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Abstract. Motor controllers, such as the ones used in signalling sys-
tems, include critical embedded software. Alstom is a company that pro-
duces such embedded systems, which must follow complex certi�cation
processes that require formal modelling and analysis. The formal analy-
sis of these real-time systems have to balance between including enough
details to be useful and abstracting away enough details to be veri�able.
This paper describes our work in the context of the European VALU3S
project to integrate the analysis of such systems with the Uppaal model
checker during the development cycle, involving both developers from
Alstom and academic partners. We use special Excel tables to con�g-
ure the underlying Uppaal models and requirements, bridging these two
stakeholders. We follow Software Product Line Engineering principles,
e.g., allowing features to be turned on and o� and periodicities to be
changed, and verify di�erent properties for each of such con�guration.
We automate the instantiation and veri�cation in Uppaal of a set of
selected con�gurations via an open-source prototype tool named Uppex.
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1 Introduction

In railway systems, motor controllers play a crucial and safety-critical role in
point switch machines. Guaranteeing its correct design and development is a
challenging but essential task to avoid catastrophic accidents that could cause
severe damage to the environment and property, or even result in the loss of hu-
man lives. Most state of the art approaches address this safety concerns using for-
mal modelling and veri�cation, including abstract interpretation [15] and Event
B [1,7], to enforce compliance with certi�cation processes and railway-speci�c
safety standards, such as EN-50126 [10], EN-50128 [11], and EN-50129 [12]. In
these systems, safety means that faults are detected with very high probability,
leading to a fallback state.

The design of motor controllers is usually performed by multidisciplinary
teams composed of experts in hardware, embedded software, and veri�cation.
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Guaranteeing that all stakeholders with di�erent backgrounds have the same un-
derstanding of the critical aspects of the system development can be challenging.
We model the behaviour of a railway motor controller using the Uppaal model
checker [8], in the context of the European project VALU3S (https://valu3s.eu).
This paper reports on how we integrate and automate the formal veri�cation of
this controller during its development by the rail manufacturer Alstom, while
improving the trade-o� between �ne-grained details in the formal models and
its veri�ability, and e�ciently involving all team members in this process.

Our use-case uses a controller with software components that interact with a
dashboard and a circuit board (Fig. 1). Intermediate components are used to poll
the circuit, to add and verify CRC error codes, etc. We compiled a set of safety
requirements for the controller's software to be veri�ed using model checking.
However, when trying to build a network of automata to model the controller
with enough details to cover all requirements, we concluded that it generated a
state-space too large to be feasible when model-checking. For example, the re-
quirement �the controller component should take less than 100ms to send a given

command to the circuit� should not need to consider all combinations of states
involving the sending of messages to the dashboard. Similarly, the requirement
�if the controller component receives an error message it should go to a fallback

state and the dashboard should be informed within 100ms� should not need to
consider the mechanisms to interact with the circuit.

This lead to a family of formal models with di�erent parameters and levels
of detail, each targetting di�erent requirements. This lead us to 3 challenges:
C1: maintain the model, to kept it up-to-date with the system under devel-
opment; C2: manage variability, as too many models with commonalities are
needed; and C3: improve the collaboration between developers and mod-
ellers of the formal speci�cations.

Our approach uses a high-level representation of the con�gurations of the
family of formal models for real-time systems. This representation consists of
Microsoft Excel spreadsheets with parameters and requirements to be used in
the formal models, read by our prototype tool Uppex that automatically gener-
ates and veri�es the full family of models and requirements. These spreadsheets
include, for example, the time-bounds of certain components, the size of bu�ers,
and the initial values of certain variables. Furthermore, these values vary ac-
cording to the set of active features; for example, by activating a feature named
SelfTesting, a variable named TSelfTest is set to 200, otherwise it is set to 0. A
special table compiles a set of con�gurations, each listing its active features. For
example, a given con�guration could activate SelfTesting, deactivate unrelated
monitoring features, and activate its associated requirements.

