
Animating Rebeca

Maurice H. ter Beek1(B) and José Proença2(B)

1 CNR–ISTI, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 CISTER and University of Porto, Porto, Portugal
jose.proenca@fc.up.pt

Abstract. Rebeca is 20+ years old. Introduced by Marjan Sirjani and
colleagues for modelling and analysing actor-based systems, it comes with
a variety of tool support, including dedicated model checkers, simulators,
and code generators. When encountering Rebeca for the first time, either
as a student, as a researcher, or as a practitioner from industry, one needs
to grasp the subtleties of Rebeca’s semantics, which includes variants
with probabilities and time.
This paper presents a user-friendly web-based front-end, based on the
Caos library for Scala, to animate different operational semantics of
(timed) Rebeca. This can facilitate the dissemination and awareness of
Rebeca, provide insights into the differences among existing semantics,
and support quick experimentation of new variants (e.g., when the order
of received messages is preserved). The tool is illustrated by means of a
ticket service use case from the literature.

Keywords: Rebeca, operational semantics, web front-end, animation,
actors, time

1 Introduction

The Reactive objects language (Rebeca) [24,25,21] is a high-level language de-
signed for modelling and analysing concurrent and distributed systems based
on the actor model of computation, which views systems as a collection of au-
tonomous objects (actors) that communicate via asynchronous message passing.

Actors or reactive objects (rebecs) constitute its primary modelling compo-
nents, which are particularly useful for modelling and analysing reactive sys-
tems in which components react to incoming messages. Rebeca has a 25-year
history [27,28], which traces back to the agent-based language Planner proposed
by Hewitt [13], further developed into a concurrent object-based language by
Agha [2], and formalised into a theory of actor computation by Agha et al. [3,4].

Rebecs communicate in a non-blocking fashion via asynchronous message
passing between senders and receivers. Each rebec has a set of variables that
store values, a set of methods (called message servers) and a message bag to
store the received messages (along with their arrival times and their deadlines).
Operationally, a rebec may take a message (with the least arrival time) from its
message bag and execute the corresponding message server. Each rebec operates
concurrently and can process one message at a time.

http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-0971-8919

2 ter Beek and Proença

Throughout the years, several extensions of Rebeca have been introduced
for the modelling and analysis of systems from specific domains, among which
pRebeca [31] for probabilistic systems, Timed Rebeca [26] for real-time systems,
PTRebeca [15] for probabilistic timed systems, and Hybrid Rebeca [17] for cyber-
physical systems. In particular, Timed Rebeca extends core Rebeca with a global
notion of time [1,23,20,26], which is achieved by synchronisation of (local) time
of the actors (rebecs) involved. In Timed Rebeca, the primitives delay and after
are used to model the progress of time while executing a message server.

Timed Rebeca is supported by the tool Afra [19], which offers a comprehen-
sive IDE for specifying and verifying Rebeca models. It unifies the Java artifacts
from various Rebeca-related projects and offers tools for model creation, prop-
erty specification, model checking, and counterexample visualisation. Like other
Eclipse-based plugins, the Afra interface is divided into a project browser, a
model and property editor, and a view for model-checking results. Afra operates
on the full space of global states (including local states and time) and transi-
tions according to three types of possible actions (including taking a message,
executing a message, and progressing time).

Besides Afra, there is a rich ecosystem of tools around Rebeca [24],3 including
generators for back-end model checkers such as SMV [29], mCRL2 [14], and
McErlang [11], a dedicated model checker Modere [16], and a more recent Jacco
model checker for Java actors [32] based on Rebeca’s existing toolset.

As a result of this proliferation of extensions and tools for Rebeca, those who
encounter Rebeca for the first time—either as a student, as a researcher, or as
a practitioner from industry—need to grasp a number of subtleties of Rebeca’s
semantics, possibly including intricacies of probabilities and time.

We recently developed the Caos Scala framework (Computer aided design of
structural operational semantics) [22], which can help ease these first contacts
to Rebeca. Caos supports the creation of interactive JavaScript-based websites
meant to animate operational semantics. These websites can provide both a quick
feedback for developers and good insights to newcomers of a specific language.

Caos has been used, e.g., to animate and guide the development of the seman-
tics of choreographic languages [10,9,8,18] and reactive systems [6,7,30], as well
as to teach students about the semantics of C-like languages and of a concur-
rent process calculus.4 A survey from 2020 with the participation of 130 formal
methods experts—including three Turing Award winners, all five FME Fellow-
ship Award winners, and 17 CAV Award winners—acknowledges the importance
of supporting tools for teaching formal methods, since “an overwhelming major-
ity of answers judged the use of tools essential when teaching formal methods”
(75.4% of the respondents answered “major role”) when asked “whether, and to
which extent, students should be exposed to software tools when being taught
formal methods” [12, Section 6: Formal Methods in Education]. Moreover, tools
“allow students to quickly link theory with practice” [5].

3 https://rebeca-lang.org/tools
4 Many examples are listed here: https://github.com/arcalab/caos

https://rebeca-lang.org/tools
https://github.com/arcalab/caos

Animating Rebeca 3

Contribution We present a user-friendly web-based front-end for Rebeca based
on Caos, which we call RebeCaos, to animate different operational semantics of
(Timed) Rebeca and take away a little chaos from those who are new to the
Rebeca theory and its supporting tools. More generally, this may facilitate fur-
ther dissemination and awareness of Rebeca, provide insights into the differences
among existing semantics, and support quick experimentation of new variants
(e.g., when the order of received messages is preserved). RebeCaos is illustrated
by means of a ticket service use case from the literature.

Outline After this Introduction, Section 2 provides the syntax and semantics
of core Rebeca, extended with time and dynamism, followed by the introduction
of RebeCaos, a novel tool animating Rebeca, in Section 3. Before a dedication to
Marjan Sirjani, we conclude the paper and present ideas for future work.

