
An Adequate While-Language for Stochastic Hybrid Computation
Renato Neves

nevrenato@di.uminho.pt

University of Minho & INESC-TEC

Braga, Portugal

José Proença

jose.proenca@fc.up.pt

University of Porto & CISTER

Porto, Portugal

Juliana Souza

juliana.p.souza@inesctec.pt

University of Minho & INESC-TEC

Braga, Portugal

Abstract
We introduce a language for formally reasoning about programs

that combine differential constructs with probabilistic ones. The

language harbours, for example, such systems as adaptive cruise

controllers, continuous-time random walks, and physical processes

involving multiple collisions, like in Einstein’s Brownian motion.

We furnish the language with an operational semantics and use

it to implement a corresponding interpreter. We also present a

complementary, denotational semantics and establish an adequacy

theorem between both cases.

CCS Concepts
• Theory of computation→ Semantics and reasoning.

Keywords
Theory of Programming, Program Semantics, Hybrid Computation,

Probabilistic Computation

ACM Reference Format:
Renato Neves, José Proença, and Juliana Souza. 2025. An Adequate While-

Language for Stochastic Hybrid Computation. In Proceedings of The 27th In-
ternational Symposium on Principles and Practice of Declarative Programming
(PPDP’25). ACM, New York, NY, USA, 13 pages. https://doi.org/XXXXXXX.

XXXXXXX

1 Introduction
Motivation. This paper aims at combining two lines of research in

programming theory – hybrid and probabilistic programming. Both

paradigms are rapidly proliferating and have numerous applications

(see e.g. [5, 14, 17, 34]), however, despite increasing demand, their

combination from a programming-oriented perspective is rarely

considered.

Examples abound on why such a combination is crucial, and

even extremely simple cases attest this. Let us briefly analyse one

such case. The essence of hybrid programming is the idea of mixing

differential constructs with classical program operations, as a way

to model and analyse computational devices that closely interact

with physical processes, such as movement, energy, and electro-

magnetism. One of the simplest tasks in this context is to move a

stationary particle (for illustrative purposes one can regard it as a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PPDP’25, Rende, Italy
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

vehicle) from position zero to position, say, three. A simple hybrid

program that implements this task is the following one.

p := 0 ;

v := 0 ;

p' = v, v' = 1 for x ;

p' = v, v' = -1 for y

Observe the use of variable assignments which set the vehicle’s

position (p) and velocity (v) to zero, and note as well the presence of

the sequencing operator (;). Most notably, the last two instructions

are the aforementioned differential constructs which in this case

describe the continuous dynamics of the vehicle at certain stages of

the program’s execution. Specifically p' = v, v'= 1 for x states

that the vehicle will accelerate at the rate of 1𝑚/𝑠2 for x seconds while
the last instruction states that it will deccelerate at the rate of −1𝑚/𝑠2
for y seconds. The goal then is to ‘solve’ the program for x and y so

that the vehicle moves and subsequently stops precisely at position

three.

Now, the reader has probably noticed that the program just

described is an idealised version of reality: there will be noise in the

vehicle’s actuators, which will cause fluctuations in the acceleration

rates, and the switching time between one continuous dynamics to

the other is not expected to be precisely x seconds but a value close

to it. In face of this issue, it is natural to introduce uncertainty factors

in the previous program and change the nature of the question “will
my vehicle be at position three at x+y seconds?" to amore probabilistic

one, where one asks about probabilities of reaching the desired

position instead.

Remarkably the alternative approach of simply considering dis-
cretisations of hybrid programs combined with probabilistic con-

structs (i.e. using purely probabilistic programming) does not work

in general – choosing suitables sizes for the discrete steps can be as

hard or even harder than taking the continuous variant, particularly

when so-called Zeno behaviour is present [35].

Contributions.We contribute towards a programming theory of

stochastic hybrid computation – i.e. the combination of hybrid with

probabilistic programming. Following traditions of programming

theory, we first introduce a simple while-language on which to

study stochastic hybrid computation. Our language extends the

original while-language [36, 38] merely with the kind of differential

construct just seen and with random sampling [24]. Its simplicity

is intended, so that one can focus on the core essence of stochastic

hybrid computation, but we will see that despite such it already

covers a myriad of interesting and well-known examples.

We then furnish the language with an operational semantics,

so that we can formally reason about stochastic hybrid programs.

Among other things, we use the semantics to extend Lince – an

existing interpreter of hybrid programs [14, 27] – to an interpreter

of stochastic hybrid ones. We will show how this interpreter can

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

PPDP’25, September 10–11, 2025, Rende, Italy Neves et al.

be used to automatically present statistical information about the

program under analysis. All examples in this paper have been

animated using our extended Lince, available online at https://

arcatools.org/lince.

Finally, following the basic motto in programming theory that

different semantic approaches are necessary to fully understand

the computational paradigm at hand, we introduce a compositional,

denotational semantics for our language. In a nutshell, for a given

initial state 𝜎 a program denotation JpKwill correspond to aMarkov
process [32] – intuitively its outputs are given in the form of a

probability distribution and are time-dependent. The semantics is

built in a systematic way, using basic principles of monad theory [13,

28], measure theory, and functional analysis [2, 9, 32], to which we

can then recur (via the semantics) to derive different results about

stochastic hybrid computation. We end our contributions with the

proof of an adequacy theorem between the operational semantics

and the denotational counterpart.

Related work.Whilst research on probabilistic programming is

extensive (see e.g. [3–5, 17, 24]), work on marrying it with hybrid

programming is much scarcer and mostly focussed on (deductive)

verification. The two core examples in this line of research are [33]

and [34]. The former presents an extension of the process algebra

CSP that harbours both probabilistic and differential constructs.

Among other things it furnishes this extension with a process-

algebra like, transition-based semantics – which although quite

interesting for verification purposes is less amenable to operational

perspectives involving e.g. implementations. It presents moreover

a corresponding proof system for reasoning about certain kinds

of Hoare triples. The latter op. cit. [34] extends the well-known

differential dynamic logic with probabilistic constructs. This logic

is based on a Kleene-algebraic approach which while has resulted

in remarkable progress w.r.t. verification, it is also known to have

fundamental limitations in the context of hybrid programming,

particularly in the presence of non-terminating behaviour which is

frequent in this domain (see details for example in [14, 20, 21]).

Document structure. Section 2 introduces our stochastic language,
its operational semantics, and corresponding interpreter. Section 3

recalls a series of measure-theoretic foundations for developing

our denotational semantics – which is then presented in Section 4

together with the aforementioned adequacy theorem. Section 5

discusses future work and concludes.

We assume from the reader knowledge of probability theory [9],

monads [13, 19, 28], and category theory [26]. A monad will often

be denoted in the form of a Kleisli triple, i.e. (𝑇, 𝜂𝑇 , (−)★𝑇), and
whenever no ambiguities arise we will omit the superscripts in the

unit and Kleisli operations. Similarly we will sometimes denote a

monad just by its functorial component 𝑇 . Still about notation, we

will denote respectively by inl and inr the left 𝑋 → 𝑋 +𝑌 and right

𝑌 → 𝑋 +𝑌 injections into a coproduct. We will denote measurable

spaces by the letters 𝑋 , 𝑌 , 𝑍 . . . and whenever we need to explicitly

work with the underlying 𝜎-algebras we will use (𝑋, Σ𝑋), (𝑌, Σ𝑌),
(𝑍, Σ𝑍), and so forth.

2 The language and its operational semantics
We now introduce our stochastic hybrid language. In a nutshell,

it extends the hybrid language in [14, 27] with an instruction for

sampling from the uniform continuous distribution over the unit

interval [0, 1].
We start by postulating a finite set {x1,...,x𝑛} of variables and

a stock of partial functions f : R𝑛 −⇀ R that contains the usual

arithmetic operations, trigonometric ones, and so forth. As usual

partiality will be crucial for handling division by 0, logarithms, and

square roots, among other things. We then define expressions and

Boolean conditions via the following standard BNF grammars,

e ::= x | f(e,...,e)
b ::= e <= e | b && b | b || b | tt | ff

where x is a variable in the stock of variables and f is a function in

the stock of partial functions. Programs are then built according to

the two BNF grammars below.

a ::= x1' = e ,..., x𝑛' = e for e | x := e | x := unif(0,1)

p ::= a | p ; p | if b then p else p | while b do { p }

The first grammar formally describes the three forms that an atomic

program a can take: viz. a differential operation – expressing a

system’s continuous dynamics – that will ‘run’ for e time units,

an assignment, and the aforementioned sampling operation. The

second grammar formally describes the usual program constructs

of imperative programming [36, 38].

We proceed by introducing some syntactic sugar relative to the

differential operations and sampling. We will use this sugaring later

on to provide further intuitions about the language.

First, observe that the language supports wait calls by virtue

of the instruction x1' = 0 ,..., x𝑛' = 0 for e. The latter states

that the system is halted for e time units, as no variable can change

during this time period. The operation will be denoted by the more

suggestive notation wait e. Next, although we have introduced

merely sampling from the uniform distribution over [0, 1], it is
well-known that other kinds of sampling can be encoded from

it. For example, for two real numbers a ≤ b one can effectively

sample from the uniform distribution over [a, b] via the sequence
of instructions,

x := unif (0,1) ; x := (b - a) * x + a

For simplicity, we abbreviate such sequence to x := unif(a,b). In

the same spirit, it will be useful to sample from the exponential

distribution with a given rate lambda > 0, in which case we write

x := unif (0,1) ; x := - ln(x)/lambda

and abbreviate this program to x := exp(lambda). Next, in order

to sample from normal distributions we resort for example to the

Box-Muller method [8]. Specifically we write

x1 := unif (0,1) ;

x2 := unif (0,1) ;

x := sqrt(-2 * (ln x1)) * cos(2 * pi * x2)

and suggestively abbreviate the program to x := normal(0,1). The

latter amounts to sampling from the normal distribution with mean

0 and standard deviation 1. Note that sampling from a normal

distribution with mean m and standard deviation s is then given by,

x := normal (0,1) ; x := m + s * x

https://arcatools.org/lince
https://arcatools.org/lince

An Adequate While-Language for Stochastic Hybrid Computation PPDP’25, September 10–11, 2025, Rende, Italy

We abbreviate this last program to x := normal(m,s). We encode

Bernoulli trials in our language standardly. Specifically Bernoulli

trials, denoted by bernoulli(r,p,q), with r ∈ [0, 1] and p, q two

programs, are encoded as,

x := unif (0,1) ; if x <= r then p else q

which denotes the evaluation of p with probability r and q with

probability 1 - r. Finally, we will also resort to the usual syntactic

sugar constructs in imperative programming, e.g. x := x + 1 as

x++, and so forth.

We are ready to introduce a series of examples written in our

programming language. In order to render their descriptions more

lively we complement the latter with analysis information given

by the aforementioned interpreter. The interpreter as well as the

examples are available online at http://arcatools.org/lince.

