c_finish r2_ r2_finish,
Race example	r1_finish, c_start r1_s

(F)ETA Examples Simple (ETA) Race (ETA) Chat (E

ish,r2 run,c start,r2 finish,r2 start,r1 finish,r1 run; (r1_finish.r1(0)) + (r1_run.r1(2)) + (r1 start.r1(1)): (r2_finish.r2(0)) + (r2_run.r2(2)) + (r2 start.r2(1)); (c finish.c(0)) + $(c_finish.c(2)) +$ (c start.c(1)):tart, tart|r1 start, finish. finish. tart. r1_run, c_finish|r2_finish|r1_finish, r2 run, r2_start|r1_start, c finish|r1 finish}. r1(0) || r2(0) || c(0));

Wrap up

 $\mathcal{R}unner_2$

Controller

Multiple synchronisation

Team Automata

[FM'03,21] [CSCW'03] [ICTAC'20] [COORDINATION'17,'20]

Properties

Interactions do not get stuck!

Receptiveness & Responsiveness

Automated verification

Properties as dynamic logic Model-Checking with mCRL2

http://arcatools.org/feta