2 Rebeca: Syntax and Semantics

This section provides a quick introduction to Rebeca’s syntax and semantics,
starting with a simple toy example, presented in Fig. 1, borrowed from Hojjat
et al. [14],5 with a few adaptations. This program resembles a typical object-
oriented one, where all objects are actors (called rebecs) and method invocation
is asynchronous. In this concrete system there is a single reactive class Example

that is instantiated twice in the main block on the right. The first instance is
called ex1 and the second ex2. Two groups of arguments can be passed: the first
to provide other rebecs that can be used to call methods to, and the second to
provide values to initialise the rebec (via the initial method).

reactiveclass Example {
// rebecs to who it can send
knownrebecs {
Example ex;

}
// internal state variables
statevars {
int counter;

}

// available methods
msgsrv initial() {
counter=0;
ex.add(1);

}
msgsrv add(int a) {
if (counter < 100)
{counter = counter + a;}

}
}

// Starting point to
// run the system
main {
Example ex1(ex2):();
Example ex2(ex1):();

}

Fig. 1. Simple toy example borrowed from Hojjat et al. [14]

In this system both Example instances initialise their counter to zero, and ask
each other to increment their counter by one. The order in which they increment
their counter is not fixed, and in the end both rebecs will have their counter set
to one. The syntax and semantics will be precisely described below.
5 The electronic version of this paper includes hyperlinks to examples that open in

our online tool, marked with the symbol .

https://fm-dcc.github.io/rebecaos/?Simple
https://fm-dcc.github.io/rebecaos/?Simple

4 ter Beek and Proença

2.1 Syntax

We provide the abstract syntax of Rebeca from [20] below, writing ⟨. . . ⟩ for
(meta) parenthesis, superscript ∗ for (zero or more) repetitions, ⟨. . .⟩∗ for (zero
or more) repetitions separated by commas, ⟨. . .⟩+ for (one or more) repetitions
separated by commas, [. . .] for indicating that the text within the brackets is op-
tional, identifiers className, rebecName, methodName, v, literal, delay, and type
for denoting class name, rebec name, method name, variable, integer number,
delay method, and type, respectively, e for denoting an (arithmetic, Boolean,
or nondeterministic choice) expression, and parameter t for an expression with
natural number result. The special variables self holds a reference to the current
rebec, and sender holds a reference to the rebec that called the ongoing method.

Model ∶∶= Class∗ Main
Main ∶∶=main { InstanceDcl∗ }

InstanceDcl ∶∶= className rebecName(⟨rebecName⟩∗) ∶ (⟨literal⟩∗);
Class ∶∶= reactiveclass className {KnownRebecs Vars MsgSrv∗ }

KnownRebecs ∶∶= knownrebecs {VarDcl∗ }
Vars ∶∶= statevars {VarDcl∗ }

VarDcl ∶∶= type ⟨v⟩+;
MsgSrv ∶∶=msgsrv methodName(⟨type v⟩∗) {Stmt∗ }

Stmt ∶∶= v = e; ∣ v =?(e, ⟨e⟩+); ∣ Call; ∣ if (e) {Stmt∗ } [else {Stmt∗ }]

∣ delay(t); ∣ v = new className(⟨rebecName⟩∗) ∶ (⟨literal⟩∗);

Call ∶∶= rebecName.methodName(⟨e⟩∗) [after(t)] [deadline(t)]

Timed Extension The syntactic constructs that address time in the syntax
above are marked with a light green background. These include a delay(t),
which is a statement that causes its rebec to wait t time before proceeding; an
after(t), whose value shows how long it takes for a message to be delivered to
its receiver; and a deadline(t), which provides the timeout for a message, i.e.,
stating that it will remain valid for t time. Furthermore, a special variable now
holds the local time value of each rebec, incremented in the semantic rules below.
An example of a system with time will be presented later in Fig. 3, borrowed
from Khamespanah et al. [20], describing a Ticket service.

Dynamic Extension At execution time, new rebecs can be created with the
new keyword, similar to object-oriented languages such as Java. This part is
marked in the syntax above with a darker blue background. When using this
extension, each rebec can know both a static set of rebecs, declared in the
knownrebecs block, and a dynamic set of rebecs, used and modified like other
regular variables. For instance, “x = new Example (ex):(); x.add(3);” creates
a new rebec of the Example class and calls its add method. We do not include a
larger example in this paper, but some examples can be found in RebeCaos.

https://fm-dcc.github.io/rebecaos/?[Time] Ticket service

Animating Rebeca 5

2.2 Semantics

We follow mainly the semantics of Timed Rebeca programs presented by Reynos-
son et al. [23], also used by others [1,20]. This semantics uses both (1) an oper-
ational semantics to specify how the configuration of a system evolves when a
pending message is processed, and (2) a natural semantics to evaluate a block
of statements in a method. We start by describing the former, defining a config-
uration in a running system, followed by the evaluation of a given sequence of
statements with both the timed and the dynamic extension.

Operational Semantics for the Scheduler Assume a fixed set of rebec
names R and let r, s ∈ R range over these names. A configuration of a sys-
tem is a pair ⟨Env ,B⟩ where Env is a set of Rebeca states σr for each r ∈ R, and
B is a multiset of pending messages. A state σr ∈ Env of a rebec r is a mapping
from variables to values, including the special variables now (representing the
local time of a rebec) and sender (representing the rebec that called the ongoing
method). A message in B is a tuple ⟨r,m(v), s,TT ,DL⟩ representing a pending
call to a method m with arguments v, called by a rebec s to a rebec r, sent at
time TT and expiring at time DL. The SOS rule of Timed Rebeca is formalised
below, specifying a scheduling of messages, i.e., the selection of the next pending
message and consequently the next rebec to run:

[sched]

(σr(m), σr[now = max(TT, σr(now)), [arg = v], sender = s],Env,B)

⇓ (σ′r,Env′,B′)

⟨
{σr} ⊍Env,

{(r,m(v), s,TT,DL)} ⊍B
⟩
[s] r.m(v)@TT..DL
ÐÐÐÐÐÐÐÐÐÐÐ→ ⟨

σ′r ∪Env′,

B′
⟩

Cnd

where condition Cnd = TT ≤ min(B) ∧ σr(now) ≤ DL and ⊍ denotes the dis-
joint union. The function ⇓ evaluates a sequence of statements, described below.
The label of the transition [s] r.m(v)@TT..DL is used in our prototype im-
plementation but not included in the reference publications [1,23,20]. It states
that rebec s called method m(v) of rebec r, and the message must be processed
between time TT and DL.

