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Abstract. This paper provides an overview on recent work on Team
Automata, whereby a network of automata interacts by synchronising
actions from multiple senders and receivers. We further revisit this notion
of synchronisation in other well known concurrency models, such as Reo,
BIP, Choreography Automata, and Multiparty Session Types.
We address realisability of Team Automata, i.e., how to infer a network of
interacting automata from a global specification, taking into account that
this realisation should satisfy exactly the same properties as the global
specification. In this analysis we propose a set of interesting directions of
challenges and future work in the context of Team Automata or similar
concurrency models.

1 Introduction

Many different formal models for concurrent systems exist, each with its own
advantages and disadvantages. This short paper provides an overview on recent
work on Team Automata (TA), and takes a step back to relate the constrained
multiparty synchronisation of TA with other popular models in this community
studying fundamentals of component-based software.

TA were initially proposed by ter Beek et al. [9], inspired by similar ap-
proaches such as I/O automata [31] and interface automata [23], whereby a
network of automata with input and output labels interacts. This interaction in
TA involves multiparty synchronisations, whereas multiple senders and receivers
can participate in a single atomic global transition. It is also constrained because
it is parameterised by a synchronisation policy that, for each label, specifies the
possible number of senders and of receivers that it can have.

Composing a network of components in a team, using constrained multiparty
synchronisation, yields a new transition system whose labels are interactions con-
sisting of (i) a message name or type, (ii) a set of components that send this
message, and (iii) a set of components that receive this message. Only valid
interactions are allowed, i.e., that obey the associated synchronisation policy.
Many topics have been investigated in the context of TA since 2003, including
security [15, 17], composition and expressivity [10, 13], variability [8], and com-
patibility of components [6,7,11,22]. Labels of early versions of TA include only
message names, and were later extended to explicitly capture which components
participate in system transitions [11], giving rise to a concurrent semantics. This
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Fig. 1: Race example: a controller asks simultaneously 2 runners to start and
receives a finish message once each is of them is done

idea has been also used in Vector TA [14], where actions include active partici-
pants. In this paper we use these extended labels in TA.

We revisit several kinds of interactions in the orchestration models Reo [29]
and BIP [20], and attempt to frame this multiparty synchronisation in the
context of choreographic models such as choreographic automata [3] and (syn-
chronous) multiparty session types [36]. We further address realisation of TA,
i.e. how to obtain a set of interacting components from a global transition sys-
tem over interactions, given the synchronisation policy. This last part is ongoing
work [12], in collaboration with Rolf Hennicker and Maurice ter Beek, and in-
clude a detour on how to specify properties of interest, and how to guarantee
that these are preserved when realising a global specification.

The explanations in this paper are relatively informal, driven mainly by ex-
amples. We proceed by introducing an example used throughout this paper.

Motivating example We use as a running example a Race system (Fig. 1),
borrowed from previous work [16], consisting of 3 communicating components: a
controller Ctrl and two runners R1, R2. Each is an automaton with input actions
(?start and ?finish), output actions (!start and !finish), and internal actions (run).
Interactions are subject to the following synchronisation policy: (i) the 3 actions
start must synchronise, i.e., must be performed atomically, representing a simul-
taneous start of both runners; and (ii) the 3 actions finish must synchronise in
pairs, i.e., each runner should atomically notify the controller that s/he finished,
but the controller must receive each message one at a time. The internal action
run is not involved in any interaction.

The composition of these 3 automata combined with the synchronisation
restrictions of the start and finish actions yields what we call a team automaton [5,
26]. Labels of our team automaton are interactions involving the senders, the
receivers, and the action name. E.g., “Ctrl → {R1,R2} : start” is an interaction
that labels a transition in our team automaton, which follows our synchronisation
policy stating that start should always have one sender and two receivers.

Many studies on TA investigate whether the components of a system will ever
fail when trying to send a particular message (receptiveness), or to receive a set of
possible messages (responsiveness) [6,8,10]. Another topic of interest addressed
in this paper, in the context of TA or other similar systems, regards realisability
or decomposition, i.e., whether these 3 components can be discovered given a
description of the global behaviour capturing the same behaviour.