Example 2.1 (Approximations of normal distributions via random
walks). We start with a very simple case that does not involve any

differential operation. Specifically we approximate the standard

normal distribution via a random walk – a very common procedure

in probabilistic programming [3, 23]. Note that this is different

from the previous sampling operation x := normal(0,1), in that

it does not involve any trigonometric or logarithmic operation;

furthermore the resulting distribution will always be discrete. The

general idea is to write down the program below.

x := 0 ; c := 0 ;

while c <= n do {

bernoulli (1/2, x++, x--) ; c++

} ;

x := x/sqrt(n)

Then by an appeal to the central limit theorem [9] one easily sees

that the program approximates the expected normal distribution.

The parameter n refers to the degree of precision, getting a perfect

result as n → ∞.

all jumpsresample

all jumpsresample

Hybrid Program

Examples

Axis
[x]

Max Time

Max Iterations

Graph Type

Perturbations up-to

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

More information on the project: https://github.com/arcalab/lince (https://github.com/arcalab/lince)















0 1 2 3 4 5

−1

0

1

2

3

4 t vs x

time

x





n := 6;
x := 0; c := 0;
while true do {
 bernoulli (1/2)
 x++; x--;
 wait unif(0,1);
}
x := x/sqrt(n);

1
2
3
4
5
6
7
8

08/05/2025, 20:07 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/1

Figure 1: An execution sample of a continuous-time random
walk in which the waiting time is given by sampling from
the uniform distribution on [0, 1].

Example 2.2 (Continuous-time random walks). We now shift our

focus from random walks to continuous-time ones [23] – a natural

generalisation that introduces uncertainty in the number of steps

a walker performs in a given time interval. These are particularly

useful for studying anomalous diffusion patterns (i.e. the mean

squared displacement), with applications ranging from biology to

finance [23]. A very simple example in our language is as follows.

x := 0 ;

while tt {

bernoulli (1/2, x++, x--) ;

d := unif (0,1) ;

wait d

}

The prominent feature is that the walker now waits – according

to the uniform distribution on [0, 1] – before jumping. A helpful

intuition from Nature is to think for example of a pollinating insect

that jumps from one flower to another.

Whilst we do not aim at fully exploring the example here, a quick

inspection tells that the average waiting time will be
1

2
and thus the

diffusion pattern of this stochastic process grows linearly in time.

In accordance to this, Figure 1 presents an execution sample w.r.t.

the first 5 time units (horizontal axis) of the process: the plot was

given by our interpreter, and indeed shows 10 jumps performed

during this period. Alternatively, a more complex diffusion pattern

arises by setting the waiting time to be wait(d * abs(x)): i.e. it
now increases in proportion to the distance from the origin, which

means that the diffusion pattern w.r.t. time need not to be linear

anymore.

all jumpsresample

all jumpsresample

Hybrid Program

Examples

Axis
[v,p]

Max Time

Max Iterations

Graph Type

Perturbations up-to

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

More information on the project: https://github.com/arcalab/lince (https://github.com/arcalab/lince)















0 1 2 3 4 5

−10

−5

0

5

10 v

p

time

v/
p





d:=0;
p := 10 ; v := 0 ;
while true do {
 d := unif (0,1) ;
 p'=v,v'= -9.8 for d ;
 v := -v;
}

1
2
3
4
5
6
7

08/05/2025, 20:12 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/1

Figure 2: An execution sample of the ball’s position (p) and
velocity (v) during the first 5 time units.

Example 2.3 (A ball and random kicks). Let us now consider one

of the classical examples in hybrid systems theory, viz. a bouncing
ball [30, 35]. As usual we express the ball’s continuous dynamics via

a system of differential equations (those of motion) and jumps as

assignments that ‘reset’ velocity. In fact we will consider a variant

in which there is no ground for the ball to bounce off. Instead it

will be kicked randomly, as encoded in the following program.

p := 10 ; v := 0 ;

while tt do {

d := unif (0,1) ;

p' = v, v' = -9.8 for d ;

v := -v

}

http://arcatools.org/lince

PPDP’25, September 10–11, 2025, Rende, Italy Neves et al.

In a nutshell, the ball moves according to the system of differential

equations until it is kicked up (or down) as dictated by v := -v.

The duration between jumps is random, again with a mean time

of
1/2. Figure 2 presents an execution sample of the bouncing ball

during the first 5 time units.

all jumpsresample

all jumpsresample

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control (CC) CC (2D) Adaptive CC (ACC) ACC: brake ACC: brake+move (2D)

ACC: fixed ACC: constant velocity ACC: constant acceleration ACC: with uncertainties Missile vs. Target Missile vs. Target (2D) Pursuit Games (3D)

Project motion without air effect Damped Harmonic Oscillator RLC circuit (single) RLC circuits (simpler) RLC circuits (variations) RLC circuits

Water tanks Traffic lights Avoiding approx. error Trigonometric computation Naive particle positioning Landing system Bouncing ball (ED)

Fireflies 2x (ED) Fireflies 3x (ED) Single tank (poll) Single tank (poll-variation) Single tank (optimal) ACC: v2 ACC: rnd leader

ACC: rnd leader (prob) ACC: rnd precision ACC: rnd leader (hist) Seed experiment Rnd: 2.1 Rnd: 2.2 Rnd: 2.3 Rnd: 2.4 Rnd: 2.5 Rnd: 2.6a

Rnd: 2.6b Rnd: 2.6c

Axis
[p]

Max Time
20

Max Iterations

Graph Type

Perturbations up-to

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

Probability check

Query: x>=1 @ [0..10] x 500

P = 23 [116/500]















0 5 10 15 20

−1500

−1000

−500

0

500

1000

1500

2000 t vs p - Sim 0

t vs p - Sim 1

t vs p - Sim 2

t vs p - Sim 3

t vs p - Sim 4

t vs p - Sim 5

t vs p - Sim 6

t vs p - Sim 7

t vs p - Sim 8

time

p







lambda:=2; d:=0;
// the "seed" variable fixes
// the pseudo-random generator
seed:=[1..100];
p:=0; v:=0; a:=0;
while true {
 d:=expn(lambda);
 bernoulli (1/2)
 a--; a++;
 p'= v, v'=a for d;
}

1
2
3
4
5
6
7
8
9
10
11

02/06/2025, 13:24 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/2

Figure 3:Multiple execution samples of the particle’s position
overlayed, in order to depict how the position’s probability
mass spreads over space w.r.t time.

Example 2.4 (Einstein’s Brownian motion). Since the last example

already moved us so close to it, we might as well consider Einstein’s

thesis for the cause of Brownian motion [11]. Essentially he posited

that the (apparent) erratic motion of a particle suspended in a fluid is

due to invisible collisions with atoms and molecules in the liquid. In

the one-dimensional setting, one can describe a particular instance

of this stochastic process as follows.

p := 0 ; v := 0 ; a := 0 ;

while tt do {

d := exp(lambda) ;

bernoulli (1/2, a--, a++) ;

p' = v, v' = a for d

}

Note that random collisions are here encoded in the form a Bernoulli

trial, and that their frequency is given by the Poisson process pre-

scribed by the sampling operation. Each collision causes a bump in

the acceleration (which will either be incremented or decremented).

Figure 3 then presents multiple execution samples overlayed on

top of each other, in order to depict of the probability mass of the

particle’s position spreads over space w.r.t. time.

Example 2.5 (Positioning of a particle). We now revisit the task

of moving a stationary particle from position 0𝑚 to position 3𝑚,

using acceleration rates 𝑎 = 1𝑚/𝑠2 and 𝑎 = −1𝑚/𝑠2. Recall that the
respective program consists in accelerating (with rate 𝑎 𝑚/𝑠2) and
then decelerating (−𝑎 𝑚/𝑠2) the particle for prescribed durations x

and y. Now, since 𝑎 and −𝑎 have the same magnitude we can safely

assume that x = y. Such durations are then analytically deduced via

the observation that,

𝑑𝑖𝑠𝑡 =

∫ 𝑡

0

𝑣𝑎 (𝑥) 𝑑𝑥 +
∫ 𝑡

0

𝑣−𝑎 (𝑥) 𝑑𝑥

all jumpsresample

all jumpsresample

Hybrid Program

Examples

Axis
[p,v,x,y]

Max Time
10

Max Iterations

Graph Type

Perturbations up-to

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

More information on the project: https://github.com/arcalab/lince (https://github.com/arcalab/lince)















0 1 2 3 4

0

1

2

3 p

v

x

y

time

p/
v/
x/
y





x:=expn(2); y:=expn(2);
p:=0; v:=0;
p'=v, v'=1 for sqrt (3) + x;
p'=v, v'=-1 for sqrt (3) + y;

1
2
3
4

09/05/2025, 09:21 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/1

Figure 4: Execution sample of the particle’s position (p) and
velocity (v).

where 𝑣𝑎 (𝑥) = 𝑎 · 𝑥 and 𝑣−𝑎 (𝑥) = 𝑣𝑎 (𝑡) + −𝑎 · 𝑥 are respectively

the particle’s velocity functions w.r.t. the time intervals [0, 𝑡) and
[𝑡, 2 · 𝑡]. In this context, 𝑡 is the value (i.e. the duration x) that we

wish to find out (see further details in [27]). Then observe that the

value 𝑑𝑖𝑠𝑡 corresponds to the area of a triangle with basis 2 · 𝑡 and
height 𝑣𝑎 (𝑡). This geometric shape yields the equations,{

𝑑𝑖𝑠𝑡 = 1

2
· (2 · 𝑡) · 𝑣𝑎 (𝑡) (area)

𝑣𝑎 (𝑡) = 𝑎 · 𝑡 (height)
=⇒ 𝑡 =

√︂
𝑑𝑖𝑠𝑡

𝑎

Finally note that for 𝑑𝑖𝑠𝑡 = 3 and 𝑎 = 1 we obtain 𝑡 =
√
3. Thus,

ideally we would like to set the durations of both acceleration and

deceleration to

√
3. This would then give rise to a total duration of

2

√
3 and the particle would stop precisely at position 3. But in reality

we should expect a small error in the durations of such instructions.

To this effect, in the program below we add an uncertainty factor

to the calculated durations x and y.

x := exp(2) + sqrt (3);

y := exp(2) + sqrt (3);

p' = v, v' = 1 for x ;

p' = v, v' = -1 for y

Figure 4 presents an execution sample where we see the effects of

the small errors in the durations: specifically the program at some

point exceeds position 3 and then terminates slightly below it. Note

also that the expected shape of the velocity function is lost.

Example 2.6 (Adaptive cruise controller). Lastly we consider a

scenario in which a particle tries to follow another one as closely

as possible and without crashing into it. For illustration purposes

we consider that the following particle (henceforth, the follower)

starts 50 meters behind the other one (henceforth, the leader) and

that it is stationary. It will be able to either accelerate or brake with

forces e.g. 2𝑚/𝑠2 and −2𝑚/𝑠2, respectively, during 1 time unit each

time. The leader, on the other hand, starts with its velocity at 10𝑚/𝑠
and cannot accelerate or brake.