Organisation of the paper. Section 2 describes the motor controller use-case
and its requirements, formalised in Section 3 using the Uppaal model checker.
Section 4 describes how we con�gure and verify many variations of a Uppaal
model. Section 5 summarises what we have learned during this process and the
plans for future developments, and Section 6 concludes this paper.

https://valu3s.eu


Veri�cation of multiple models of a safety-critical motor controller 3
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Fig. 1. Architecture of the motor controller system under veri�cation

2 Use-case: Motor controller

Our running use-case consists of a motor controller, or controller for short, run-
ning in a resource constraint device with a Real Time OS. This controller is
connected both to a physical circuit and to a dashboard, as depicted in Fig. 1.
The circuit includes a DC motor that is being controlled, receives simple com-
mands from the controller to turn left, turn right, or to stop, and sends back a
status report, including the information of whether the limit of a rotation has
been reached or if a problem has been found. The dashboard sends instructions
to the controller, including commands to be sent to the circuit, which in turn
informs the dashboard of internal state updates.

We focus on the behaviour of the software part of the controller, and on its
formal veri�cation via model-checking of timed-behaviour. This is complemen-
tary to other analysis and tests performed by other stakeholders involved in the
same use-case, e.g., to inject faults in hardware and to generate batches of tests
with enough coverage. We expect our underlying formalizations and tools to also
bene�t, directly or after repurposed, the other stakeholders in this use-case.

This paper includes behavioural details only of the core controller component,
and the full Uppaal models are not publicly available since they are intellectual
property of Alstom.3 We believe that these descriptions, supported by our open-
source prototype tool, are rich enough to convey our approach and its bene�ts.

Safety-critical behaviour Hazard analysis for the controller has been per-
formed to justify the desired criticality levels. This analysis guided the architec-
ture of the software components deployed on the controller board. Most compo-
nents are replicated and executed in two diversi�ed processing units available in
the selected board, to detect when their behaviour diverges. Also, CRC codes
are applied to incoming and outgoing packages to ensure message consistency.

The replicated components are: a core controller, a monitor to check if the
state of the controllers are consistent, a decoder to compare incoming messages
against their CRC error code and against the messages from the neighbour de-
coder, a bu�er to store messages to be sent to the dashboard, an encoder to add
CRC codes to messages to be sent to the dashboard, and a reader of messages
received from the circuit. Non-replicated components are: a scheduler to start
runtime self-tests, a simulator of the dashboard, a simulator of the circuit, and a
fault-injector to cause some components to fail. The simulators exist only on the

3 These can be made available to the reviewers if needed.
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Fig. 2. General behaviour of the controller component

formal models, to mimic the environment, while capturing the minimum infor-
mation required to perform formal analysis, represented as prede�ned sequences
of messages to be sent.

The behaviour of the core controller task is depicted in Fig. 2. The controller
performs some initialisation in Check-HW, tests the interaction with the circuit
in Self-Test, and can trigger the rotation of the motor to the left or to the right.
At any moment, it can receive an error and go to a Fall-back state.

Parameterised requirements Following the hazard analysis, we compiled a
set of requirements to be veri�ed using model checking based on Uppaal. The
most relevant ones are listed in Table 1. Requirements follow some syntactic
structure to tighten the gap between formal and informal requirements, fol-
lowing the EARS approach [17]. For example, the 3rd requirement reads �In

Conf3, when controller1 fails the controller2 shall go to a fallback state within

100ms.� Con�gurations specify the parameters of the model when validating the
requirement. This covers both general parameters of the system, such as the
time to decode messages and the frequency of operation of monitors, and the
scenario consisting of the messages sent by the dashboard, by the circuit, and by
the fault-injector. In our example Conf3 de�nes a scenario where the dashboard
sends a start and a left command after 20ms and 100ms, respectively, and the
fault-injector causes controller1 to fail after 120ms.

Table 1. Some functional and non-functional requirements for the motor controller

