
The CAOS framework for Scala: computer-aided

design of SOS

José Proençaa, Luc Edixhovenb

a CISTER and Faculty of Sciences of the University of Porto, Portugal
b Open University (Heerlen) and CWI (Amsterdam), Netherlands

Abstract

We present Caos: a programming framework for computer-aided design of

structural operational semantics for formal models. This framework includes
a set of Scala libraries and a work�ow to produce visual and interactive dia-
grams that animate and provide insights over the structure and the semantics
of a given abstract model with operational rules.

Caos follows an approach where theoretical foundations and a practical
tool are built together, as an alternative to foundations-�rst design (�tool
justi�es theory�) or tool-�rst design (�foundations justify practice�). The
advantage of Caos is that the tool-under-development can immediately be
used to automatically run numerous and sizeable examples in order to iden-
tify subtle mistakes, unexpected outcomes, and unforeseen limitations in the
foundations-under-development, as early as possible.

More concretely, Caos supports the quick creation of interactive websites
that help the end-users better understand a new language, structure, or anal-
ysis. End-users can be research colleagues trying to understand a compan-
ion paper or students learning about a new simple language or operational
semantics. We include a list of open-source projects with a web frontend
supported by Caos that are used both in research and teaching contexts.

Keywords: visualisation, structural operational semantics, formal methods,
web-frontend, pedagogical tools

Preprint submitted to Science of Computer Programming October 17, 2024

Nr. Code metadata description Please �ll in this column

C1 Current code version v1.0.0
C2 Permanent link to code/repository

used for this code version
https://github.com/arcalab/CAOS/

releases/tag/v1.0.0

C3 Permanent link to Reproducible
Capsule

https://github.com/arcalab/

ccs-caos/releases/tag/v1.0.0

C4 Legal Code License MIT
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Scala & JavaScript

C7 Compilation requirements, operat-
ing environments and dependencies

Scala building tools (sbt) & Java
Runtime Environment (JRE) ≥ 1.8

C8 If available, link to developer docu-
mentation/manual

https://arxiv.org/abs/2304.14901

https://youtu.be/Xcfn3zqpubw

C9 Support email for questions jose@proenca.org

Table 1: Code metadata (mandatory)

Metadata

1. Motivation and signi�cance

Designing and explaining formal methods can be hard. Typical challenges
of formal-methods-related research include identifying and dealing with cor-
ner cases, discovering missing assumptions, �nding the right abstraction level,
and proving theorems (and adequately decomposing them into lemmas). Cu-
riously, and unlike other scienti�c disciplines, we �nd that a large majority
of papers written in our community primarily focuses on research results in-
stead of methods. By contrast, this tool � Caos (computer-aided design of

SOS for formal methods) � supports the methodology of designing and ex-
plaining formal methods, with special emphasis on Structural Operational
Semantics (SOS). Caos combines, simpli�es, extends, and bundles in a sin-
gle software artefact a collection of functions that we have been using in
the context of several research projects; therefore allowing other researchers
and teachers to re-use and adapt functionalities that we have found useful
in our own work. Source code, links to documentation, and a compilation of
examples can be found at https://github.com/arcalab/caos.

Email addresses: jose.proenca@fc.up.pt (José Proença), led@ou.nl (Luc
Edixhoven)

2

https://github.com/arcalab/CAOS/releases/tag/v1.0.0
https://github.com/arcalab/CAOS/releases/tag/v1.0.0
https://github.com/arcalab/ccs-caos/releases/tag/v1.0.0
https://github.com/arcalab/ccs-caos/releases/tag/v1.0.0
https://arxiv.org/abs/2304.14901
https://youtu.be/Xcfn3zqpubw
https://github.com/arcalab/caos

Caos has been introduced in a companion conference paper [1], allowing
users to produce interactive websites by providing an implementation in Scala
of (1) a data structure with an associated parser, and (2) a set of analyses,
some parameterised by a next function that describes state reductions. It
further provides support for the Mermaid language (a popular Markdown-
like language for diagrams)1 to generate visual diagrams, and extra functions
to compute equivalences of labelled transition systems. Related tools include
Maude [2], Racket [3], and Pyret [4], as explained in the tutorial [5] and com-
panion paper [1]. To the best of our knowledge, Caos is the �rst framework
that provides support to design models and operational semantics using a
general programming language such as Scala.