The follower’s choice of whether to accelerate or brake each time

is determined by checking whether, in case of choosing to accelerate

during one time unit, a ‘safe braking distance’ from the leader is

maintained – a braking distance is determined ‘safe’ if the follower’s

braking trajectory does not intersect that of the leader. Technically

this amounts to finding the roots of the pointwise difference of

An Adequate While-Language for Stochastic Hybrid Computation PPDP’25, September 10–11, 2025, Rende, Italy

all jumpsresample

all jumpsresample

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control (CC) CC (2D) Adaptive CC (ACC) ACC: brake ACC: brake+move (2D)

ACC: fixed ACC: constant velocity ACC: constant acceleration ACC: with uncertainties Missile vs. Target Missile vs. Target (2D) Pursuit Games (3D)

Project motion without air effect Damped Harmonic Oscillator RLC circuit (single) RLC circuits (simpler) RLC circuits (variations) RLC circuits

Water tanks Traffic lights Avoiding approx. error Trigonometric computation Naive particle positioning Landing system Bouncing ball (ED)

Fireflies 2x (ED) Fireflies 3x (ED) Single tank (poll) Single tank (poll-variation) Single tank (optimal) ACC: v2 ACC: rnd leader

ACC: rnd leader (prob) ACC: rnd precision ACC: rnd leader (hist) Seed experiment Rnd: 2.1 Rnd: 2.2 Rnd: 2.3 Rnd: 2.4 Rnd: 2.5 Rnd: 2.6a

Rnd: 2.6b Rnd: 2.6c

Example 2.6a base for the experiments in 2.6b/2.6c with random values.

Axis
[p,v,pl,vl]

Max Time
20

Max Iterations

Graph Type

Perturbations up-to

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

Probability check

Query: x>=1 @ [0..10] x 500

P = 23 [116/500]















0 5 10 15 20

0

50

100

150

200

250 p

v

pl

vl

time

p/
v/

pl
/v

l







// Adaptive Cruise Control (ACC)
p:=0; v:=0; // follower
pl:=50; vl:=10; // leader
a:=0;
while true {
 // decide to speed up (acc=2) or brake (acc=-2)
 if (v-8)^2 + 4*(p-pl+v-9) < 0
 then p'=v, v'= 2, pl'=vl, vl'=a for 1;
 else p'=v, v'=-2, pl'=vl, vl'=a for 1;
}

1
2
3
4
5
6
7
8
9
10

02/06/2025, 13:36 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/2

all jumpsresample

all jumpsresample

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control (CC) CC (2D) Adaptive CC (ACC) ACC: brake ACC: brake+move (2D)

ACC: fixed ACC: constant velocity ACC: constant acceleration ACC: with uncertainties Missile vs. Target Missile vs. Target (2D) Pursuit Games (3D)

Project motion without air effect Damped Harmonic Oscillator RLC circuit (single) RLC circuits (simpler) RLC circuits (variations) RLC circuits

Water tanks Traffic lights Avoiding approx. error Trigonometric computation Naive particle positioning Landing system Bouncing ball (ED)

Fireflies 2x (ED) Fireflies 3x (ED) Single tank (poll) Single tank (poll-variation) Single tank (optimal) ACC: v2 ACC: rnd leader

ACC: rnd leader (prob) ACC: rnd precision ACC: rnd leader (hist) Seed experiment Rnd: 2.1 Rnd: 2.2 Rnd: 2.3 Rnd: 2.4 Rnd: 2.5 Rnd: 2.6a

Rnd: 2.6b Rnd: 2.6c

Axis
[p,v,pl,vl]

Max Time
20

Max Iterations

Graph Type

Perturbations up-to

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

Probability check

Query: x>=1 @ [0..10] x 500

P = 23 [116/500]















0 5 10 15 20

0

50

100

150

200

250 p

v

pl

vl

time

p/
v/

pl
/v

l







// Adaptive Cruise Control (ACC)
p:=0; v:=0; // follower
pl:=50; vl:=10; // leader
a:=0;
while true {
 //a := unif(-1,1) ;
 // decide to speed up (acc=2) or brake (acc=-2), assuming a==-1
 if (v - vl + 3)^2 + 4*(p - pl + v - vl + 3/2) < 0
 //if (v-8)^2 + 4*(p-pl+v-9) < 0
 then p'=v, v'= 2, pl'=vl, vl'=a for 1;
 else p'=v, v'=-2, pl'=vl, vl'=a for 1;
}

1
2
3
4
5
6
7
8
9
10
11
12

02/06/2025, 13:35 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/2

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control (CC) CC (2D) Adaptive CC (ACC) ACC: brake

ACC: brake+move (2D) ACC: fixed ACC: constant velocity ACC: constant acceleration ACC: with uncertainties

Missile vs. Target Missile vs. Target (2D) Pursuit Games (3D) Project motion without air effect Damped Harmonic Oscillator

RLC circuit (single) RLC circuits (simpler) RLC circuits (variations) RLC circuits Water tanks Traffic lights

Avoiding approx. error Trigonometric computation Naive particle positioning Landing system Bouncing ball (ED)

Fireflies 2x (ED) Fireflies 3x (ED) Single tank (poll) Single tank (poll-variation) Single tank (optimal) ACC: v2

ACC: rnd leader ACC: rnd leader (prob) ACC: rnd precision ACC: rnd leader (hist) Seed experiment PPDL - Ex.2.1

PPDL - Ex.2.2 PPDL - Ex.2.3 PPDL - Ex.2.4 PPDL - Ex.2.5 PPDL - Ex.2.6a PPDL - Ex.2.6b PPDL - Ex.2.6c

Axis

Max Time

Max Iterations

Graph Type

Perturbations up-to

all jumpsresample

all jumpsresample

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

Probability check

More information on the project: https://github.com/arcalab/lince
(https://github.com/arcalab/lince)















0 5 10 15 20

0

50

100

150

200

250
p - Sim 0

v - Sim 0

pl - Sim 0

vl - Sim 0

p - Sim 1

v - Sim 1

pl - Sim 1

vl - Sim 1

p - Sim 2

time

p/
v/

pl
/v

l







// Adaptive Cruise Control (ACC)
p:=0; v:=0; // follower
pl:=50; vl:=10; // leader
a:=0; lambda:=8; x:=0;
seed:=[53..63];
while true {
 x := expn(lambda) + 1;
 // decide to speed up (acc=2) or brake (acc=-2)
 if (v-8)^2 + 4*(p-pl+v-9) < 0
 then p'=v, v'= 2, pl'=vl, vl'=a for x;
 else p'=v, v'=-2, pl'=vl, vl'=a for x;
}

1
2
3
4
5
6
7
8
9
10
11
12

03/06/2025, 20:12 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/1

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control (CC) CC (2D) Adaptive CC (ACC)

ACC: brake ACC: brake+move (2D) ACC: fixed ACC: constant velocity ACC: constant acceleration

ACC: with uncertainties Missile vs. Target Missile vs. Target (2D) Pursuit Games (3D) Project motion without air effect

Damped Harmonic Oscillator RLC circuit (single) RLC circuits (simpler) RLC circuits (variations) RLC circuits

Water tanks Traffic lights Avoiding approx. error Trigonometric computation Naive particle positioning Landing system

Bouncing ball (ED) Fireflies 2x (ED) Fireflies 3x (ED) Single tank (poll) Single tank (poll-variation) Single tank (optimal)

ACC: v2 ACC: rnd leader ACC: rnd leader (prob) ACC: rnd precision ACC: rnd leader (hist) Seed experiment

Rnd: 2.1 Rnd: 2.2 Rnd: 2.3 Rnd: 2.4 Rnd: 2.5 Rnd: 2.6a Rnd: 2.6b Rnd: 2.6c

Axis
[p,v,pl,vl]

Max Time

Max Iterations

Graph Type
histogram: p>=pl

Perturbations up-to

all jumpsresample

all jumpsresample

Custom Trajectories (approximated)

Custom Trajectories (symbolic)

Symbolic Evaluation

Probability check

More information on the project: https://github.com/arcalab/lince
(https://github.com/arcalab/lince)















0 5 10 15 20
0

2

4

6

time

co
un

t
(p

>
=

pl
)







// Adaptive Cruise Control (ACC)
p:=0; v:=0; // follower
pl:=50; vl:=10; // leader
a:=0; lambda:=8; x:=0;
sim:=[1..50];
while true {
 x := expn(lambda) + 1;
 // decide to speed up (acc=2) or brake (acc=-2)
 if (v-8)^2 + 4*(p-pl+v-9) < 0
 then p'=v, v'= 2, pl'=vl, vl'=a for x;
 else p'=v, v'=-2, pl'=vl, vl'=a for x;
}

1
2
3
4
5
6
7
8
9
10
11
12

02/06/2025, 18:34 Online Tools for Hybrid Programs

localhost:9000/assets/lince.html#fulllince 1/1

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control (CC) CC (2D)

Adaptive CC (ACC) ACC: brake ACC: brake+move (2D) ACC: fixed ACC: constant velocity

ACC: constant acceleration ACC: with uncertainties Missile vs. Target Missile vs. Target (2D)

Pursuit Games (3D) Project motion without air effect Damped Harmonic Oscillator

RLC circuit (single) RLC circuits (simpler) RLC circuits (variations) RLC circuits Water tanks

Traffic lights Avoiding approx. error Trigonometric computation Naive particle positioning

Landing system Bouncing ball (ED) Fireflies 2x (ED) Fireflies 3x (ED) Single tank (poll)

Single tank (poll-variation) Single tank (optimal) ACC: v2 ACC: rnd leader ACC: rnd leader (prob)

all jumpsresample

all jumpsresample

Custom
Trajectories
(approximated)

Custom
Trajectories
(symbolic)

Symbolic
Evaluation

Probability
check

Query:

p>=pl @ [10..20] x50

P = 34 [17/50]

More information
on the project:

https://github.com/arcalab/lince











// Adaptive Cruise Control (ACC)
p:=0; v:=0; // follower
pl:=50; vl:=10; // leader
a:=0; lambda:=8; x:=0;
//seed:=[1..50];
while true {
 x := expn(lambda) + 1;
 // decide to speed up (acc=2) or brake (acc=-2)
 if (v-8)^2 + 4*(p-pl+v-9) < 0
 then p'=v, v'= 2, pl'=vl, vl'=a for x;
 else p'=v, v'=-2, pl'=vl, vl'=a for x;
}

1
2
3
4
5
6
7
8
9

10
11
12

DevelopmentDevelopment PublicationsPublications Back to ArcaToolsBack to ArcaTools

Copyright 2017-2020 – ARCA.di.uminho.pt

Figure 5: Multiple execution samples of different variants
of an adaptive cruise controller. Labels p and v denote the
follower’s position and velocity while pl and vl indicate the
leader’s position and velocity. An histogram and a probability
checker that count how many times p≥pl in 50 runs with
probabilistic waiting times.