Organisation of the paper Sect. 2 investigates how the multiparty synchroni-
sation of our Race example can be captured by other formalisms in the literature,
considering both orchestration and choreographic languages. Sect. 3 addresses
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how to specify properties of interest for TA and proposes ideas and challenges
regarding the realisation of TA. Sect. 4 concludes this paper.

2 Related models

This section provides an overview of alternative approaches to model our race
example with existing models that describe interaction patterns. We start with
orchestration models, where a naive implementation of the interaction patterns
leads to a centralised component controlling the interactions. We continue with
choreographic models, which focus on how to describe the interaction contracts
that each computational component must obey to derive an intended communi-
cation protocol, without relying on a dedicated component with the interaction
logic. The precise distinction between orchestration and choreographic models
is not consensual among researchers, whereas one can provide arguments why
a given orchestration model can be considered to be a choreographic one and
vice-versa.

Unlike the models listed below, TA identify which actions from composed
components can interact by considering (1) the name of the action, (2) the
direction of dataflow, and (3) the synchronisation policy (i.e., for each action,
how many inputs and outputs are required or allowed). Some models below
assume that all names are distinct, and that the interaction models must relate
them (e.g., as an enumeration of possible sets of actions that must synchronise),
sometimes leading to a more exhaustive description of the possible interactions.
Other models below require interactions to be always 1-to-1 (called peer-to-
peer in [9]), possibly requiring more intermediate components to capture the
intended behaviour.

2.1 Orchestration

Models and languages that orchestrate components focus on how to group the
interaction logic in a connector, restricting how the components can interact.
This section analyses our race example in the context of the Reo [29] and the
BIP [20] coordination models, since they focus on the analysis of interactions of
systems with synchronous interactions that involve multiple participants. These
have been compared in more detailed by Dokter et al. [24].

Reo Reo is a graphical modelling to orchestrate components based on the
synchronous composition of a set of primitive connectors [29]. Many different
semantic formalisms exist to provide a semantics to Reo connectors – we focus
here on constraint automata [2].

We encode our race example as a Reo connector on the left side of Fig. 2, and
its semantics given by a constraint automaton on the right side. This semantics
(and most Reo semantics) is stateful, i.e., the next set of possible interactions
depends on the previously taken interactions. Reo is highly compositional, in
the sense that the global interaction patterns result from composing simpler
connectors. In our example from Fig. 2, we count 2 FIFO channels ( ), 2
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Fig. 2: Reo approach: the connector (left) built compositionally describing valid
sequences of interactions from participants, and its semantics given by a con-
straint automata (right)

synchronous barriers ( ), 3 replicators ( after strC, finR1, and finR2), and
1 interleaving merger ( before finC). Each of these has a defined semantics
given by constraint automata [2], and composing these 8 automata (and hiding
internal names) yields the constraint automata on the right of Fig. 2. Here each
arc is labelled with a set of ports that must synchronise and a constraint over
the data that must flow in each port. The direction of dataflow is not captured
by constraint automata.

Reo focuses on the connector and not on the components. This means that the
connector dictates which ports are active and inactive at each moment, allowing
only desirable patterns of interaction. Hence, the precise behaviour of a runner,
e.g., is not explicit in this model, including other internal actions that s/he
may perform. When connecting a concrete runner to this connector one should
verity whether it is compliant, i.e., if its possible patterns of interaction are
consistent with the patterns imposed by the connector. This compliance check
can be regarded as a type check against a behavioural type, as used in Session
Types, described in the next section, and investigated less in the context of Reo.

BIP BIP [20] is a language to specify the expected behaviour of components and
of component architectures. A program in BIP consists of a labelled state ma-
chine for each component (Behaviour), a set of possible synchronous Interactions
between transitions of different components, and a possible partial order among
interactions (Priority). Semantic models, such as the algebra of connectors [20],
formalise the semantics of interactions.