Con�g. State Trigger Comp. Expected

Conf1
controller1 is

ready
decoder receives a
left command

controller1
send a left

command within 100ms

Conf2
monitor1 or
reader1 fail

controller2
go to a fallback

state within 100ms

Conf3
controller1

fails
controller2

go to a fallback
state within 100ms

Conf4
controller1 receives
an error message

controller1
send immediately a stop
command to the circuit

Conf4
controller1 receives
an error message

encoder1
notify the dashboard

within 100ms

Conf5
dashboard can

send messages
full system never get stuck
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When formalising requirements (c.f. Table 1) using the temporal logic sup-
ported by Uppaal, the notions of state, component, and expected observation

followed in a relatively straightforward manner. Specifying the triggers often re-
quired manually enriching the model with new variables, since the logic does not
express events. Specifying con�gurations were the most complex operations, and
the core challenge addressed by this paper and our prototype tool. Traditionally
for each con�guration a new model would have to be speci�ed, �ne-tuning values
of variables spread throughout the model, often deactivating some components
to simplify the model-checking of more complex properties. Maintaining a col-
lection of such models, in a context where neither the system speci�cation nor
the full set of requirements are �xed, quickly becomes infeasible. We provide
support to specify all con�gurations and properties in a single Excel �le, and to
automatically use these with a single annotated Uppaal model.

3 Formal speci�cation in Uppaal

Uppaal [8] is a well-known model-checker for real-time systems, successfully used
in many industrial applications and in the context of embedded systems [5].
Systems are speci�ed as a set of timed-automata that interact both by using
synchronisation on actions and by using shared variables. In a nutshell, each
timed-automaton is a state machine whose edges are labelled by a guard and an
update over shared variables, and by an optional action name used to synchronise
with neighbour automata. Special variables named clocks capture the time that
has passed since they were last reset, and are incremented automatically by the
rules that guide the automata evolution.

The topology of the timed automata network used in the speci�cation of our
use-case is depicted in Fig. 3, one for each task mentioned in Section 2. This
topology is built iteratively by both developers and formal modellers, during the
development of the system. Each node depicts the timed-automaton of a com-
ponent, and arrows depict interactions between nodes: denote synchronous
interactions that block until both automata can trigger the associated action;

and denote synchronous interactions that do not block the sender � the
former requires the receiver to be always ready and the latter discards data if the
receiver is not ready; and denotes asynchronous communication by atomic
writes and reads to a shared variable.

The dashboard, circuit, and fault-injector components are parameterised by
a scenario, i.e., a sequence of actions with timestamps. The dashboard sends
commands to the encoders, the circuit sends reports to the readers describing if
there are errors and if the motor reached a limit, and the fault-injector sends
messages that cause some components to go to a faulty state with no behaviour.
Furthermore, the circuit reports errors for a prede�ned time-window during the
self-test phase, and the controllers validate that an error is indeed reported.

The behaviour of the components involved is expressed using Uppaal's notion
of timed automata. We depict the automata of the controller's behaviour in
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Fig. 3. Topology of the network of communicating timed-automata of the use-case

Fig. 4. All the 5 states of Fig. 2 appear in this automata, extended with extra
details. The arrows pointing to and from the Controllers in Fig. 3 appear in this
diagram either as channels in the labels, represented by names pre�xed with
`?' or ` !', or as shared variables such as limit, which is read to detect if the
motor reached its target position. The non-blocking behaviour of the error and
fail channels is captured by including an extra transition labelled by this channel
in every node where time can pass.

Uppaal supports imperative code using a C-like language inside a global
Declarations block, accessible by all automata in the network. These variables and
functions can be used by the expressions in the timed-automata. For example,
the concrete actions (e.g., goLeft), time-bounds ((e.g., TLeft[id][max])), shared
variables (e.g., limit), and channel names (e.g., action) are declared in this block.

4 Parameterisation and veri�cation with Uppex

In order to cope with the multiple con�gurations of Uppaal's models, we devel-
oped Uppex to provide a mechanism based on annotations to customise many
aspects, including channels, shared variables, data types, time-bounds, and re-
quirements. Uppex is an open-source tool that uses the work�ow depicted in
Fig. 5: it reads both an Excel �le with the con�gurations and an Uppaal �le
with annotations, and it creates a new Uppaal model for each con�guration
found. Either one of the new models is used to replace the original Uppaal �le,
or they are veri�ed by Uppaal and a report is produced. Uppex is developed
in Scala, uses the Apache POI libraries for Microsoft documents [13], and is
available at https://cister-labs.github.io/uppex.