This paper includes a new example of a web frontend produced by Caos to
analyse a simple variation of Milner's CCS [6] in Section 2. Other motivating
examples of Caos used in the context of teaching (for a simple while-language)
and research (to provide insights over the semantics of a choreographic lan-
guage) have been described in the companion paper [1], and a step-by-step
tutorial using a lambda-calculus has been included in the extended technical
report [5]. The improvements of the toolset since the companion paper are
described in Section 4.

2. Illustrative examples

Figure 1 presents a screenshot of a ccs project that analyses a simple
variant of Milner's CCS language [6], accessible at https://lmf.di.uminho.pt/

ccs-caos, developed for illustrative purposes. This screenshot includes an
input widget in the upper-left corner, a widget with examples immediately
below, and six other widgets customised for CCS, most of them collapsed
except for �Build LTS�:

� �View pretty data� produces a re-indented version of the formula;

� �Run semantics� interactively asks which SOS rule should be applied;

� �Build LTS (explore)� builds the same LTS as �Build LTS�, now interac-
tively, initially presenting only the initial state and its successors �
clicking any of these successors adds its own successors; and

� the last two widgets search for bisimulations whenever the input term
is written as a pair of terms separated by ~, providing an explanation
whenever the search fails.

1https://mermaid.js.org

3

https://lmf.di.uminho.pt/ccs-caos
https://lmf.di.uminho.pt/ccs-caos
https://mermaid.js.org

Figure 1: Screenshot of a generated web-frontend by CAOS for a concurrent calculus

The source code of this and many other examples can be found at CAOS'
website https://github.com/arcalab/CAOS. These examples include:

� projects used to produce didactic content to teach university students,
by analysing and animating semantics for languages such as CCS [6],
a simple while-language, a lambda-calculus with integers [5], and a
pseudo-assembly language Apoo [7].

� projects used as tool-companions of research papers, including analysis
of multi-party session types [8], choreographic languages [9], variations
of pomsets [10, 11, 12], and team automata [13].

3. Software framework

This section describes the Caos architecture and its functionality.

3.1. Software architecture

Figure 2 depicts the structure of a typical Scala project that uses Caos.
Projects using Caos require a Java Virtual Machine and SBT (Scala Builder
Tool) to compile, and a web browser to execute. The user provides the
highlighted documents: data structures for the input language with func-
tions to parse this language and to compute analyses (Analysis.scala), and
a description of the desired widgets that use these functions using special

4

https://github.com/arcalab/CAOS

Analysis.scala Con�guration.scala

Caos.scala

compiled.js index.html
imports

extendsimports
compiles includes

Figure 2: Architecture of a Scala project that uses Caos

constructors (Con�guration.scala). More speci�cally, the Con�guration is an
object that extends an associated class in Caos and holds: the name of the
language and the website; the parser for the language; a list of examples,
each as a triple (name, program, description); and a list of widgets using
the provided constructors [5]. This con�guration �le is a plain Scala �le
that can import any function in its scope, such as a parsing function de�ned
within the Scala project. Compiling it yields a JavaScript (JS) �le used by
an HTML �le included in the Caos library.

3.2. Widgets provided by CAOS

The web frontend produced by Caos always includes an input widget,
where the user can provide programs to be analysed; and a widget with a
list of examples, each as a button that triggers the analysis of a pre-de�ned
program. The rest of the frontend consists of a list of custom widgets, de�ned
using the provided constructors, which can be categorised as follows. The
full list of widgets and constructors can be found online [5].