Our race example is modelled in BIP in Fig. 3. Similarly to TA, the com-
ponents describe the core behaviour of a system, here represented as labelled
transition systems (also 1-safe Petri Nets can be used in some tools). The set of
valid interactions is stateless, and are depicted by connecting ports that must
synchronise; the dotted connection is an alternative to the its solid counterpart,
connecting R2.finish instead of R1.finish. Trigger ports, not used here, can also
be used instead of rendez-vous ports ( ) to denote broadcasts, i.e., all siblings
of a trigger in an interaction that are ready to synchronise will do so, and the
trigger will always succeed.

TA share some concepts with BIP: the behaviour of the components and
some synchronisation restrictions are modelled separately. Unlike TA, there is
no explicit direction of dataflow. Interactions are often enriched with descriptions
of how the dataflow should be updated, meaning that different connectors may
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treat the same ports as inputs or outputs. Unlike BIP, TA do not support any
combination of synchronising ports, but only those that share the same name.

2.2 Choreographies

We consider a choreographic model to be a language or a calculus that describes
the global set of valid interactions. Each interaction is typically described by
(i) the name that identifies the interface, (ii) the sender, and (iii) the receiver.
This richer representation of interactions, with respect to the ones used in the
previous subsection, allows the behaviour of each participant to be derived from
the global model, which is often the ultimate goal of these models. Most of
these support only a single sender and a single receiver, and are not meant
for multiparty synchronisations, although it is possible to lift many of these
models to the latter case. In contrast, Reo is typically agnostic to the concrete
components connected to the ports of a connector, and describes only their valid
patterns of interaction, and BIP avoids specifying explicitly the global behaviour
(focusing on the local behaviour).

This section provides an overview of choreographic automata [33] to illustrate
an approach to reason over deterministic automata in these rich interactions, and
of synchronous multiparty session types [36]. When modelling our Race example
we use a variation that allows multiple senders and receivers, without providing
its formal semantics.

Choreographic Automata (CA) CA [3] are automata with labels that de-
scribe interactions, including a sender, a receiver, and a message name.

Our race example is encoded as a variation of CA on the left of Fig. 4, where
we use a set of senders and receivers at each interaction to match the semantics
of our composed TA. For comparison, the composed TA of our running example
is depicted on the right of Fig. 4, where each state is a triple with the states of the
local components, and the labels are interactions following the notation in [11].
We drop the curly brackets of singleton sets in the CA for simplicity. We also
avoid representing the internal action run, although this could have been done
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Fig. 3: BIP approach: individual components are labelled by actions, which are
subject to the set of valid rendez-vous interaction constraints imposed by the
middle (stateless) connector
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with our extension to sets of senders and receivers, e.g., writing {R1} → {} : run
to denote a send by R1 with no receivers. This would have resulted in a larger
set of states capturing possible interleavings.

Multiparty Session Types (MPST) MPST use a calculus to describe global
behaviour. We can represent our race example using a variation of the global
type of a synchronous MPST [28,36] as follows.

λX · Ctrl → {R1,R2} :
{

start.
(

R1 → Ctrl : finish.
R2 → Ctrl : finish.X

)
, start.

(
R2 → Ctrl : finish.
R1 → Ctrl : finish.X

)}
This example uses a fixed point (λX) to iterate [28]. Interactions are written
as {A} → {B} : {msgi.Ci}i∈I, for any sets of participants A, B and I, messages
msgi, and continuations Ci of the choreography; we omit curly brackets when
there is only one element. The set of messages and continuations denotes the
choices after communications.

This example does not follow the usual MPST syntax: it uses a set of re-
ceivers in the first interaction, and includes two choices of messages inside the
big curly brackets that start with the same message start. Most work on MPST
supports only a single sender and receiver in each interaction, and choices with
syntactic restrictions, such as the need to distinguish the first message. Up to
our knowledge, without these extensions and without introducing new messages
the Race example cannot be faithfully modelled.

A global choreography of our reference synchronous MPST [28, 36], to be
valid, must obey several properties, including the need to have different messages
at the start of each choice, and it must be possible to produce a projection for
each participant whereas each participant does not (syntactically) distinguish
choices made by other participants.