4.1 Annotating Uppaal models

Declarations in the input Uppaal model are annotated with special blocks starting with
�// @Name�, which act as hooks that Uppex uses to inject and update the values that
con�gure the model. XML blocks from �<Name>� until �</Name>� also act as hooks for
annotations, which we use to inject and update the properties being veri�ed in the
<queries> block. We call these @-annotations and xml-annotations, respectively.

https://cister-labs.github.io/uppex
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Fig. 4. Speci�cation in Uppaal of the a controllers' timed-automata with identi�er id
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Fig. 5. Uppex work�ow: updating and verifying models based on con�guration tables

Each annotation can be de�ned in the Excel �le in a sheet named with the same
name (c.f. Fig. 6). The �rst line of these sheets describe the pattern used to produce
code that will be injected for each line of the table, followed by a table with a header

of names in row 2 and their values below. E.g., in the @TimeBounds table (Fig. 6), row 4
injects the line �const int TCheck[Ids][Intrv] = {{4,4},{6,6}};...� to the Uppaal
code in the corresponding block. The �rst column acts as unique identi�er: if multiple
lines are found, the last one prevails. The column named Features associates feature
names that must be active, otherwise the line is discarded. In our example, when the
feature SelfTesting is active the variable for SelfTest is set to 200, otherwise it is set
to 0. The <queries> table on the top-left of Fig. 6 depicts some of the requirements
from Table 1.

4.2 Verifying multiple con�gurations

Using Uppex it is possible to specify a list of con�gurations, each regarded as a set of
features that can be active or not. These feature selection guides which rows from
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Fig. 6. Special Excel tables: @-annotation, xml-annotation, and con�gurations

annotation should be included. The list of con�gurations is speci�ed in an Excel
sheet named @Configurations, such as the one in the bottom of Fig. 6. In this ex-
ample the con�guration SelfTest includes the features ReadCircuit, SelfTesting,
and StartWithSelfTest, among others, and not the feature SyncMon nor Heartbeats.
Hence, when selecting the SelfTest con�guration, the SelfTesting will be active, trig-
gering the last row visible in the @TimeBounds table to be used to de�ne the SelfTest
variable. When selecting instead the con�guration JustHeartBeat, the SelfTesting
feature will not be active, thus the previous row will be used instead. Similarly, the
selected features will also in�uence which queries will be used during veri�cation.

Uppex can be used as a command line tool to modify the annotated blocks of an
Uppaal model according to a given con�guration, or to verify one or all con�gurations.
For example, the command �java -jar uppex.jar -runAll motorController.xlsx�
will verify all con�gurations in the given Excel �le using the Uppaal model with the
same name, producing a report such as the one in Table 2. This report states that
3 properties of con�guration SelfTest passed and the veri�cation timed-out while
verifying the 4th property. This property would pass using a slighly larger timeout
when calling Uppex. We write ellipsis `...' to omit parts of the report. Con�gurations
Monitor and JustHeartBeat also passed and failed some properties.

Table 2. Report produced when verifying all properties and all con�gurations

> Reading Uppaal file ’motorController.xml’

--Verifying ’SelfTest’--

[OK] @SelfTest: the Controller1 shall be able to

start the self-tests.

[OK] @ChkSelfTest1: when Self-test ends, the Reader

shall have received some error.

[OK] @ChckDeadlock: while Dashboard can send

messages, the full system shall not deadlock.

| Time-out. Missing 1 properties.

| Failed on property:

| "@SelfTest, StartWithSelfTest: the Controller1

shall be able to end the self-tests."

--Verifying ’Monitor’--

[OK] @SyncMon: the Monitor1 shall be able

to send a warning.

[OK] @ChkB0NeverOverflows: the Buffer1

shall never overflow.
...

--Verifying ’JustHeartBeat’--

[OK] @ChkDecoding: the Decoder1 shall be

able to send a warning.

[FAIL] @ChkB0NeverOverflows: the Buffer1

shall never overflow.
...
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5 Lessons learned and future work

During the development of the motor controller system at Alstom in collaboration with
ISEP and other academic partners, we iterated over core design architectural decisions
and agreed upon di�erent synchronisation mechanisms. Using the model-checking ca-
pabilities of Uppaal, we veri�ed di�erent properties, including the possibility of sending
warnings, of bu�er over�ows, and of reaching deadlocks (or timelocks). These models
are useful both to predict possible problems and bottlenecks, and to be used in certi�-
cation processes. Our con�guration-driven approach using Excel spreadsheets emerged
as a solution to the growth in complexity of the underlying formal models, which typi-
cally must remain simple in order to be useful. We were able to �nd time-bounds that
satisfy our requirements, e.g., the periodicity at which monitors and decoders check
consistency, or the periodicity at which reports should be polled from the circuit, under
di�erent scenarios simulated by the dashboard.