The initial configuration ⟨Env ,B⟩ is given by the main block: for each instance
declaration C r(k) ∶ (v), the environment Env includes a state σr = {now ↦ 0,
self ↦ r} ∪ { ri ↦ ki ∣ ri ∈ C.knownrebecs, ki ∈ k } ∪ {xi ↦ vi ∣ xi ∈ C.statevars,
vi ∈ v }, and the messages B include (-, initial(v), r,0,+∞). These initial meth-
ods are given higher priority within each rebec, which we leave out of the sched
rule for simplicity, as is done in the above mentioned reference publications.

Natural Semantics for Statements The effect of Timed Rebeca statements
is given by the function ⇓, formalised below. This function receives a tuple
(st , σ,Env ,B) with a sequence of statements st , an initial state σ, the states
of the neighbours Env , and the initial set of pending messages B. It returns

6 ter Beek and Proença

a triple (σ′,Env ′,B ′) with an updated state σ′, environment Env ′, and mes-
sages B′. Here eval is a function that evaluates expressions in a given environ-
ment as expected, the value of special variable self is the name of the rebec, and
σ is assumed not to be contained in Env.

[send] (x .m(v) after(d) deadline(DL), σ,Env ,B) ⇓

(σ,Env ,{(σ(x),m(eval(v, σ)), σ(self), σ(now) + d, σ(now) +DL)} ∪B)

[delay] (delay(d), σ,Env,B) ⇓ (σ[now = σ(now) + d],Env,B)

[assign] (v = e, σ,Env,B) ⇓ (σ[v = eval(e, σ)],Env,B)

[cond1]
eval(e, σ) = true (S1, σ,Env,B) ⇓ (σ′,Env′,B′)
(if (e) then S1 else S2, σ,Env,B) ⇓ (σ′,Env′,B′)

[cond2]
eval(e, σ) = false (S2, σ,Env,B) ⇓ (σ′,Env′,B′)
(if (e) then S1 else S2, σ,Env,B) ⇓ (σ′,Env′,B′)

[seq]
(S1, σ,Env,B) ⇓ (σ′,Env′,B′), (S2, σ

′,Env′,B′) ⇓ (σ′′,Env′′,B′′)
(S1;S2, σ,Env,B) ⇓ (σ′′,Env′′,B′′)

[create]
r is a fresh rebec name

(v = new C(x), σ,Env,B) ⇓
(σ[v = r], σr[now = σ(now), self = r] ∪Env,

(r, initial(eval(x,σ)), σ(self), σ(now),+∞) ∪B)

3 RebeCaos by Example

This section describes RebeCaos, a pedagogical tool that animates the semantics
of Rebeca as just presented in Section 2.2. RebeCaos is implemented in Scala,
compiled into JavaScript, and it uses the Caos library [22] to generate the web-
based front-end and to present the full state space exploration. The resulting
tool consists of an interactive webpage that does not rely on a server, and that
can easily be used in any browser with JavaScript support.

We describe how to use RebeCaos guided by two examples: a dynamic vari-
ation of the simple toy example, listed in Fig. 1, and a timed example of a
ticket service, borrowed from Reynisson et al. [23].

3.1 Interface of RebeCaos

RebeCaos can be opened by navigating to https://fm-dcc.github.io/rebecaos,
where the user can view an interface similar to the screenshot in Fig. 2. Here we
use the second example, called “[Dyn] Simple” , which is a variation of the simple

https://fm-dcc.github.io/rebecaos/?Simple
https://fm-dcc.github.io/rebecaos/?[Time] Ticket service
https://fm-dcc.github.io/rebecaos
https://fm-dcc.github.io/rebecaos/?[Dyn] Simple

Animating Rebeca 7

Input Rebeca program

Variation of the "Simple" example of a Rebeca programVariation of the "Simple" example of a Rebeca program
from the paper from the paper "Sarir: A Rebeca to mCRL2 Translator""Sarir: A Rebeca to mCRL2 Translator"
(ACSD 2007)(ACSD 2007). This version keeps creating new. This version keeps creating new
Example rebecs dynamically every 1-2 counts.Example rebecs dynamically every 1-2 counts.

Examples

Simple [Dyn] Simple Prod-Cons [Dyn] Prod-Cons

[Time] Ticket service Untimed Ticket Service

Sender-receiver Dining Philosophers Trains

Leader Election HS (fix) Leader Election LCR

Commit (unsupported-array) Commit (adapted)

Sender-receiver Prod-Cons (larger)

Spanning-tree (unsupported-casting)

Spanning-tree (adapted) NOC (unsupported-array)

[Time] Vehicles (unsupported-casting)

View pretty data

Run semantics (state's view)

Run semantics (sequence chart)

Trace: ex1.initial(), [ex1] ex1.add(1)

undo

Enabled
transitions:

[ex1]
v0.initial()

ex1 v0

initial()

add(1)

initial()

add(1)

ex1 v0

Build LTS

Build LTS (explore)

Number of states and edges

Simple animator of Rebeca, including time and dynamic extensions. Most examples can be found in https://rebeca-lang.org/examples. Source code available online:

https://github.com/fm-dcc/rebecaos (CAOS).