� Visualisation of a string produced from the program, representing
plain text, code, or a mermaid diagram;

� Execution of a model of the program, given a next function that
evolves the program, presented to the user either in a step-wise manner
(interactive) or as a single state diagram with all reachable states;

� Equivalence of two programs using bisimilarity or trace equivalence;

� Check for errors or warnings in a program, aborting all analysis when
errors are found.

Every widget can be either collapsed or expanded ; clicking on the widget
title alternates between these states. A widget reloads its analysis when it is
expanded, and re-evaluating the input reloads all expanded widgets.

5

3.3. Sample code snippets analysis

Figure 3 presents three snippets from our ccs project that analyses a
simple variant of Milner's CCS language [6]. Program.scala de�nes the inter-
nal data structure, which represents the CCS terms produced by our parser
in ccs/syntax/Parser, and Semantics.scala exempli�es the de�nition of an
SOS semantics. Config.scala provides the Con�guration object with the
concrete layout of the webpage, c.f. Section 3.1. SOS semantics are speci-
�ed by extending a SOS[Act,State] class. In this case the type variable Act

is uni�ed with Action and State with System, which are our concrete data
types for actions and states of our semantics. These instances can be ani-
mated, compared, or combined using provided widget constructors. For ex-
ample, lts(e⇒e,Semantics,Show.justTerm,Show(_)) builds the Labelled Transi-
tion System (LTS), where e=>e states that the initial state is the original CCS
term, Semantics de�nes the semantics, and Show.justTerm and Show(_) convert
states (CCS terms) and actions to a string representation, respectively.

4. Impact

Caos has been used to produce several companion tools of scienti�c pub-
lications and to produce didactic content to teach university students, as

src/main/scala/ccs/syntax/Program.scala

src/main/scala/ccs/frontend/Con�g.scalasrc/.../ccs/backend/Semantics.scala

object Config extends Configurator[System]:
val name =
"Animator of a simple CCS calculus"

val parser = ccs.syntax.Parser.parseProgram
val examples = List(
"coffee" → "let\n CM = coin.coff...",...

val widgets = List(
"View pretty data" →

view(Show(_),Code("haskell")),
"Run semantics" →

steps(e⇒e,Semantics,...,Text),
"Build LTS" →

lts(e⇒e,Semantics,...),
"Find branching bisimulation (...)" →
compareBranchBisim(
e ⇒ ..., // left term
e ⇒ ..., // right term
...),

...)
val documentation: Documentation = List(

"Build LTS" →
"(helper)" → "(html explanation)",

...)

case class System(
defs: Map[String,Term],
main:Term, ...)

enum Term:
case End
case Proc(p:String)
case Prefix(act:Action,t:Term)
...

object Semantics extends SOS[Action,System] {
/** What are the set of possible evolutions

(label and new state) */
def next(st:System): Set[(Action,System)] =
st.main match {
case End ⇒ Set()
case Prefix(act,t) ⇒ Set(act → st(t))
case Proc(p) ⇒ next(...st.defs(p)...)
case Choice(t1,t2) ⇒ next(st(t1)) ++

next(st(t2))
case Par(t1, t2) ⇒ //...
case Restr(t,r) ⇒ //..

Figure 3: Snippets of code and con�gurations used in the ccs project

6

explained in the previous section. Since the publication of the companion
conference paper, Caos has been extended to support the inclusion of doc-
umentation in the generated frontends. This includes new buttons ? and
explanatory messages that guide the �nal user of the generated websites.
Furthermore, we introduced a new widget to iteratively unfold the state-
space of a given set of SOS rules (as suggested at the companion conference),
created the new example based on Milner's CCS [6] used in this paper, pro-
vided a new approach based on giter8 templates2 to bootstrap a project that
uses Caos, thus reducing the e�ort for new users, and extended the online
documentation in Caos' GitHub repository.