Uppex adds a negligible overhead over the model-checking process, involving the
parsing of the con�guration tables and the Uppaal �le, and the writing of an updated
set of Uppaal �les. In our use-case we use the 16 automata from Fig. 1 in a �le with
∼1.7K lines excluding queries. Our tables currently include around 25 requirements,
15 con�gurations, and 135 di�erent entries (including scenarios, time parameters, data
channels, and data constructors). Invoking Java to produce a concrete instance takes
less than 5s in our 1.4 GHz Quad-Core Intel Core i5 machine.

Related work The veri�cation of complex embedded systems has been investigated,
e.g., by Basten et al. [3] who generate Uppaal models (and Petri net models) using a
model-driven approach with the Octopus toolset, focusing on design-space exploration
and schedule optimisation. Gario et al. [14] and Dureja and Rozier [9] provide an
exhaustive analysis of a large air tra�c control, in a joint e�ort with NASA team of
engineers, using 3 concrete models speci�ed in the OCRA architectural language with
SMV component models. They validate the 3 models using a combination of di�erent
techniques based on the property at hand, and analyse dependencies among properties
to avoid the veri�cation of unnecessary queries. In contrast to these approaches, Uppex
allows the manual de�nition and �ne-tuning of models in the host model-checker instead
of using generated models, and provides mechanisms to control the variability of the
models in a way that can be perceived by both tool- and formal-developers.

The variability in Uppex is given as a set of tables that inject code in the annotated
speci�cations, but it is not reasoned upon. Other approaches, such as the formal frame-
work by Kim et al. [16] in the context of embedded systems, can be used to analyse
valid con�gurations based on feature models [4].

Future work We are pursuing the following two directions of work.

1. Valid con�gurations. Currently one can specify any combination of features,
sometimes leading to incorrect con�gurations because of missing dependencies or in-
compatibilities. These restrictions can be captured by a set of constraints, usually
taking the form of a Feature Model [4] in the context of Software Product Lines. One
could, for example, make the feature StartWithSelfTest dependent on SelfTesting,
marking any con�guration with only the �rst one as invalid. Following existing work in
this community, we could further exploit these validity constraints over features, e.g.,
by considering all con�gurations that satisfy these constraints, or to aim at �nding the
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best con�guration using some cost function. In the context of this work, the properties
validated by Uppaal could also play a role in the validity of a con�guration.

2. Other backends. Our work targets Uppaal models using a frontend for develop-
ers based on Excel spreadsheets. However, these tables can also be used with di�erent
backends besides Uppaal. For example, to generate con�guration �les used in the imple-
mentation, or to use a di�erent model-checker for veri�cation, such as Imitator [2] for
real-time systems, which supports the optimisation of some parameters, or mCRL2 [6]
that supports a temporal logic over events and can handle very large state-spaces. We
are also working on an intermediate domain speci�c language that can generate Uppaal
models, among other analysis, with a better support to reason over the architectural
topology, such as the one in Fig. 3, which emerges only implicitly in Uppaal.

Uppaal is free to use only for non-commercial purposes. It is currently being used by
academic partners, and our use-case is not being commercialised and is representative
of other ongoing projects. This work may lead to the adoption of Uppaal in commercial
projects of Alstom, or to a di�erent backend supported by Uppex.

6 Conclusions

This paper presents our approach to formalise the timed-behaviour in Uppaal of a motor
controller system, under development by the Alstom railway company, in the context of
the VALU3S European project. We use parameterised con�guration tables that adapt
a core Uppaal model, facilitating the customisation of the model so it can better suit
di�erent requirements. This paper also describes how we integrated the usage of model-
checking within the development cycle of a safety-critical system, involving stakeholders
with di�erent background, relying on intelligible tables and architectural topologies.
We produced a prototype open-source tool Uppex to automatise the extraction of
parameters and adaptation of the formal models, and to verify many con�gurations on
a single run. In the future we plan to further exploit the validity of con�gurations and
to experiment with di�erent backends.
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