RebeCaos: an animator of Rebeca's semanticsRebeCaos: an animator of Rebeca's semantics

reactiveclass Example {
 knownrebecs {}
 statevars {
 int counter;
 Example target;
 }
 msgsrv initial() {
 counter=0;
 target = self;
 target.add(1);}
 msgsrv add(int a) {
 counter = counter + a;
 if (counter == 1)
 target = new Example():();
 target.add(1);
 }
}
main {
 Example ex1():();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Fig. 2. Screenshot of the interface of RebeCaos

toy example from Fig. 1 that dynamically creates new instances. This interface
includes several widgets, each of which can be collapsed (such as Run semantics
(state’s view)) or expanded (such as Run semantics (sequence chart)). Clicking
the title of a widget toggles between these modes and reloads its content. In the
screenshot, we provide the above mentioned variation of the simple toy exam-
ple in the widget Input Rebeca Program, as well as an interactive step-by-step
execution of its semantics using sequence charts. Other examples, including the
ones mentioned throughout the paper, can be loaded from the Examples widget.

3.2 Running Step-by-Step

The widget Run semantics (sequence chart) in Fig. 2 supports a guided step-
by-step execution of an input Rebeca program, following closely the semantics
presented in Section 2.2. The sequence diagram depicts the sequence of called
and processed methods; in this case, the rebec ex1 already processed the methods
initial() and add(1), marked with a solid line, and also created a new rebec
v0 and called its method add(1). On the other hand, neither of the initial and
the add methods have been processed yet, marked with a dashed arrow.

The column on the left of the sequence chart lists the enabled transitions;
in this case there is only one enabled transition named “[ex1] v0.initial()”,
representing a pending method call initial to rebec v0 by triggered by rebec ex1.
The method add(1) is not yet enabled because initial methods have precedence
over all other methods of the same rebec.

8 ter Beek and Proença

reactiveclass TicketService {
knownrebecs {
Agent a;

}
statevars {
int issueDelay;

}
msgsrv initial(int d) {
issueDelay = d;

}
msgsrv requestTicket() {
delay(issueDelay);
a.ticketIssued (1);

}
}

reactiveclass Customer {
knownrebecs {
Agent a;

}
msgsrv initial() {
self.try();

}
msgsrv try() {
a.requestTicket();

}
msgsrv ticketIssued(byte id) {
self.try() after(30);

}
}

reactiveclass Agent {
knownrebecs {
TicketService ts;
Customer c;

}
msgsrv requestTicket() {
ts.requestTicket()
deadline (5);

}
msgsrv ticketIssued(byte id) {
c.ticketIssued(id);

}
}
main {
Agent a(ts,c):();
TicketService ts(a):(3);
Customer c(a):();

}

Fig. 3. Ticket Service with time extensions borrowed from Khamespanah et al. [20]

By iteratively clicking on an enabled transition we can grow the sequence
chart, producing a trace in which solid arrows are ordered based on when they are
processed, while dashed arrows are randomly ordered at the bottom, representing
the multiset of pending messages, i.e., called but not yet processed.

An alternative widget to build a trace of a Rebeca program is Run semantics
(state’s view), not depicted in the screenshot. This has the same buttons to select
enabled transitions, but instead of the sequence chart it depicts the precise state
of each rebec and the multiset of pending messages.

3.3 Running All Steps

It is often convenient to automatically traverse all possible states, instead of
manually creating possible traces. This is performed by the widget Build LTS,
illustrated in Fig. 4 to capture the state space of the Ticket Service program
in Fig. 3.6 This concrete program was used, e.g., by Khamespanah et al. [20],
and it produces the infinite state space partially represented in Fig. 4 on the
left side.

Our implementation performs a breath-first traversal, stopping after a finite
number of steps. By using an adaptation of this program without time refer-
ences, included in the examples of our tool, the state space becomes finite,
depicted in Fig. 4 on the right side. The highlighted node on top corresponds
to the highlighted node in the state space of the timed version, since the initial
parts of these two graphs are identical. Interestingly, the finite state space on the
right side for the untimed version has the same shape as the state space produced
by Khamespanah et al. [20] for the timed version, where they use an optimisa-
tion that collapses states that are similar, i.e., with a behaviour that keeps on
6 The widget Build LTS (explore) (cf. Fig. 2) is similar to Built LTS but the state space

is drawn iteratively, requiring the user to click the states that (s)he wants to expand.

https://fm-dcc.github.io/rebecaos/?[Time] Ticket service
https://fm-dcc.github.io/rebecaos/?[Time] Ticket service
https://fm-dcc.github.io/rebecaos/?Untimed Ticket Service
https://fm-dcc.github.io/rebecaos/?Untimed Ticket Service

Animating Rebeca 9

Input Rebeca program

Ticket Service example from the paper Ticket Service example from the paper "Timed Rebeca"Timed Rebeca
schedulability and deadlock freedom analysis usingschedulability and deadlock freedom analysis using
bounded floating time transition system" (SCP 2015)bounded floating time transition system" (SCP 2015)..