3 Behavioural properties and realisability

Having a TA (or another model of constrained interactions) allows us to reason
over desired behavioural properties. Our properties of interest can target either
a specific scenario, e.g., that a runner must always run before finishing, or be
more general, e.g., no component can ever fail to send or receive messages.
Hence we believe that dynamic logic provides the right level of abstraction to
describe valid sequences of actions, which excels at capturing what actions can
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Fig. 4: Choreographic Automaton (left), extended with multiple senders and re-
ceivers, and composed TA (right) of the automata in Fig. 1
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and cannot be performed throughout an execution. Other alternatives, such as
traditional linear time logic (LTL) and computation tree logic (CTL), often
focus on reachability of states and not on sequences of actions, making these less
optimal for our properties of interest.

A simpler alternative to dynamic logics could be the use of regular expressions
to model valid patterns of interactions. This is aligned with existing approaches
such as CA that focus on the languages accepted by these automata [4] to reason
over properties of such systems. The choice of using dynamic logics, regular
expressions, or other model to specify properties, impacts realisability, since it is
desirable for global models and their realisations to satisfy the same properties.

Many model checkers exist to verify temporal properties of concurrent sys-
tems, including mCRL2 [21] and Uppaal [18]. These support either dynamic logic
(mCRL2) or CTL. Both Reo and TA have been encoded as mCRL2 processes
to exploit its powerful model-checking engine [16,30,35]. The notion of synchro-
nisation types, describing the number of possible senders and receivers by each
message, can be captured using mCRL2, although it requires constructing the
set of all concrete combinations of ports that can synchronise. This notion can-
not directly be mapped to Uppaal, which supports only pairwise communication
or a form of broadcast that differs from the one in TA (c.f. [9]).

3.1 Propositional Dynamic Logic
In our Race example it is desirable that, for any runner that starts running, it
should be possible to finish her/his run. This can be expressed by the dynamic
logic formula below, using regular expressions over interactions as actions, and
writing some to denote the non-deterministic choice over any interaction:[

some∗; Ctrl → {R1,R2} : start
] (

⟨some∗; R1 → Ctrl : finish⟩ true ∧
⟨some∗; R2 → Ctrl : finish⟩ true

)
Informally, [α]ψ holds if, after any of the sequence of interactions covered by the
regular expression α, ψ holds. Similarly, ⟨α⟩ψ holds if it is possible to perform
any of the sequence of interactions covered by the regular expression α, and end
up in a state where ψ holds. The formula above means that, after any sequence of
interactions that ends in Ctrl → {R1,R2} : start, there must exist either a sequence
of interactions ending in R1 → Ctrl : finish or in R2 → Ctrl : finish.

These formulas can be expressed by the modal (µ-calculus) logic used by
mCRL2. Furthermore, we exploited in recent work [16] how to generate, given a
set of components of a team automaton and its synchronisation policies, both a
mCRL2 model and a set of formulas that can guarantee progress. I.e., that any
component who want to send a message can do so, and any component that is
ready to receive messages can receive at least one of them. These two concepts
are known in the literature as receptiveness and responsiveness [6], respectively.

3.2 Realisability challenges
Realising a global specification means inferring the local behaviour of each of the
involved participants, under some assumptions regarding their communication
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channels. We claim that realisations should satisfy the same properties of their
original global models. Hence we should rely on bisimulation to compare their be-
haviour when using dynamic logic, since satisfaction of (propositional) dynamic
logic formulas is invariant under bisimulation [19]. The choice of a different logic
would lead to different equivalence notions.

Realisability has been extensively studied in the context of MPST, often
guided by strict syntactic restrictions over the global protocol. These restric-
tions facilitate the process of building the local behaviour of each participant,
by projecting the interactions to each of these participants, and provide compu-
tationally simpler mechanisms to guarantee correctness of the realisation.

Realisability has also been studied for CA [4] and for TA [13]; in both cases
addressing language equivalence rather than bisimulation equivalence when com-
paring behaviours. In CA [4] building a local behaviour for a given participant
P means producing an automaton that uses only interactions in which P is in-
volved, such that the language is the same as the language of the global model
restricted to these interactions. For instance, it is enough to hide interactions
in which P does not appear (replacing them by τ), and minimise the automata
collapsing these transitions. In TA [13] the language of a TA is characterised by
the so-called synchronised shuffling of the behaviour of its components. Doing so,
however, does not guarantee in neither cases that the realisation will satisfy the
same (dynamic) logical formulas as the global protocol. As a matter of fact, some
formulas in dynamic logic may satisfy either the global protocol or the composed
system (exclusively) if these are language equivalent but not bisimilar.