both trajectories (i.e. finding the roots of a quadratic equation): the

absence of roots amounts to the absence of intersections (see further

details in [27]). The overall idea of the scenario just described is

encoded by the following program, where the operation safe(p,v,

pl,vl) informs whether roots were found or not.

p := 0 ; v := 0 ; pl := 50 ; vl := 10 ;

while tt {

if safe(p,v,pl,vl)

then p' = v, v' = 2, pl' = vl , vl' = 0 for 1

else p' = v, v' = -2, pl' = vl, vl' = 0 for 1

}

Let us now add some uncertainty to the leader: it will be able to

uniformly take any acceleration in the range [−1, 1]. This means

that for complete safety, the function safe(p,v,pl,vl) needs to

be tweaked to assume the worst possible scenario: i.e. while the

follower’s braking trajectorywill be the same, the leader’s trajectory

is now assumed to be the one that results from choosing acceleration

−1𝑚/𝑠2 (and not 0𝑚/𝑠2, as before). The resulting program is then

as follows.

p := 0 ; v := 0 ; pl := 50 ; vl := 10 ; a := 0;

while tt {

a := unif(-1,1) ;

if safe(p,v,pl ,vl)

then p' = v, v' = 2, pl' = vl, vl' = a for 1

else p' = v, v' = -2, pl' = vl , vl' = a for 1

}

Yet another option for introducing uncertainty is to consider the fact

that the waiting times will be given by an exponential distribution,

as follows.

p := 0 ; v := 0 ; pl := 50 ; vl := 10 ;

while tt {

x := exp(lambda) ; x++ ;

if safe(p,v,pl ,vl)

then p' = v, v' = 2, pl' = vl, vl' = 0 for x

else p' = v, v' = -2, pl' = vl , vl' = 0 for x

}

The function safe(p,v,pl,vl) would then need to be tweaked

again – but remarkably now with no hope for complete safety, as

in theory x can take any value from [1,∞) and thus no worst-case

scenario exists.

Figure 5 (top) presents an execution sample in which the system

is completely deterministic (i.e. the leader’s velocity is constant with
100% certainty) and thus the follower gets as close as possible to the

leader. On the other hand, Figure 5 (middle) presents an execution

sample in which the follower assumes the worst-case scenario just

described and thus cannot get as close to the leader. Finally Figure 5

(bottom plot) presents several execution samples overlayed inwhich

the original safe function is used and the respective durations are

given by the exponential distribution 1 + exp(8). It shows that,

while collisions are improbable they do occur. This low probability

of collision is quantified at the bottom of Figure 5, counting how

many times p >= pl holds in 50 runs over time (bottom-left) and

anywhere in the interval [10,20] (bottom-right).

Operational semantics. The section’s remainder is devoted to

introducing an operational semantics for the language – not only

such is a basis for formal reasoning about stochastic hybrid pro-

grams it is also the engine of the interpreter that we have been

showcasing thus far. In a nutshell, the semantics marries Kozen’s

operational semantics for a probabilistic language [24] with the

PPDP’25, September 10–11, 2025, Rende, Italy Neves et al.

semantics of hybrid programs that was presented in [14, 27]. We

will need some preliminaries.

We take the Hilbert cube [0, 1]𝜔 as the source of randomness.

Operationally speaking this means that sampling will amount to

drawing values from an element of [0, 1]𝜔 (a stream) that is fixed a
priori. For example, sampling once will amount to taking the head

of this element and sampling 𝑛 times will amount to taking the

respective prefix of size 𝑛. Next we assume that the semantics of

expressions e and Boolean conditions b are given by partial maps

JeK : R𝑛 −⇀ R and JbK : R𝑛 −⇀ {tt, ff}. These can be defined

in the usual way. Now, since we are in the context of imperative

programming we will recur to the notion of a store 𝜎 : {x1, ...

,x𝑛} → R (also known as memory or environment) [36, 38]. It

assigns a real number to any given variable in the language. For a

store 𝜎 , we will use the notation 𝜎 [x ↦→ 𝑣] to denote the store that
is exactly like 𝜎 except for the fact that x is now assigned value

𝑣 . Finally we assume that any system of differential equations in

our language induces a partial map 𝜙 : R𝑛 × R≥0 −⇀ R𝑛
– which in

our context will be regarded as the respective (partial) solution. For

simplicity we denote an operation x1' = e1,...,x𝑛' = e𝑛 for e

by the simpler expression diff(e1,...,e𝑛,e).

The rules of our semantics are then presented in Figure 6. They

dictate what the next computational step will be when evaluating

a program p with initial store 𝜎 w.r.t. time instant 𝑡 . As alluded

before each evaluation is associated with a source of randomness

𝑠 ∈ [0, 1]𝜔 from which p draws sampling results. Note from the

rules that such computational steps lead to one of three possible

outcomes: viz. an error flag err , an output store, or a resumption

(i.e. an updated evaluation stack of programs, store, time instant,

and source of randomness) which can then be evaluated in the next

step (the empty stack is denoted by skip).
The subtlest feature of our semantics is that, not only will the

evaluation stack of programs tend to decrease (with the exception

of constructs such as while loops, which may temporarily increase

it), also the time instant 𝑡 at the beginning of the evaluation will

tend to decrease along the computational steps performed. Intu-

itively this means that the evaluation is ‘moving forward in time’

until reaching the target time instant 𝑡 that we wish to evaluate.

Most notably, when it detects that such time instant was reached

it forces the termination of the evaluation, even if the evaluation

stack of programs is currently non-empty. Such is expressed by the

rule (seq-stop→), and is crucial for evaluating non-terminating

programs, like the ones described in Example 2.2, Example 2.3, Ex-

ample 2.4, and Example 2.6. We illustrate this feature next with a

simple example, but more details can also be found in [14].

Example 2.7. Consider the following non-terminating program,

x := 0 ; while tt { x++ ; wait 1 }
Although the loop involved does not terminate, one can always

evaluate the program in a finite amount of steps for any given time

instant. Let us see what happens, for example, at time instant 1+ 1/2.
First, for simplicity we denote the loop simply by p and the store

𝜎 : { x } → R that is defined as 𝜎 (x) = 𝑣 by x ↦→ 𝑣 . We then

deduce the following sequence of small-step transitions which arise

from the rules in Figure 6. The last transition arises precisely due

to rules (diff-stop→) and (seq-stop→). Henceforth we will call

events such as the one just described time-based terminations, in

order to distinguish from those ordinary terminations that originate

in emptying the program evaluation stack. We will see later on that

this subtle aspect can be neatly handled in the denotational context

via an exception monad.

x:= 0 ; p , 𝜎 , 1 + 1/2 , 𝑠 → p , (x ↦→ 0) , 1 + 1/2 , 𝑠
→ x++ ; wait 1 ; p , (x ↦→ 0) , 1 + 1/2 , 𝑠
→ wait 1 ; p , (x ↦→ 1) , 1 + 1/2 , 𝑠
→ p , (x ↦→ 1) , 1/2 , 𝑠
→ x++ ; wait 1 ; p , (x ↦→ 1) , 1/2 , 𝑠
→ wait 1 ; p , (x ↦→ 2) , 1/2 , 𝑠
→ x ↦→ 2

Let us briefly mention how our interpreter uses this semantics to

provide (overlayed) execution samples of a given stochastic hybrid

program p. The basic idea is simple: we first generate an entropy

source i.e. a sample 𝑠 ∈ [0, 1]𝜔 and then use it to compute the

execution chain p , 𝜎 , 𝑡 , 𝑠 → . . . for multiple time instants 𝑡 ,

corresponding to different snapshots of the program’s behavioural

trajectory. In order to obtain overlayed execution samples one just

repeats this process multiple times, i.e. with different samples.

We now introduce a big-step operational semantics in Figure 7,

which abstracts from intermediate computational steps in the con-

text of the small-step variant. Although in programming theory

big-step semantics have multiple applications [36, 38], here we use

it to connect small-step to the denotational counterpart in Section 4.

In other words, the big-step variant is a midpoint between small-

step and denotational semantics. Since this big-step semantics is

based on the same ideas as small-step, we skip its explanation.

We conclude the section by showing that the small-step and

big-step semantics agree, in the sense that they give rise to the

same input-output relation. Technically, we factor in the reflexive-

transitive closure of the small-step relation as follows. First, we

call ‘terminal’ those tuples arising from steps (in the small-step

semantics) that are of the form skip ,𝜎 ,𝑡 ,𝑠 , or 𝜎 , or err . Then we

build an ‘input-output relation’ (⇒) via the reflexive-transitive

closure of the small-step relation, as detailed in Figure 8. Finally,

Theorem 2.8. For every program p, store 𝜎 , time instant 𝑡 , and
source of randomness 𝑠 , we have the following following equivalence:

p , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣 iff p , 𝜎 , 𝑡 , 𝑠 ⇒ 𝑣

Proof. The right-to-left direction follows by induction on the

length of small-step reduction sequence and Lemma 2.9. The left-to-

right direction follows by induction over big-step derivations. □

Lemma 2.9. Given a program p, a store 𝜎 , time instant 𝑡 , and a
source of randomness 𝑠 , the following is true:

(1) if p , 𝜎 , 𝑡 , 𝑠 → p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ and p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ ⇓ skip , 𝜎 ′′ , 𝑡 ′′ , 𝑠′′

then we have p , 𝜎 , 𝑡 , 𝑠 ⇓ skip , 𝜎 ′′ , 𝑡 ′′ , 𝑠′′;
(2) if p , 𝜎 , 𝑡 , 𝑠 → p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ and p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ ⇓ 𝜎 ′′ then

we have p , 𝜎 , 𝑡 , 𝑠 ⇓ 𝜎 ′′;
(3) if p , 𝜎 , 𝑡 , 𝑠 → p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ and p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ ⇓ err then

we have p , 𝜎 , 𝑡 , 𝑠 ⇓ err ;

Proof. Follows straightforwardly by induction over the rules

concerning the small-step semantics. □

An Adequate While-Language for Stochastic Hybrid Computation PPDP’25, September 10–11, 2025, Rende, Italy

(asg-rnd→) x := unif(0,1) , 𝜎 , 𝑡 , (ℎ : 𝑠) → skip , 𝜎 [x ↦→ ℎ] , 𝑡 , 𝑠

(asg→) x := e , 𝜎 , 𝑡 , 𝑠 → skip , 𝜎 [x ↦→ JeK (𝜎)] , 𝑡 , 𝑠 (JeK (𝜎) defined)

(asg-err→) x := e , 𝜎 , 𝑡 , 𝑠 → err (JeK (𝜎) undefined)

(diff-stop→) diff(e1,...,e𝑛,e) , 𝜎 , 𝑡 , 𝑠 → 𝜙 (𝜎, 𝑡) (JeK (𝜎) > 𝑡)