Examples

Simple [Dyn] Simple Prod-Cons [Dyn] Prod-Cons

[Time] Ticket service Untimed Ticket Service

Sender-receiver Dining Philosophers Trains

Leader Election HS (fix) Leader Election LCR

Commit (unsupported-array) Commit (adapted)

Sender-receiver Prod-Cons (larger)

Spanning-tree (unsupported-casting)

Spanning-tree (adapted) NOC (unsupported-array)

[Time] Vehicles (unsupported-casting)

View pretty data

Run semantics (state's view)

Run semantics (sequence chart)

Trace:

undo

Enabled
transitions:

a.initial()
c.initial()
ts.initial(3)

c ts a

initial()

initial(3)

initial()

c ts a

Build LTS

c.initial() ts.initial(3) a.initial()

[c] c.try() ts.initial(3) a.initial()c.initial() a.initial()c.initial() ts.initial(3)

ts.initial(3) a.initial()[c] c.try() a.initial()[c] c.try() ts.initial(3) c.initial()

a.initial() [c] a.requestTicket()ts.initial(3) [c] c.try()

[c] a.requestTicket() ts.initial(3)

[a] ts.requestTicket() @ 0..5

[ts] a.ticketIssued(1) @ 3

[a] c.ticketIssued(1) @ 3

[c] c.try() @ 33

[c] a.requestTicket() @ 33

[a] ts.requestTicket() @ 33..38

[ts] a.ticketIssued(1) @ 36

[a] c.ticketIssued(1) @ 36

[c] c.try() @ 66

[c] a.requestTicket() @ 66

[a] ts.requestTicket() @ 66..71

[ts] a.ticketIssued(1) @ 69

[a] c.ticketIssued(1) @ 69

[c] c.try() @ 99

[c] a.requestTicket() @ 99

[a] ts.requestTicket() @ 99..104

[ts] a.ticketIssued(1) @ 102

[a] c.ticketIssued(1) @ 102

[c] c.try() @ 132

[c] a.requestTicket() @ 132

[a] ts.requestTicket() @ 132..137

[ts] a.ticketIssued(1) @ 135

[a] c.ticketIssued(1) @ 135

[c] c.try() @ 165

[c] a.requestTicket() @ 165

[a] ts.requestTicket() @ 165..170

[ts] a.ticketIssued(1) @ 168

[a] c.ticketIssued(1) @ 168

[c] c.try() @ 198

[c] a.requestTicket() @ 198

[a] ts.requestTicket() @ 198..203

[ts] a.ticketIssued(1) @ 201

[a] c.ticketIssued(1) @ 201

[c] c.try() @ 231

[c] a.requestTicket() @ 231

[a] ts.requestTicket() @ 231..236

[ts] a.ticketIssued(1) @ 234

a ts c

a ts c a ts c a ts c

a ts c a ts c a ts c a ts c

a ts c a ts c a ts c

a ts c a ts c

a ts c

a ts-3 c

a-3 ts-3 c

a-3 ts-3 c-3

a-3 ts-3 c-33

a-33 ts-3 c-33

a-33 ts-36 c-33

a-36 ts-36 c-33

a-36 ts-36 c-36

a-36 ts-36 c-66

a-66 ts-36 c-66

a-66 ts-69 c-66

a-69 ts-69 c-66

a-69 ts-69 c-69

a-69 ts-69 c-99

a-99 ts-69 c-99

a-99 ts-102 c-99

a-102 ts-102 c-99

a-102 ts-102 c-102

a-102 ts-102 c-132

a-132 ts-102 c-132

a-132 ts-135 c-132

a-135 ts-135 c-132

a-135 ts-135 c-135

a-135 ts-135 c-165

a-165 ts-135 c-165

a-165 ts-168 c-165

a-168 ts-168 c-165

a-168 ts-168 c-168

a-168 ts-168 c-198

a-198 ts-168 c-198

a-198 ts-201 c-198

a-201 ts-201 c-198

a-201 ts-201 c-201

a-201 ts-201 c-231

a-231 ts-201 c-231

a-231 ts-234 c-231

a-234 ts-234 c-231

Build LTS (explore)

Number of states and edges

Simple animator of Rebeca, including time and dynamic extensions. Most examples can be found in https://rebeca-lang.org/examples. Source code available online:
https://github.com/fm-dcc/rebecaos (CAOS).

RebeCAOS: an animator of Rebeca's semanticsRebeCAOS: an animator of Rebeca's semantics

reactiveclass TicketService {
 knownrebecs {
 Agent a;
 }
 statevars {
 int issueDelay;
 }
 msgsrv initial(int myDelay) {
 issueDelay = myDelay;
 }
 msgsrv requestTicket() {
 delay(issueDelay);
 a.ticketIssued (1);
 }
}
reactiveclass Agent {
 knownrebecs {
 TicketService ts;
 Customer c;
 }
 msgsrv requestTicket() {
 ts.requestTicket()
 deadline (5);
 }

 msgsrv ticketIssued(byte id) {
 c.ticketIssued(id);
 }
}
reactiveclass Customer {
 knownrebecs {
 Agent a;
 }
 msgsrv initial() {
 self.try();
 }
 msgsrv try() {
 a.requestTicket();
 }
 msgsrv ticketIssued(byte id) {
 self.try() after(30);
 }
}
main {
 Agent a(ts, c):();
 TicketService ts(a):(3);
 Customer c(a):();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Input Rebeca program

Untimed version of the Ticket Service example from theUntimed version of the Ticket Service example from the
paper paper "Timed Rebeca schedulability and deadlock freedom"Timed Rebeca schedulability and deadlock freedom
analysis using bounded floating time transition system"analysis using bounded floating time transition system"
(SCP 2015)(SCP 2015)..