We are currently collaborating with researchers involved in the MSc su-
pervision of projects that plan to use Caos, and have been contacted by
university teachers who have used instances of Caos to illustrate concepts
in their lessons. Furthermore, all tools are available as open-source, and we
welcome any feedback, contribution, or sharing of experiences.

5. Conclusions

This paper presents Caos, a Scala framework that supports a computer-

aided design approach for formal methods, introducing its toolset and sharing
its applications in the context of companion prototype research tools and of
teaching in higher education. During the development of new structures and
operational semantics, the Caos toolset provided us support to quickly view,
simulate, and compare di�erent design choices. More recently, we made
an explicit e�ort to open and facilitate the usage of Caos by others, both
researchers and teachers, receiving positive and constructive feedback. New
additions include the preparation of richer documentation, and support to
attach explanations to the generated frontends. We further claim that the
Caos toolset is reusable, provides intuitive outputs, and is expressive by using
Scala � a general programming language. By using standard HTML and CSS,
the resulting websites can be easily customised.

6. Future Plans

Currently, we consider two possible improvements. On one hand, to sup-
port a lightweight server (inspired in ReoLive [14] but using, e.g., https:

//http4s.org) that could be used to delegate heavier tasks, such as the usage
of a model-checker. On the other hand, to support the parser development
with tools such as https://antlr.org instead of using parser combinators.

2https://www.foundweekends.org/giter8/

7

https://http4s.org
https://http4s.org
https://antlr.org
https://www.foundweekends.org/giter8/

Acknowledgements

This work was supported by the CISTER Research Unit (UIDP/UIDB/
04234/2020), �nanced by National Funds through FCT/MCTES (Portuguese
Foundation for Science and Technology) and by project Ibex (ref. PTDC/CCI-
COM/4280/2021) �nanced by national funds through FCT. It is also a re-
sult of the work developed under project Route 25 (ref. TRB/2022/00061 -
C645463824-00000063) funded by the EU/Next Generation, within the Re-
covery and Resilience Plan (RRP).

References

[1] J. Proença, L. Edixhoven, Caos: A reusable scala web animator of
operational semantics, in: S. Jongmans, A. Lopes (Eds.), Coordina-
tion Models and Languages - 25th IFIP WG 6.1 International Con-
ference, COORDINATION 2023, Held as Part of the 18th Interna-
tional Federated Conference on Distributed Computing Techniques, Dis-
CoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceedings, Vol. 13908
of Lecture Notes in Computer Science, Springer, 2023, pp. 163�171.
doi:10.1007/978-3-031-35361-1_9.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
C. L. Talcott, The maude 2.0 system, in: R. Nieuwenhuis (Ed.), Rewrit-
ing Techniques and Applications, 14th International Conference, RTA
2003, Valencia, Spain, June 9-11, 2003, Proceedings, Vol. 2706 of Lec-
ture Notes in Computer Science, Springer, 2003, pp. 76�87. doi:
10.1007/3-540-44881-0_7.

[3] M. Flatt, Creating languages in racket, Commun. ACM 55 (1) (2012)
48�56. doi:10.1145/2063176.2063195.

[4] J. G. Politz, B. S. Lerner, S. Porncharoenwase, S. Krishnamurthi,
Event loops as �rst-class values: A case study in pedagogic language
design, Art Sci. Eng. Program. 3 (3) (2019) 11. doi:10.22152/
programming-journal.org/2019/3/11.

[5] J. Proença, L. Edixhoven, Caos: A reusable scala web animator
of operational semantics (extended with hands-on tutorial), CoRR
abs/2304.14901 (2023). doi:10.48550/arXiv.2304.14901.

[6] R. Milner, A Calculus of Communicating Systems, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

8

https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1145/2063176.2063195
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.48550/arXiv.2304.14901

[7] R. Reis, N. Moreira, Apoo: an environment for a �rst course in assembly
language programming, ACM SIGCSE Bull. 33 (4) (2001) 43�47. doi:
10.1145/572139.572168.