(diff-skip→) diff(e1,...,e𝑛,e) , 𝜎 , 𝑡 , 𝑠 → skip , 𝜙 (𝜎, JeK (𝜎)) , 𝑡 − JeK (𝜎) , 𝑠 (0 ≤ JeK (𝜎) ≤ 𝑡)

(diff-err→) diff(e1,...,e𝑛,e) , 𝜎 , 𝑡 , 𝑠 → err (JeK (𝜎) < 0 or JeK (𝜎) undefined)

(if-true→) if b then p else q , 𝜎 , 𝑡 , 𝑠 → p , 𝜎 , 𝑡 , 𝑠 (JbK (𝜎) = tt)

(if-false→) if b then p else q , 𝜎 , 𝑡 , 𝑠 → q , 𝜎 , 𝑡 , 𝑠 (JqK (𝜎) = ff)

(if-err→) if b then p else q , 𝜎 , 𝑡 , 𝑠 → err (JbK (𝜎) undefined)

(wh-true→) while b do { p } , 𝜎 , 𝑡 , 𝑠 → p ; while b do { p } , 𝜎 , 𝑡 , 𝑠 (JbK (𝜎) = tt)

(wh-false→) while b do { p } , 𝜎 , 𝑡 , 𝑠 → skip , 𝜎 , 𝑡 , 𝑠 (JbK (𝜎) = ff)

(wh-err→) while b do { p } , 𝜎 , 𝑡 , 𝑠 → err (JbK (𝜎) undefined)

(seq-stop→)
p , 𝜎 , 𝑡 , 𝑠 → 𝜎 ′

p ; q , 𝜎 , 𝑡 , 𝑠 → 𝜎 ′ (seq-skip→)
p , 𝜎 , 𝑡 , 𝑠 → skip , 𝜎 ′ , 𝑡 ′ , 𝑠′

p ; q , 𝜎 , 𝑡 , 𝑠 → q , 𝜎 ′ , 𝑡 ′ , 𝑠′

(seq-err→)
p , 𝜎 , 𝑡 , 𝑠 → err

p ; q , 𝜎 , 𝑡 , 𝑠 → err
(seq→)

p , 𝜎 , 𝑡 , 𝑠 → p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′

p ; q , 𝜎 , 𝑡 , 𝑠 → p′ ; q , 𝜎 ′ , 𝑡 ′ , 𝑠′

Figure 6: Small-step operational semantics

3 Measure theory
This section briefly recalls a series of results about measure the-

ory [2, 10, 32], focus being on those that form the backbone of the

semantics described in Section 4.

Our main working category will beMeas, i.e. that of measurable

spaces and measurable functions. Recall that it has both (infinite)

products and coproducts [1, Section 21]. Recall as well that it is

distributive, i.e. for all measurable spaces 𝑋,𝑌, 𝑍 there exists an

isomorphism,

dist : 𝑋 × (𝑌 + 𝑍) → 𝑋 × 𝑌 + 𝑋 × 𝑍

Now, let Top be the category of topological spaces and continuous

maps, and recall that it has (infinite) products and coproducts as

well [1, Section 21]. There exists a functor 𝐵 : Top → Meas that
sends any given topological space to the measurable space with the

same carrier and equipped with the respective Borel 𝜎-algebra [2,

Section 4.4]. In particular when treating a subset of real numbers

as a measurable space we will be tacitly referring to the respective

Borel 𝜎-algebra. It is well-known that 𝐵 preserves finite products

of second-countable topological spaces [16, Definition 6.3.7], which

is the case for example of Polish spaces (see [2, Chapter 3] and [16,

Theorem 6.3.44]). This property is key for our semantics: it will

allow us to treat solutions of systems of differential equations –

which are continuous functions and thus live in Top – as measurable

functions. Further details about this crucial aspect are available in

the following section.

We proceed by briefly recalling basic results about measures – a

more detailed description is available for example in [2, Chapter

10], [3, Chapter 1], and [32, Chapter 2].

Definition 3.1. For a measurable space (𝑋, Σ𝑋) a measure is a

function 𝜇 : Σ𝑋 → R such that 𝜇 (𝑈) ≥ 0 for all measurable sets𝑈 ,

𝜇 (∅) = 0 and moreover it is 𝜎-additive, i.e.

𝜇

(∞⋃
𝑖=1

𝑈𝑖

)
=

∞∑︁
𝑖=1

𝜇 (𝑈𝑖)

where (𝑈𝑖)𝑖∈𝜔 is any family of pairwise disjoint measurable sets.

As usual, a measure is called a subdistribution if 𝜇 (𝑋) ≤ 1 and a

distribution if 𝜇 (𝑋) = 1.

For a measurable space 𝑋 the set of measures M(𝑋) forms a

vector space via pointwise extension. It also forms a normed space

when equipped with the total variation norm,

∥𝜇∥ = sup

{
𝑛∑︁
𝑖=1

∥𝜇 (𝑈𝑖)∥ | {𝑈1, . . . ,𝑈𝑛} measurable partition of X

}
In particular, for a positive measure 𝜇 we have ∥𝜇∥ = 𝜇 (𝑋). Note
that M(𝑋) is also a Banach space by virtue of the reals numbers

forming a Banach space, specifically the limit of a Cauchy sequence

is built via pointwise extension.

PPDP’25, September 10–11, 2025, Rende, Italy Neves et al.

(asg-rnd)
x := unif(0,1) , 𝜎 , 𝑡 , (ℎ : 𝑠) ⇓ skip , 𝜎 [x ↦→ ℎ] , 𝑡 , 𝑠

(asg-skip)
JeK (𝜎) defined

x := e , 𝜎 , 𝑡 , 𝑠 ⇓ skip , 𝜎 [x ↦→ JeK (𝜎)] , 𝑡 , 𝑠 (asg-err)
JeK (𝜎) undefined

x := e , 𝜎 , 𝑡 , 𝑠 ⇓ err

(diff-skip)
0 ≤ JeK (𝜎) ≤ 𝑡

diff(e1,...,e𝑛,,e) , 𝜎 , 𝑡 , 𝑠 ⇓ skip , 𝜙 (𝜎, JeK (𝜎)) , 𝑡 − JeK (𝜎) , 𝑠

(diff-stop)
JeK (𝜎) > 𝑡

diff(e1,...,e𝑛,,e) , 𝜎 , 𝑡 , 𝑠 ⇓ 𝜙 (𝜎, 𝑡) (diff-err)
JeK (𝜎) < 0 or JeK (𝜎) undefined

diff(e1,...,e𝑛,,e) ⇓ err

(seq-skip)
p , 𝜎 , 𝑡 , 𝑠 ⇓ skip , 𝜎 ′ , 𝑡 ′ , 𝑠′ q , 𝜎 ′ , 𝑡 ′ , 𝑠′ ⇓ 𝑣

p ; q , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣

(seq-stop)
p , 𝜎 , 𝑡 , 𝑠 ⇓ 𝜎 ′

p ; q , 𝜎 , 𝑡 , 𝑠 ⇓ 𝜎 ′ (seq-err)
p , 𝜎 , 𝑡 , 𝑠 ⇓ err

p ; q , 𝜎 , 𝑡 , 𝑠 ⇓ err

(if-true)
JbK (𝜎) = tt p , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣

if b then p else q , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣

(if-false)
JbK (𝜎) = ff q , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣

if b then p else q , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣
(if-err)

JbK (𝜎) undefined
if b then p else q , 𝜎 , 𝑡 , 𝑠 ⇓ err

(wh-true)
JbK (𝜎) = tt p ; while b do { p } , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣

while b do { p } , 𝜎 , 𝑡 , 𝑠 ⇓ 𝑣

(wh-false)
JbK (𝜎) = ff

while b do { p } , 𝜎 , 𝑡 , 𝑠 ⇓ skip , 𝜎 , 𝑡 , 𝑠
(wh-err)

JbK (𝜎) undefined
while b do { p } , 𝜎 , 𝑡 , 𝑠 ⇓ err

Figure 7: Big-step operational semantics

p , 𝜎 , 𝑡 , 𝑠 → 𝑣

p , 𝜎 , 𝑡 , 𝑠 ⇒ 𝑣
(𝑣 terminal) p , 𝜎 , 𝑡 , 𝑠 → p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ p′ , 𝜎 ′ , 𝑡 ′ , 𝑠′ ⇒ 𝑣

p , 𝜎 , 𝑡 , 𝑠 ⇒ 𝑣

Figure 8: Big-step semantics via the reflexive-transitive closure of the small-step relation

Take a measure 𝜇 ∈ M(𝑋) and a measure 𝜈 ∈ M(𝑌). Then there

exists the so-called tensor or product measure 𝜇 ⊗ 𝜈 ∈ M(𝑋 × 𝑌),
which is defined by the equation 𝜇 ⊗ 𝜈 (𝑈 ×𝑉) = 𝜇 (𝑈)𝜈 (𝑉) on all

measurable rectangles𝑈 ×𝑉 ∈ Σ𝑋×𝑌 . Specifically the latter extends
standardly to all measurable sets by an appeal to Carathéodory’s

extension, and moreover the extension is unique if 𝜇 and 𝜈 are

subdistributions (see e.g. [2, Lemma 10.33]). Another useful fact

is that for any subdistributions 𝜇, 𝜈 ∈ M(𝑋) and 𝜌 ∈ M(𝑌) the
equation below holds.

(𝜇 + 𝜈) ⊗ 𝜌 = 𝜇 ⊗ 𝜌 + 𝜈 ⊗ 𝜌

The product measure construction just described also applies to

countable families of distributions (𝜇𝑖)𝑖∈𝜔 inM(𝑋).
Next, for a measurable space𝑋 we will denote by G(𝑋) the set of

subdistributions. The construct G(−) thus defined forms the Giry

monad inMeas when every G(𝑋) is equipped with the 𝜎-algebra

generated by the evaluation maps,

eval𝑈 : G(𝑋) → R 𝜇 ↦→ 𝜇 (𝑈) (𝑈 ⊆ 𝑋 measurable)

[31]. This last clause is equivalent to stating that for any map

𝑓 : 𝑋 → G(𝑌) betweenmeasurable spaces, if eval𝑈 · 𝑓 is measurable

for all measurable subsets𝑈 , then 𝑓 will be measurable as well. The

respective Kleisli morphisms 𝑓 : 𝑋 → G(𝑌) are typically called

Markov kernels and their Kleisli extension 𝑓 ★ : G(𝑋) → G(𝑌) is
given by Lebesgue integration [2],

𝑓 ★(𝜇) =𝑈 ↦→
∫
𝑥∈𝑋

𝑓 (𝑥) (𝑈) 𝑑𝜇 (𝑥)

For every measurable space𝑋 the unit 𝛿 : 𝑋 → G(𝑋) of this monad

is given by the Dirac delta 𝛿𝑥 ∈ G(𝑋) with 𝑥 ∈ 𝑋 , i.e.