Examples

Simple [Dyn] Simple Prod-Cons [Dyn] Prod-Cons

[Time] Ticket service Untimed Ticket Service

Sender-receiver Dining Philosophers Trains

Leader Election HS (fix) Leader Election LCR

Commit (unsupported-array) Commit (adapted)

Sender-receiver Prod-Cons (larger)

Spanning-tree (unsupported-casting)

Spanning-tree (adapted) NOC (unsupported-array)

[Time] Vehicles (unsupported-casting)

View pretty data

Run semantics (state's view)

Run semantics (sequence chart)

Trace:

undo

Enabled
transitions:

a.initial()
c.initial()
ts.initial()

c ts a

initial()

initial()

initial()

c ts a

Build LTS

c.initial() ts.initial() a.initial()

[c] c.try() ts.initial() a.initial()c.initial() a.initial()c.initial() ts.initial()

ts.initial() a.initial()[c] c.try() a.initial()[c] c.try() ts.initial() c.initial()

a.initial() [c] a.requestTicket()ts.initial() [c] c.try()

[c] a.requestTicket() ts.initial()

[a] ts.requestTicket()

[ts] a.ticketIssued(1)

[a] c.ticketIssued(1)

[c] c.try()

[c] a.requestTicket()

[a] ts.requestTicket()

[ts] a.ticketIssued(1)

[a] c.ticketIssued(1)

a ts c

a ts c a ts c a ts c

a ts c a ts c a ts c a ts c

a ts c a ts c a ts c

a ts c a ts c

a ts c

a ts c

a ts c

a ts c

a ts c

a ts c

a ts c

a ts c

Build LTS (explore)

Number of states and edges

Simple animator of Rebeca, including time and dynamic extensions. Most examples can be found in https://rebeca-lang.org/examples. Source code available online:
https://github.com/fm-dcc/rebecaos (CAOS).

RebeCAOS: an animator of Rebeca's semanticsRebeCAOS: an animator of Rebeca's semantics

reactiveclass TicketService {
 knownrebecs {
 Agent a;
 }
 statevars {
 }
 msgsrv initial() {
 }
 msgsrv requestTicket() {
 a.ticketIssued (1);
 }
}
reactiveclass Agent {
 knownrebecs {
 TicketService ts;
 Customer c;
 }
 msgsrv requestTicket() {
 ts.requestTicket();
 }

 msgsrv ticketIssued(byte id) {
 c.ticketIssued(id);
 }
}
reactiveclass Customer {
 knownrebecs {
 Agent a;
 }
 msgsrv initial() {
 self.try();
 }
 msgsrv try() {
 a.requestTicket();
 }
 msgsrv ticketIssued(byte id) {
 self.try();
 }
}
main {
 Agent a(ts, c):();
 TicketService ts(a):();
 Customer c(a):();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Fig. 4. Full state exploration of the ticket service (left) and an untimed version (right);
the former continues infinitely below and the latter shows how this infinite sequence
becomes a loop by showing the different behaviour from the highlighted state “a ts c”

repeating itself after some time. This optimisation is not currently implemented
in RebeCaos.

3.4 Beyond RebeCaos

Existing tools for Rebeca, such as Afra [19], use an extended version of the syntax
presented in Section 2.1. These extensions have not yet been implemented in
RebeCaos, since most of them are not needed for many of the examples from the
literature. These extensions include, e.g., arrays, syntactic macros (with the env

keyword), and type casting.
Furthermore, as mentioned in the Introduction, Rebeca has been equipped

with a probabilistic semantics (cf., e.g., [31,15]) and this also has not been im-
plemented in RebeCaos so far. RebeCaos moreover provides neither support for
model checking nor for code generation, mainly because RebeCaos is not meant
to substitute an IDE for Rebeca, but rather to provide an easy entry point.

We believe that RebeCaos can be useful, not only to help teaching and ex-
plaining the insights of Rebeca, but also as a relatively easy and intuitive tool for
core Rebeca to experiment with new extensions or with variations. One could,

10 ter Beek and Proença

for instance, implement a semantics that preserves the order of method calls,
replacing the multiset of pending messages B by a queue; or attempt to define a
type-checking algorithm that verifies conformity with a given behavioural type.
Performing such experiments with RebeCaos may provide quicker feedback to
developers, and help convince others that the new experiments make sense.

4 Conclusion

We presented RebeCaos, a user-friendly web-based front-end tool based on the
Caos library for Scala and we illustrated by means of several examples how to
animate Rebeca extended with time and dynamism. As future work, we might
extend the syntax and semantics of Rebeca currently supported by RebeCaos,
e.g., with a means to deal with probabilistic extensions of Rebeca, or with entirely
novel extensions such as an experimental type-checking algorithm for verifying
conformity with a given behavioural type.

Dedication

This paper is dedicated to Marjan Sirjani, the mother of Rebeca. While so far neither
of us has written a paper together with Marjan, our paths have crossed several times.

Maurice recalls her expertise and kind professionalism during a European project
review earlier in his career as well as their smooth and pleasant collaboration as PC
co-chairs of COORDINATION 2022 and as co-editors of the associated special issue in
Logical Methods in Computer Science. Since then many meetings have followed.

José recalls meeting Marjan for the first time at FOCLASA 2008, in Reykjavik, at
the beginning of her Icelandic teaching position and his early work as a PhD student.
Marjan visited many times his small group in CWI, in Amsterdam, as part of the warm
Iranian cluster that brought him many wonderful moments.

As a tribute to Marjan, we decided to reanimate Rebeca. We hope that Marjan
finds her child Rebeca as attractive as ever!

Acknowledgements

This work was funded by the MUR PRIN 2020TL3X8X project T-LADIES (Typeful
Language Adaptation for Dynamic, Interacting and Evolving Systems) and by the CNR
project “Formal Methods in Software Engineering 2.0”, CUP B53C24000720005. This
work is also supported by the CISTER, ISEP/IPP Research Unit (UIDP/UIDB/04234/
2020), financed by National Funds through FCT/MCTES (Portuguese Foundation for
Science and Technology), and by the EU/Next Generation, within the Recovery and
Resilience Plan, within project Route 25 (TRB/2022/00061– C645463824-00000063).