[8] S. Jongmans, J. Proença, ST4MP: A blueprint of multiparty session
typing for multilingual programming, in: T. Margaria, B. Ste�en (Eds.),
Leveraging Applications of Formal Methods, Veri�cation and Validation.
Veri�cation Principles - 11th International Symposium, ISoLA 2022,
Rhodes, Greece, October 22-30, 2022, Proceedings, Part I, Vol. 13701
of Lecture Notes in Computer Science, Springer, 2022, pp. 460�478.
doi:10.1007/978-3-031-19849-6_26.

[9] G. Cledou, L. Edixhoven, S. Jongmans, J. Proença, API generation for
multiparty session types, revisited and revised using scala 3, in: K. Ali,
J. Vitek (Eds.), 36th European Conference on Object-Oriented Pro-
gramming, ECOOP 2022, June 6-10, 2022, Berlin, Germany, Vol. 222
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp.
27:1�27:28. doi:10.4230/LIPICS.ECOOP.2022.27.

[10] L. Edixhoven, S.-S. Jongmans, J. Proença, G. Cledou, Branching pom-
sets for choreographies, in: C. Aubert, C. D. Giusto, L. Sa�na, A. Scalas
(Eds.), Proceedings 15th Interaction and Concurrency Experience, ICE
2022, Lucca, Italy, 17th June 2022, Vol. 365 of EPTCS, 2022, pp. 37�52.
doi:10.4204/EPTCS.365.3.

[11] L. Edixhoven, S. Jongmans, Realisability of branching pomsets, in:
S. L. T. Tarifa, J. Proença (Eds.), Formal Aspects of Component
Software - 18th International Conference, FACS 2022, Virtual Event,
November 10-11, 2022, Proceedings, Vol. 13712 of Lecture Notes
in Computer Science, Springer, 2022, pp. 185�204. doi:10.1007/
978-3-031-20872-0_11.

[12] L. Edixhoven, S.-S. Jongmans, J. Proença, I. Castellani, Branching pom-
sets: design, expressiveness and applications to choreographies, Journal
of Logical and Algebraic Methods in Programming 136 (2024) 100919.
doi:10.1016/j.jlamp.2023.100919.

[13] M. H. ter Beek, R. Hennicker, J. Proença, Realisability of global models
of interaction, in: E. Ábrahám, C. Dubsla�, S. L. T. Tarifa (Eds.),
Theoretical Aspects of Computing - ICTAC 2023 - 20th International
Colloquium, Lima, Peru, December 4-8, 2023, Proceedings, Vol. 14446
of Lecture Notes in Computer Science, Springer, 2023, pp. 236�255.
doi:10.1007/978-3-031-47963-2_15.

9

https://doi.org/10.1145/572139.572168
https://doi.org/10.1145/572139.572168
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.4230/LIPICS.ECOOP.2022.27
https://doi.org/10.4204/EPTCS.365.3
https://doi.org/10.1007/978-3-031-20872-0_11
https://doi.org/10.1007/978-3-031-20872-0_11
https://doi.org/10.1016/j.jlamp.2023.100919
https://doi.org/10.1007/978-3-031-47963-2_15

[14] R. Cruz, J. Proença, Reolive: Analysing connectors in your browser,
in: M. Mazzara, I. Ober, G. Salaün (Eds.), Software Technologies:
Applications and Foundations - STAF 2018 Collocated Workshops,
Toulouse, France, June 25-29, 2018, Revised Selected Papers, Vol. 11176
of Lecture Notes in Computer Science, Springer, 2018, pp. 336�350.
doi:10.1007/978-3-030-04771-9_25.

10

https://doi.org/10.1007/978-3-030-04771-9_25

	Motivation and significance
	Illustrative examples
	Software framework
	Software architecture
	Widgets provided by CAOS
	Sample code snippets analysis

	Impact
	Conclusions
	Future Plans