𝛿𝑥 (𝑈) =
{
1 if 𝑥 ∈ 𝑈

0 otherwise

In particular, the functorial action of G(−) : Meas → Meas is the
pushforward measure operation. We will often abuse notation by

denoting a linear combination

∑
𝑖 𝑝𝑖 · 𝛿𝑥𝑖 simply by

∑
𝑖 𝑝𝑖 · 𝑥𝑖 with

𝑥𝑖 ∈ 𝑋 . The symbol "−" in the notation G(−) denotes a placeholder
for the functor in abstraction, i.e., before specifying its argument.

An Adequate While-Language for Stochastic Hybrid Computation PPDP’25, September 10–11, 2025, Rende, Italy

Let us recall useful properties about the Giry monad. First it is

commutative when equipped with the double-strength operation

G(𝑋) × G(𝑌) → G(𝑋 × 𝑌) defined via the product measure [37].

The fact that such operation is measurable follows from [2, Lemma

4.11]. Second for any bounded measurable map 𝑓 : 𝑋 → R and

measures 𝜇, 𝜈 ∈ G(𝑋) Lebesgue integration satisfies the conditions,∫
𝑓 𝑑 (𝜇 + 𝜈) =

∫
𝑓 𝑑𝜇 +

∫
𝑔𝑑𝜈

∫
𝑓 𝑑 (𝑠 · 𝜇) = 𝑠 ·

(∫
𝑓 𝑑𝜇

)
for any scalar 𝑠 ∈ R. Thus we immediately conclude that the Kleisli

extension of a Markov kernel will always be linear. Third if the

codomain of 𝑓 restricts to [0, 1] we obtain,∫
𝑓 𝑑𝜇 ≤ 𝜇 (𝑋) = ∥𝜇∥

This entails that the Kleisli extension of a Markov kernel will be

bounded and thus continuous (even contractive) w.r.t. the metric

induced by the total variation norm. This provides a number of

tools from functional analysis. For example one can analyse how

𝑓 ★ acts on a measure 𝜇 by a series of approximations 𝜇𝑛 to 𝜇. Not

only this, the set of mapsMeas(G(𝑋),G(𝑌)) can be equipped with

the metric induced by the operator norm,

∥𝑇 ∥ = sup {∥𝑇 (𝜇)∥ | 𝜇 ∈ G(𝑋), ∥𝜇∥ ≤ 1}

which moves us beyond classical program equivalence by allowing

to compare programs in terms of distances and not just equality

(see for example [7]). More details about this last aspect will be

given later on.

Another useful fact is that for a given measure 𝜇 ∈ G(𝑋) any
measurable subset 𝑈 ⊆ 𝑋 gives rise to a new measure 𝜇 (𝑈 ∩ −).
Moreover for any boundedmeasurablemap 𝑓 : 𝑋 → R andmeasure

𝜇 ∈ G(𝑋) we obtain,∫
𝑋

𝑓 𝑑𝜇 (𝑋 ∩ −) =
∫
𝑈

𝑓 𝑑𝜇 (𝑈 ∩ −) +
∫
𝑈

𝑓 𝑑𝜇 (𝑈 ∩ −)

where 𝑈 represents the complement of 𝑈 . Another useful prop-

erty of the Giry monad is that for every measurable space 𝑋 the

space G(𝑋) inherits the usual order on the real numbers, via point-

wise extension. What is more, the induced order has a bottom

element (the zero-mass measure) and it is 𝜔-complete, by virtue

of the completeness property of the real numbers. Remarkably,

an 𝜔-increasing sequence of measures (𝜇𝑛)𝑛∈𝜔 in G(𝑋) is Cauchy
and sup𝑛∈𝜔 𝜇𝑛 = lim𝑛→∞ 𝜇𝑛 , thanks to the monotone convergence

theorem (see e.g. [2, Theorem 11.18] or [32, Theorem 3.6]). This is

helpful to jump between domain theory and functional analysis

whenever necessary.

Next, observe that the aforementioned order extends to Markov

kernels via pointwise extension. It has a bottom element (the map

constant on the zero-mass measure) and it is 𝜔-complete. The last

property follows directly from the definition of the 𝜎-algebra of

G(𝑋) for every 𝑋 and from the fact that the pointwise supremum

of real-valued measurable functions is measurable. Also, it follows

from the monotone convergence theorem that the equation,

(sup
𝑖∈𝜔

𝑓𝑖)★ = sup

𝑖∈𝜔
𝑓 ★𝑖

holds for any increasing sequence (𝑓𝑖)𝑖∈𝜔 of Markov kernels. This

will be crucial for the interpretation of while-loops in the following

section. Finally it follows from the fact that multiplication preserves

suprema that,

(sup
𝑖∈𝜔

𝜇𝑖) ⊗ 𝜈 = sup

𝑖∈𝜔
𝜇𝑖 ⊗ 𝜈

for any increasing sequence of subdistributions (𝜇𝑖)𝑖∈𝜔 in G(𝑋)
and 𝜈 ∈ G(𝑌).

4 Denotational semantics
We now introduce a denotational, measure-theoretic semantics

for our stochastic language. In a nutshell, it extends Kozen’s well-

known probabilistic semantics [24] with a mechanism for handling

the time-based terminations that were described in Section 2. The

extension boils down to the following categorical construction.

Any object 𝐸 in a category C with binary coproducts induces

a monad 𝐸 + (−) which intuitively gives semantics to exception

handling [29]. It follows from the universal property of coproducts

that any monad 𝑇 in C combines with 𝐸 + (−). In other words we

have a new monad 𝑇 ⊗ 𝐸 which handles at the same time effects

arising from 𝑇 and exceptions. Concretely, the functorial action

of this new monad is given by 𝑇 (𝐸 + (−)), the unit 𝜂𝑇⊗𝐸
by the

composition 𝜂𝑇 · inr : 𝑋 → 𝑇 (𝐸+𝑋), and the Kleisli lifting (−)★𝑇 ⊗𝐸

by the equation,

𝑓 ★
𝑇 ⊗𝐸

= [𝜂𝑇 · inl, 𝑓]★𝑇

Time-based terminations will be handled precisely via one such

monad G ⊗ 𝐸 in Meas – in other words these terminations are

technically seen as exceptions, in the sense that they also inhibit

the execution of subsequent computations and are merely prop-

agated forward along the evaluation. Specifically the denotation

JpK of a program p will be a Markov kernel 𝑋 → G(𝐸 + 𝑋) in
which elements of 𝐸 denote time-based terminations. The space

𝑋 will be in particular the product R𝑛 × R≥0 whilst 𝐸 will be R𝑛

(thus analogously to Section 2, 𝑛 is the cardinality of our stock of

variables and possible outputs are either elements of R𝑛 × R≥0 or
R𝑛

). Consequently, for every (𝜎, 𝑡) ∈ R𝑛 × R≥0 we have JpK (𝜎, 𝑡)
as a subdistribution which assigns probabilities to the outputs of

p w.r.t. time instant 𝑡 and initial state 𝜎 . For any given initial state

𝜎 ∈ R𝑛
, one can also see a denotation JpK as inducing a Markov

process JpK (𝜎,−) which intuitively means that the subdistribution

of outputs evolves over time. Note as well that the possibility of

the total mass of JpK (𝜎, 𝑡) being strictly lower than 1 for a given

input (𝜎, 𝑡) ∈ R𝑛 ×R≥0 reflects the possibility of divergence and/or
errors in the evaluation of expressions and Boolean conditions.

Lastly in order to interpret while-loops, we observe that the

combined monad G ⊗ 𝐸 inherits the order of G, and moreover,

(sup
𝑖∈𝜔

𝑓𝑖)★
G⊗𝐸

= sup

𝑖∈𝜔
𝑓 ★

G⊗𝐸
𝑖 (1)

for any increasing sequence (𝑓𝑖)𝑖∈𝜔 of Markov kernels. This last

equation follows from the Scott-continuity of co-pairing on its

second argument.

We are finally ready to introduce our denotational semantics. It

is defined in Figure 9, via induction on the syntactic structure of

programs. It assumes, as usual, that the semantics of expressions

e and Boolean conditions b are given by measurable partial maps

JeK : R𝑛 −⇀ R and JbK : R𝑛 −⇀ {tt, ff}. The measurability of each

interpretation clause in Figure 9 is then straightforward to verify.

Indeed, the only somewhat complicated case is the first clause,

PPDP’25, September 10–11, 2025, Rende, Italy Neves et al.

Jdiff(e1,...,e𝑛,e)K = (𝜎, 𝑡) ↦→

1 · 𝜙 (𝜎, 𝑡) if JeK (𝜎) > 𝑡

1 · (𝜙 (𝜎, JeK (𝜎)), 𝑡 − JeK (𝜎)) if 0 ≤ JeK (𝜎) ≤ 𝑡

0 otherwise

Jx := eK = (𝜎, 𝑡) ↦→
{
1 · (𝜎 [x ↦→ JeK (𝜎)], 𝑡) if JeK (𝜎) is well-defined
0 otherwise

Jx𝑖 := unif(0,1)K = (𝜎, 𝑡) ↦→ 𝜎 [x𝑖 ↦→ 𝜆] ⊗ (1 · 𝑡)

Jif b then p else qK = (𝜎, 𝑡) ↦→

JpK (𝜎, 𝑡) if JbK (𝜎) = tt

JqK (𝜎, 𝑡) if JbK (𝜎) = ff

0 otherwise

Jp ; qK = JqK★ · JpK

Jwhile b do pK = lfp

©­­«𝑘 ↦→ (𝜎, 𝑡) ↦→

𝑘★ · JpK (𝜎, 𝑡) if JbK (𝜎) = tt

1 · (𝜎, 𝑡) if JbK (𝜎) = ff

0 otherwise

ª®®¬
Figure 9: Denotational semantics

which crucially relies on two related properties. First, the fact that

every continuous map 𝜙 : R𝑛 × R≥0 → R𝑛
is measurable as a map

𝐵(𝜙) : 𝐵(R)𝑛 × 𝐵(R≥0) → 𝐵(R)𝑛 (which we commented on in

the last section). Second, by an analogous reasoning, the fact that

the subtraction R ×Meas R → R map is measurable. This entails in

particular that the strictly greater relation (>) is measurable as a

functionR×MeasR → 1+1, by virtue of (−∞, 0) being a measurable

subset of R. Next, observe our slight abuse of notation in 𝜎 [x𝑖 ↦→ 𝜆]
which abbreviates the product measure,

1 · 𝜎 (x1) ⊗ . . . ⊗ 1 · 𝜎 (x𝑖−1) ⊗ 𝜆 ⊗ 1 · 𝜎 (x𝑖+1) ⊗ . . . ⊗ 1 · 𝜎 (x𝑛)
where 𝜆 is the uniform distribution on [0, 1]. Finally the last clause

interprets while-loops via Kleene’s least fixpoint construction. The

fact that the map from which we take the least fixpoint is Scott-

continuous follows straightforwardly from our previous observa-

tions and in particular Equation (1).