References

1. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sir-
jani, M.: Modelling and Simulation of Asynchronous Real-Time Systems using

Animating Rebeca 11

Timed Rebeca. In: Mousavi, M.R., Ravara, A. (eds.) Proceedings of the 10th In-
ternational Workshop on the Foundations of Coordination Languages and Soft-
ware Architectures (FOCLASA’11). EPTCS, vol. 58, pp. 1–19 (2011). https:
//doi.org/10.4204/EPTCS.58.1

2. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press Series in Artificial Intelligence, MIT Press (1986). https://doi.
org/10.7551/mitpress/1086.001.0001

3. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: Towards a Theory of Ac-
tor Computation. In: Cleaveland, R. (ed.) Proceedings of the 3rd International
Conference on Concurrency Theory (CONCUR’92). LNCS, vol. 630, pp. 565–579.
Springer (1992). https://doi.org/10.1007/BFB0084816

4. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor
computation. J. Funct. Program. 7(1), 1–72 (1997). https://doi.org/10.1017/
S095679689700261X

5. ter Beek, M., Broy, M., Dongol, B.: The Role of Formal Methods in Computer
Science Education. ACM Inroads 15(4), 58–66 (2024). https://doi.org/10.1145/
3702231

6. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can we Communicate?
Using Dynamic Logic to Verify Team Automata. In: Chechik, M., Katoen, J.P.,
Leucker, M. (eds.) Proceedings of the 25th International Symposium on Formal
Methods (FM’23). LNCS, vol. 14000, pp. 122–141. Springer (2023). https://doi.
org/10.1007/978-3-031-27481-7_9

7. ter Beek, M.H., Hennicker, R., Proença, J.: Team Automata: Overview and
Roadmap. In: Castellani, I., Tiezzi, F. (eds.) Proceedings of the 26th IFIP WG 6.1
International Conference on Coordination Models and Languages (COORDINA-
TION’24). LNCS, vol. 14676, pp. 161–198. Springer (2024). https://doi.org/10.
1007/978-3-031-62697-5_10

8. Cledou, G., Edixhoven, L., Jongmans, S.S., Proença, J.: API Generation for Multi-
party Session Types, Revisited and Revised Using Scala 3. In: Ali, K., Vitek, J.
(eds.) Proceedings of the 36th European Conference on Object-Oriented Program-
ming (ECOOP’22). LIPIcs, vol. 222, pp. 27:1–27:28. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.27

9. Edixhoven, L., Jongmans, S.S.: Realisability of Branching Pomsets. In: Tapia Tar-
ifa, S.L., Proença, J. (eds.) Proceedings of the 18th International Conference on
Formal Aspects of Component Software (FACS’22). LNCS, vol. 13712, pp. 185–204.
Springer (2022). https://doi.org/10.1007/978-3-031-20872-0_11

10. Edixhoven, L., Jongmans, S.S., Proença, J., Cledou, G.: Branching Pomsets for
Choreographies. In: Aubert, C., Di Giusto, C., Safina, L., Scalas, A. (eds.) Pro-
ceedings of the 15th Interaction and Concurrency Experience (ICE’22). EPTCS,
vol. 365, pp. 37–52 (2022). https://doi.org/10.4204/EPTCS.365.3

11. Fredlund, L., Svensson, H.: McErlang: a model checker for a distributed functional
programming language. In: Proceedings of the 12th International Conference on
Functional Programming (ICFP’07). pp. 125–136. ACM (2007). https://doi.org/
10.1145/1291151.1291171

12. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 Expert Survey on Formal
Methods. In: ter Beek, M.H., Ničković, D. (eds.) Proceedings of the 25th Inter-
national Conference on Formal Methods for Industrial Critical Systems (FMICS
2020). LNCS, vol. 12327, pp. 3–69. Springer (2020). https://doi.org/10.1007/
978-3-030-58298-2_1

https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.1007/BFB0084816
https://doi.org/10.1007/BFB0084816
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1145/3702231
https://doi.org/10.1145/3702231
https://doi.org/10.1145/3702231
https://doi.org/10.1145/3702231
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.1007/978-3-031-20872-0_11
https://doi.org/10.1007/978-3-031-20872-0_11
https://doi.org/10.4204/EPTCS.365.3
https://doi.org/10.4204/EPTCS.365.3
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1

12 ter Beek and Proença

13. Hewitt, C.: Description and Theoretical Analysis (Using Schemata) of Planner: A
Language for Proving Theorems and Manipulating Models in a Robot. Tech. Rep.
AITR-258, MIT (1972), http://hdl.handle.net/1721.1/6916

14. Hojjat, H., Sirjani, M., Mousavi, M.R., Groote, J.F.: Sarir: A Rebeca to mCRL2
Translator. In: Proceedings of the 7th International Conference on Application
of Concurrency to System Design (ACSD’07). pp. 216–222. IEEE (2007). https:
//doi.org/10.1109/ACSD.2007.62

15. Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H., Cimini, M.: PTRebeca:
Modeling and analysis of distributed and asynchronous systems. Sci. Comput. Pro-
gram. 128, 22–50 (2016). https://doi.org/10.1016/J.SCICO.2016.03.004

16. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine of
Rebeca. In: Proceedings of the 21st Symposium on Applied Computing (SAC’06).
pp. 1810–1815. ACM (2006). https://doi.org/10.1145/1141277.1141704

17. Jahandideh, I., Ghassemi, F., Sirjani, M.: Hybrid Rebeca: Modeling and Ana-
lyzing of Cyber-Physical Systems. In: Chamberlain, R.D., Taha, W., Törngren,
M. (eds.) Revised Selected Papers of the 8th International Workshop on De-
sign, Modeling and Evaluation of Cyber Physical Systems (CyPhy’18) and the
14th International Workshop on Embedded and Cyber-Physical Systems Educa-
tion (WESE’18). LNCS, vol. 11615, pp. 3–27. Springer (2018). https://doi.org/10.
1007/978-3-030-23703-5_1

18. Jongmans, S.S., Proença, J.: ST4MP: A Blueprint of Multiparty Session Typing
for Multilingual Programming. In: Margaria, T., Steffen, B. (eds.) Proceedings of
the 11th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation: Verification Principles (ISoLA’22). LNCS, vol. 13701,
pp. 460–478. Springer (2022). https://doi.org/10.1007/978-3-031-19849-6_26