This leads us to our ongoing effort to calculate a realisation from a global
behaviour [12], i.e., from the semantics of TA with interactions as labels. Un-
like the work on MPST, we try to avoid imposing syntactic restrictions on our
global model, allowing our starting point to be any transition system labelled
by interactions with multiple participants, instead of targeting a more practical
subclass of global models. And unlike the work on CA, we try to guarantee that
the realisations are bisimilar to the original model.

We identify a set of challenges when reasoning over realisability of TA.

– How rich are the local labels? Our initial motivating example in Fig. 1
uses labels consisting of a message name and a direction (input or output). In
constraint automata (Fig. 2) there is no direction (less information), and in
both CA and MPST the local participants use in each label the name, the di-
rection, and the other participants involved (more information). Hence there
will be global specifications that can be realised when producing participants
with richer labels, but that cannot be realised when some information is lost
(such as all participants involved). Conversely, having less information in the
labels enables more compact local participants, e.g., our controller does not
need to distinguish the finish from any of the two runners, while the controller
derived from MPST needs to consider any interleaving of these two.

– How to specify global specifications? Building an automaton labelled
by interactions can easily become too large due to all the combinations of
concurrent actions. Hence a more compact model, such as a calculus for
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choreographies (with multiple senders and receivers) with a parallel opera-
tor, or other useful operators, seems to be preferable. Alternatively models
based on event structures [1] or Petri Nets could also provide a compact
representation of concurrent actions. Regarding the latter, the Vector Team
Automata variation of TA [14], where vectors of local labels restrict which
components participate in each global label, has a composed semantics given
by a form of labelled Petri Net called Individual Token Net Controllers.

– Active learning? Active learning approaches [25] try to infer the behaviour
of a system by observing the actions of an input-deterministic black-box, as-
suming some mechanism to discover that the inferred model is good enough.
Hence, a technique to infer the behaviour of local agents from traversing a
(potentially large) global state could also be adapted to infer the behaviour
of a set of agents from observing and reacting to ongoing interactions. This
would be an alternative to produce the global state from a given model.

– Other communication channels? TA focus on synchronous interactions.
Relaxing this to asynchronous interactions with many participants would
largely increase the complexity of the realisability analysis. Furthermore,
many variations are considered in the literature, usually fixed upfront. E.g.,
assuming a single sorted queue between each pair of participants (blocking
if the first message cannot be processed), assuming there is no order on
messages, assuming there is an order that gives priority to earlier messages
(but allows skipping messages), and so on. Better understanding the impact
of these, or even supporting the combination of these channel mechanisms,
could improve the scope of applicability of existing tools and analysis.

– How to model families of global specifications? Variability has been
studied in TA [8] and in other models such as BIP [27], Reo [34], and Petri
Nets [32]. Variability in TA, BIP, and Petri Nets meant annotating transi-
tions with conditions over a set of features that describe whether they should
be included in a given configuration. However, these are not meant to de-
scribe, e.g., a family of systems with a number n of runners, for any n > 0.
This was attempted with Reo [34], but using a complex calculus and not
targetting automatic analysis. Hence finding a good model to describe vari-
ability on the number of participants, and exploit it in the analysis of TA or
providing tool support, could be a good fit for TA, which already describes
desired numbers of participants involved in each channel.

4 Conclusions

This paper revisits the constrained multiparty synchronisation present in Team
Automata, relating it to other popular concurrency models, guided by a race
example. It further addresses verification of TA via dynamic logics, and pro-
vides a direction and challenges on how to realise team automata from global
specifications. By avoiding technical details and following an example-first ap-
proach, we expect this paper to be a nice introduction to concurrency models
that can synchronise multiple participants, and to provide inspiration on topics
and directions that we find relevant in this area.
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