The section’s remainder is devoted to proving adequacy of our

denotational semantics w.r.t. the operational counterpart that was

described in Section 2. In order to achieve this – and following

the same steps as [24] – we will recur to an auxiliary semantics,

which reframes our operational semantics as a measurable map.

We will see that such is necessary in order to sensibly extend the

input-output relation induced by the operational semantics to a

probabilistic setting – and thus subsequently connect the latter to

the denotational semantics, as intended. Let us thus proceed by

presenting this auxiliary semantics.

We will need some preliminaries. Recall that any object 𝐸 in a

category C with binary coproducts induces a monad 𝐸 + (−). We

take the particular case in which C = Meas and 𝐸 = 1. We then

equip the Kleisli morphisms of this monad with the partial order

that is induced from the notion of a flat domain [12]. It is easy to

see that this order is 𝜔-complete by an appeal to the following

well-known theorem [2, Theorem 4.27].

Theorem 4.1. Consider an increasing sequence of measurable
maps (𝑓𝑖)𝑖∈𝜔 : 𝑋 → 1 + 𝑌 . Their supremum w.r.t. the order of flat
domains is also measurable.

Observe then that for any increasing sequence of measurable

maps (𝑓𝑖)𝑖∈𝜔 : 𝑋 → 1 + 𝑌 we have,

(sup
𝑖∈𝜔

𝑓𝑖)★ = sup

𝑖∈𝜔
𝑓 ★𝑖

thanks to Scott-continuity of co-pairing on its second argument.

Denoting this monad by (−)⊥, observe that its Kleisli category

Meas(−)⊥ is isomorphic to PMeas, i.e. that of measurable spaces

and partial measurable maps. PMeas has binary coproducts by

general categorical results [28]. We then take as the interpretation

domain of our auxiliary semantics the monad 𝐸 + (−) in PMeas
where 𝐸 = R𝑛

. In order to interpret while-loops via this monad,

note that it inherits the 𝜔-complete order of (−)⊥ and furthermore,

(sup
𝑖∈𝜔

𝑓𝑖)★ = sup

𝑖∈𝜔
𝑓 ★𝑖 (2)

The operational semantics in functional form is now presented in

Figure 10. The measurability of each interpretation clause is once

again straightforward to verify, and similarly for the fact that the

map from which we take the least fixpoint is Scott-continuous,

thanks to Equation (2). The symbol ∗ represents undefinedness.

Observe that although the functional version of the big-step seman-

tics and the denotational semantics may look similar, the former

yields a unique final configuration for a given input, whereas the

latter produces a probability distribution over such configurations,

enabling probabilistic interpretations.

Finally, the following theorem establishes the aforementioned

connection between the operational semantics in Figure 7 and the

functional semantics that we have just presented.

Theorem 4.2. Consider a program p, an environment 𝜎 , a time
instant 𝑡 , and an entropy source 𝑠 . Then the following implications
hold:

p ,𝜎 ,𝑡 ,𝑠 ⇓ skip ,𝜎 ′ ,𝑡 ′ ,𝑠′ ⇒ LpM(𝜎, 𝑡, 𝑠) = (𝜎 ′, 𝑡 ′, 𝑠′)
p ,𝜎 ,𝑡 ,𝑠 ⇓ 𝜎 ′ ⇒ LpM(𝜎, 𝑡, 𝑠) = 𝜎 ′

p ,𝜎 ,𝑡 ,𝑠 ⇓ err ⇒ LpM(𝜎, 𝑡, 𝑠) = ∗

An Adequate While-Language for Stochastic Hybrid Computation PPDP’25, September 10–11, 2025, Rende, Italy

Ldiff(e1,...,e𝑛,e)M = (𝜎, 𝑡, 𝑠) ↦→

𝜙 (𝜎, 𝑡) if JeK (𝜎) > 𝑡

(𝜙 (𝜎, JeK (𝜎)), 𝑡 − JeK (𝜎), 𝑠) if 0 ≤ JeK (𝜎) ≤ 𝑡

∗ otherwise

Lx := eM = (𝜎, 𝑡, 𝑠) ↦→
{
(𝜎 [x ↦→ JeK (𝜎)], 𝑡, 𝑠) if JeK (𝜎) is well-defined
∗ otherwise

Lx𝑖 := unif(0,1)M = (𝜎, 𝑡, (ℎ : 𝑠)) ↦→ (𝜎 [x𝑖 ↦→ ℎ], 𝑡, 𝑠)
Lp ; qM = LqM★ · LpM

Lif b then p else qM = (𝜎, 𝑡, 𝑠) ↦→

LpM (𝜎, 𝑡, 𝑠) if JbK (𝜎) = tt

LqM (𝜎, 𝑡, 𝑠) if JbK (𝜎) = ff

∗ otherwise

Lwhile b do pM = lfp

©­­«𝑘 ↦→ (𝜎, 𝑡, 𝑠) ↦→

𝑘★ · LpM (𝜎, 𝑡, 𝑠) if JbK (𝜎) = tt

(𝜎, 𝑡, 𝑠) if JbK (𝜎) = ff

∗ otherwise

ª®®¬
Figure 10: Functional version of the big-step semantics in Figure 7.

Moreover the following implications also hold:

LpM (𝜎, 𝑡, 𝑠) = (𝜎 ′, 𝑡 ′, 𝑠′) ⇒ p ,𝜎 ,𝑡 ,𝑠 ⇓ skip ,𝜎 ′ ,𝑡 ′ ,𝑠′

LpM (𝜎, 𝑡, 𝑠) = 𝜎 ′ ⇒ p ,𝜎 ,𝑡 ,𝑠 ⇓ 𝜎 ′

Proof. The proof is laborious but straightforward. The first

three implications follow by induction over the big-step derivations

trees, a close inspection of Kleisli composition, and the fixpoint

equation concerning while-loops. The last two implications follow

by structural induction of programs, again a close inspection of

Kleisli composition, and the proof that for all 𝑖 ∈ 𝜔 the following

implications hold,

𝑓𝑖 (𝜎, 𝑡, 𝑠) = (𝜎 ′, 𝑡 ′, 𝑠′) ⇒ while b do p ,𝜎 ,𝑡 ,𝑠 ⇓ skip ,𝜎 ′ ,𝑡 ′ ,𝑠′

𝑓𝑖 (𝜎, 𝑡, 𝑠) = 𝜎 ′ ⇒ while b do p ,𝜎 ,𝑡 ,𝑠 ⇓ 𝜎 ′

where the maps (𝑓𝑖)𝑖∈𝜔 : 𝑋 −⇀ 𝐸 + 𝑋 are the components of the

supremum involved in Kleene’s least fixpoint construction. □

Note that the previous theorem excludes the implication,

LpM (𝜎, 𝑡, 𝑠) = ∗ ⇒ p ,𝜎 ,𝑡 ,𝑠 ⇓ err

This is simply because the equation LpM (𝜎, 𝑡, 𝑠) = ∗ may arise

from divergence (and not necessarily from an evaluation error)

which the operational semantics cannot track. On the other hand,

the theorem entails that if LpM (𝜎, 𝑡, 𝑠) = ∗ and the operational

semantics evaluates the tuple p ,𝜎 ,𝑡 ,𝑠 to a value then this value is

necessarily err .
We are now ready to extend the auxiliary semantics L−M to a

probabilistic setting. Such hinges on the fact that the pushforward

measure construction (−)★ is functorial on partial measurable maps.

This yields the composite functor,

PMeas𝐸
(−)★

// PMeas
(−)★ // Meas

where PMeas𝐸 is the Kleisli category of the monad 𝐸+(−) in PMeas
and (−)★ is the respective Kleisli extension. More concretely we

obtain the inference rule,

𝑓 : 𝑋 −⇀ 𝐸 + 𝑌

(𝑓 ★)★ : G(𝐸 + 𝑋) → G(𝐸 + 𝑌)

which, intuitively, entails that for any LpM the function (LpM★)★
moves probability masses of the measure given as input according

to the operational semantics. This is analogous to what happens

with the denotational semantics; and our adequacy theorem will

render such analogy precise.

We are ready to formulate our adequacy theorem. In order to

keep notation simple wewill abbreviate the spaceR𝑛×R≥0 to𝑋 and,

as before, the spaceR𝑛
to 𝐸. Note that anymeasure 𝜇 ∈ G(𝐸+𝑋) can

be decomposed into 𝜇 |𝐸 ∈ G(𝐸) and 𝜇 |𝑋 ∈ G(𝑋), where 𝜇 |𝐸 (𝑈) =
𝜇 (𝑈 + ∅) for all measurable subsets 𝑈 ⊆ 𝐸 and analogously for

𝜇 |𝑋 . These restriction operations are linear, commute with suprema,

and furthermore 𝜇 = inl★(𝜇 |𝐸) + inr★(𝜇 |𝑋). We will often abuse

notation and elide the left and right injections in the previous

measure decomposition.

Theorem 4.3 (Adeqacy). Consider a program p and let 𝜆 be the
uniform distribution on [0, 1]. For any measure 𝜇 ∈ G(𝐸 + 𝑋), the
following equation holds.

(LpM★)★
(
𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔

)
= JpK★ (𝜇) |𝐸 + JpK★ (𝜇) |𝑋 ⊗ 𝜆𝜔

In particular the equation below holds for all measurable subsets
𝑈 ⊆ 𝐸 and 𝑉 ⊆ 𝑋 .