19. Khamespanah, E., Sirjani, M., Khosravi, R.: Afra: An Eclipse-Based Tool with Ex-
tensible Architecture for Modeling and Model Checking of Rebeca Family Models.
In: Hojjat, H., Ábrahám, E. (eds.) Revised Selected Papers of the 10th Interna-
tional Conference on Fundamentals of Software Engineering (FSEN’23). LNCS, vol.
14155, pp. 72–87. Springer (2023). https://doi.org/10.1007/978-3-031-42441-0_6

20. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184–204 (2015). https://doi.org/10.
1016/J.SCICO.2014.07.005

21. Khosravi, R., Khamespanah, E., Ghassemi, F., Sirjani, M.: Actors Upgraded
for Variability, Adaptability, and Determinism. In: de Boer, F.S., Damiani, F.,
Hähnle, R., Johnsen, E.B., Kamburjan, E. (eds.) Active Object Languages: Cur-
rent Research Trends, LNCS, vol. 14360, pp. 226–260. Springer (2024). https:
//doi.org/10.1007/978-3-031-51060-1_9

22. Proença, J., Edixhoven, L.: Caos: A Reusable Scala Web Animator of Opera-
tional Semantics. In: Jongmans, S.S., Lopes, A. (eds.) Proceedings of the 25th
IFIP WG 6.1 International Conference on Coordination Models and Languages
(COORDINATION’23). LNCS, vol. 13908, pp. 163–171. Springer (2023). https:
//doi.org/10.1007/978-3-031-35361-1_9

23. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using Timed Rebeca. Sci. Comput. Program. 89, 41–68 (2014). https://doi.org/
10.1016/J.SCICO.2014.01.008

24. Sirjani, M.: Rebeca: Theory, Applications, and Tools. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) Revised Lectures of the 5th

http://hdl.handle.net/1721.1/6916
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1016/J.SCICO.2016.03.004
https://doi.org/10.1016/J.SCICO.2016.03.004
https://doi.org/10.1145/1141277.1141704
https://doi.org/10.1145/1141277.1141704
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-031-42441-0_6
https://doi.org/10.1007/978-3-031-42441-0_6
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008

Animating Rebeca 13

International Symposium on Formal Methods for Components and Objects
(FMCO’06). LNCS, vol. 4709, pp. 102–126. Springer (2006). https://doi.org/10.
1007/978-3-540-74792-5_5

25. Sirjani, M., Jaghoori, M.M.: Ten Years of Analyzing Actors: Rebeca Experience. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 20–56. Springer (2011). https://doi.org/
10.1007/978-3-642-24933-4_3

26. Sirjani, M., Khamespanah, E.: On Time Actors. In: Ábrahám, E., Bon-
sangue, M.M., Johnsen, E.B. (eds.) Theory and Practice of Formal Meth-
ods. LNCS, vol. 9660, pp. 373–392. Springer (2016). https://doi.org/10.1007/
978-3-319-30734-3_25

27. Sirjani, M., Movaghar, A.: An Actor-Based Model for Reactive Systems: Rebeca.
Tech. Rep. CS-TR-80-01, Sharif University of Technology (2001)

28. Sirjani, M., Movaghar, A., Mousavi, M.R.: Compositional Verification of
an Actor-Based Model for Reactive Systems. In: Proceedings of the 1st
Workshop on Automated Verification of Critical Systems (AVoCS’01). pp.
114–118. Oxford University (2001), https://rebeca-lang.org/assets/papers/2001/
CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf

29. Sirjani, M., Shali, A., Jaghoori, M.M., Iravanchi, H., Movaghar, A.: A Front-End
Tool for Automated Abstraction and Modular Verification of Actor-Based Models.
In: Proceedings of the 4th International Conference on Application of Concurrency
to System Design (ACSD’04). pp. 145–150. IEEE (2004). https://doi.org/10.1109/
CSD.2004.1309125

30. Tinoco, D., Madeira, A., Martins, M.A., Proença, J.: Reactive Graphs in Action.
In: Marmsoler, D., Sun, M. (eds.) Proceedings of the 20th International Conference
on Formal Aspects of Component Software (FACS’24). LNCS, vol. 15189, pp. 97–
105. Springer (2024). https://doi.org/10.1007/978-3-031-71261-6_6, cf. Reactive
graphs in action (extended version), arXiv:2407.14705 [cs.PL], https://doi.org/10.
48550/arXiv.2407.14705

31. Varshosaz, M., Khosravi, R.: Modeling and Verification of Probabilistic Ac-
tor Systems Using pRebeca. In: Aoki, T., Taguchi, K. (eds.) Proceed-
ings of the 14th International Conference on Formal Engineering Methods
(ICFEM’12). LNCS, vol. 7635, pp. 135–150. Springer (2012). https://doi.org/10.
1007/978-3-642-34281-3_12

32. Zakeriyan, A., Khamespanah, E., Sirjani, M., Khosravi, R.: Jacco: more efficient
model checking toolset for Java actor programs. In: Boix, E.G., Haller, P., Ricci, A.,
Varela, C.A. (eds.) Proceedings of the 5th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control (AGERE!’15). pp. 37–44.
ACM (2015). https://doi.org/10.1145/2824815.2824819

https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://rebeca-lang.org/assets/papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf
https://rebeca-lang.org/assets/papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1007/978-3-031-71261-6_6
https://doi.org/10.1007/978-3-031-71261-6_6
https://doi.org/10.48550/arXiv.2407.14705
https://doi.org/10.48550/arXiv.2407.14705
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1145/2824815.2824819
https://doi.org/10.1145/2824815.2824819

	Animating Rebeca