(LpM★)★
(
𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔

)
(𝑈 +𝑉 × [0, 1]𝜔) = JpK★ (𝜇) (𝑈 +𝑉)

Proof. The proof is obtained via structural induction. The base

cases follow straightforwardly although laborious. The case of

sequential composition also follows straightfowardly, thanks to

the functorial laws and the Kleisli extension laws. We then focus on

the case of conditionals. We will need to decompose the measure

𝜇 in the cases that it satisfies and does not satisfy b: i.e. we will
denote 𝜇 (∅ + JbK ∩ −) by 𝜈 and 𝜇 (∅ + JbK ∩ −) by 𝜌 , where slightly

PPDP’25, September 10–11, 2025, Rende, Italy Neves et al.

overloading of notation we set JbK = {(𝜎, 𝑡) ∈ 𝑋 | JbK (𝜎) = tt}.
Then,

(Lif b then p else qM★)★
(
𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔

)
=

{
𝜇 |𝑋 = (𝜈 + 𝜌) |𝑋

}
(Lif b then p else qM★)★

(
𝜇 |𝐸 + (𝜈 + 𝜌) |𝑋 ⊗ 𝜆⊗𝜔

)
=

{
Addition of measures distributes over tensor

}
(Lif b then p else qM★)★

(
𝜇 |𝐸 + 𝜈 |𝑋 ⊗ 𝜆⊗𝜔 + 𝜌 |𝑋 ⊗ 𝜆⊗𝜔

)
=

{
Linearity + Semantics definition

}
𝜇 |𝐸 + (LpM★)★

(
𝜈 |𝑋 ⊗ 𝜆⊗𝜔

)
+ (LqM★)★

(
𝜌 |𝑋 ⊗ 𝜆⊗𝜔

)
=

{
Induction hypothesis

}
𝜇 |𝐸 + JpK★ (𝜈) |𝐸 + JpK★ (𝜈) |𝑋 ⊗ 𝜆⊗𝜔 + JqK★ (𝜌) |𝐸 + JqK★ (𝜌) |𝑋 ⊗ 𝜆⊗𝜔

=
{
Addition of measures distributes over tensor

}
𝜇 |𝐸 + (JpK★ (𝜈) + JqK★ (𝜌)) |𝐸 + (JpK★ (𝜈) + JqK★ (𝜌)) |𝑋 ⊗ 𝜆⊗𝜔

=
{
Semantics definition

}
Jif b then p else qK★ (𝜇) |𝐸 + (JpK★ (𝜈) + JqK★ (𝜌)) |𝑋 ⊗ 𝜆⊗𝜔

=
{
Semantics definition

}
Jif b then p else qK★ (𝜇) |𝐸 + Jif b then p else qK★ (𝜇) |𝑋 ⊗ 𝜆⊗𝜔

Lastly we focus on the case of while-loops. Thus let (𝑓𝑖)𝑖∈𝜔 be the

family of maps involved in Kleene’s fixpoint construction w.r.t. the

semantics L−M and analogously for (𝑔𝑖)𝑖∈𝜔 and the semantics J−K.
We need to show that for all 𝑖 ∈ 𝜔 ,

(𝑓 ★𝑖)★
(
𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔

)
= 𝑔★𝑖 (𝜇) |𝐸 + 𝑔★𝑖 (𝜇) |𝑋 ⊗ 𝜆𝜔 (3)

This is obtained via induction over the natural numbers. Note that

the reasoning is similar to the case concerning conditionals so we

omit this step. Then,

(Lwhile b do pM★)★(𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔)
=

{
Semantics definition

}
((sup

𝑖∈𝜔
𝑓𝑖)★)★(𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔)

=
{
Equation (2)

}
((sup

𝑖∈𝜔
𝑓 ★𝑖))★(𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔)

=
{
Monotone convergence theorem

}
(sup
𝑖∈𝜔

(𝑓 ★𝑖)★) (𝜇 |𝐸 + 𝜇 |𝑋 ⊗ 𝜆⊗𝜔)

=
{
Equation (3)

}
sup

𝑖∈𝜔
𝑔★𝑖 (𝜇) |𝐸 + 𝑔★𝑖 (𝜇) |𝑋 ⊗ 𝜆⊗𝜔

=
{
Addition commutes with sup. + Tensor distribute over sup.

}
sup

𝑖∈𝜔
𝑔★𝑖 (𝜇) |𝐸 +

(
sup

𝑖∈𝜔
𝑔★𝑖 (𝜇) |𝑋

)
⊗ 𝜆⊗𝜔

=
{
Equation (1) + Semantics definition

}
Jwhile b do pK★ (𝜇) |𝐸 + Jwhile b do pK★ (𝜇) |𝑋 ⊗ 𝜆⊗𝜔

□

5 Conclusions and future work
This paper provides a basis towards a programming framework of

stochastic hybrid systems. It is rooted not only on an operational

semantics, which we used in the implementation of an interpreter,

but also on a compositional, measure-theoretic counterpart, with

which one can formally reason about program equivalence and

approximating behaviour, among other things. These contributions

open up several interesting research lines. We briefly detail next

the ones we are currently exploring.

First, the fact that we committed ourselves to a denotational

semantics based on monads will now allow us to capitalise on the

more general, extensive theory of monad-based program semantics.

This includes for example the extension of our semantics with

additional computational effects [28], with higher-order features

and different evaluation mechanisms [22, 25], and corresponding

logics as well as predicate transformer perspectives [15, 18]. We

are already working on the last two topics [15, 18], for not only

they potentially offer a complementary tool in our framework of

stochastic hybrid programs they would also facilitate a more natural

connection between our work and previous results on deductive

verification of stochastic hybrid systems [33, 34].

Second, recall from Section 3 and Section 4 that in our semantics

program denotations are contractive operatorsG(𝐸+𝑋) → G(𝐸+𝑋).
Thus following the observations in [6, 7], such forms the basis of a

corresponding theory of metric program equivalence. Concretely,

instead of comparing two program denotations in terms of equality
we are able to systematically compare them in terms of distances. In

the setting of stochastic hybrid programming this is a much more

desirable approach, as in practice it is unrealistic to expect that

two programs match their outputs with exact precision. Not only

this, reasoning about program distances is extremely important for

computationally simulating such programs, since we are limited

to certain finite precision aspects and thus can frequently only

approximate idealised behaviours.

The works [6, 7] can inclusively be used as basis for a deductive

metric equational system w.r.t. our programming language. Very

briefly, the corresponding metric 𝑑 (−,=) would be induced by the

operator norm in conjunction with the total variation norm (both

are detailed in Section 3). Then [6, 7] would lead us on the analysis

of how the different program constructs interact with this metric.

For example, it is immediate from the op. cit. that for any programs,

p, p' and q, q', the following rule holds:

𝑑 (JpK , Jp'K) ≤ 𝜖1 𝑑 (JqK , Jq'K) ≤ 𝜖2

𝑑 (Jp ; qK , Jp' ; q'K) ≤ 𝜖1 + 𝜖2

We leave a full acount of such a metric equational system to future

work.

Acknowledgments
This work is financed by National Funds through FCT - Fundação

para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Sci-

ence and Technology) within the project IBEX, with reference

10.54499/PTDC/CCI-COM/4280/2021. This work is also supported

by the CISTER Research Unit (UIDP/UIDB/04234/2020), financed

by National Funds through FCT/MCTES (Portuguese Foundation

for Science and Technology).

An Adequate While-Language for Stochastic Hybrid Computation PPDP’25, September 10–11, 2025, Rende, Italy

References
[1] Jiří Adámek, Horst Herrlich, and George E. Strecker. 2009. Abstract and Concrete

Categories - The Joy of Cats. Dover Publications.
[2] Charalambos D. Aliprantis and Kim C. Border. 2006. Infinite Dimensional Analysis:

a Hitchhiker’s Guide. Springer. doi:10.1007/3-540-29587-9
[3] Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. 2020. Foundations of

probabilistic programming. Cambridge University Press.

[4] Ryan Culpepper and AndrewCobb. 2017. Contextual equivalence for probabilistic

programs with continuous random variables and scoring. In European Symposium
on Programming. Springer, 368–392.

[5] Fredrik Dahlqvist and Dexter Kozen. 2019. Semantics of higher-order probabilistic

programs with conditioning. Proceedings of the ACM on Programming Languages
4, POPL (2019), 1–29.

[6] Fredrik Dahlqvist and Renato Neves. 2023. A complete V-equational system for

graded lambda-calculus. Electronic Notes in Theoretical Informatics and Computer
Science 3 (2023).

[7] Fredrik Dahlqvist and Renato Neves. 2023. The syntactic side of autonomous

categories enriched over generalised metric spaces. Logical Methods in Computer
Science 19 (2023).

[8] Luc Devroye. 1986. Non-Uniform Random Variate Generation. Springer-Verlag.
[9] R. M. Dudley. 2002. Real Analysis and Probability (2 ed.). Cambridge University

Press. doi:10.1017/CBO9780511755347

[10] Richard M Dudley. 2018. Real analysis and probability. Chapman and Hall/CRC.

[11] Albert Einstein. 1905. Über die von der molekularkinetischen Theorie der Wärme

geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.

Annalen der physik 4 (1905).

[12] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson,

Michael W. Mislove, and Dana S. Scott. 1980. A compendium of continuous
lattices. Springer-Verlag, Berlin. xx + 371 pages.

[13] Michèle Giry. 1982. A categorical approach to probability theory. In Categorical
Aspects of Topology and Analysis, B. Banaschewski (Ed.). Lecture Notes in Mathe-

matics, Vol. 915. Springer Berlin Heidelberg, 68–85. doi:10.1007/BFb0092872

[14] Sergey Goncharov, Renato Neves, and José Proença. 2020. Implementing Hybrid

Semantics: From Functional to Imperative. In Theoretical Aspects of Comput-
ing - ICTAC 2020 - 17th International Colloquium, Macau, China, November 30
- December 4, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12545),
Violet Ka I Pun, Volker Stolz, and Adenilso Simão (Eds.). Springer, 262–282.

doi:10.1007/978-3-030-64276-1_14

[15] Sergey Goncharov and Lutz Schröder. 2013. A relatively complete generic Hoare

logic for order-enriched effects. In 2013 28th Annual ACM/IEEE Symposium on
Logic in Computer Science. IEEE, 273–282.

[16] Jean Goubault-Larrecq. 2013. Non-Hausdorff topology and domain theory: Selected
topics in point-set topology. Vol. 22. Cambridge University Press.

[17] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A conve-

nient category for higher-order probability theory. In 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). IEEE, 1–12.

[18] Wataru Hino, Hiroki Kobayashi, Ichiro Hasuo, and Bart Jacobs. 2016. Healthiness

from Duality. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (New York, NY, USA) (LICS ’16). Association for Computing

Machinery, New York, NY, USA, 682–691. doi:10.1145/2933575.2935319

[19] Dirk Hofmann, Gavin J Seal, and Walter Tholen. 2014. Monoidal Topology:
A Categorical Approach to Order, Metric, and Topology. Vol. 153. Cambridge

University Press.

[20] Peter Höfner. 2009. Algebraic calculi for hybrid systems. Ph. D. Dissertation.

University of Augsburg.

[21] Peter Höfner and Bernhard Möller. 2011. Fixing Zeno gaps. Theoretical Computer
Science 412, 28 (2011), 3303 – 3322. Festschrift in Honour of Jan Bergstra.

[22] GA Kavvos. 2025. Adequacy for Algebraic Effects Revisited. Proceedings of the
ACM on Programming Languages 9, OOPSLA1 (2025), 927–955.

[23] J. Klafter and I.M. Sokolov. 2011. Continuous-time random walks. In First
Steps in Random Walks: From Tools to Applications. Oxford University Press.

doi:10.1093/acprof:oso/9780199234868.003.0003

[24] Dexter Kozen. 1979. Semantics of probabilistic programs. In 20th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1979). IEEE, 101–114.

[25] Paul Blain Levy. 2022. Call-by-push-value. ACM SIGLOG News 9, 2 (2022), 7–29.
doi:10.1145/3537668.3537670

[26] Saunders Mac Lane. 1998. Categories for the working mathematician. Vol. 5.
springer.

[27] Pedro Mendes, Ricardo Correia, Renato Neves, and José Proença. 2024. Formal

Simulation and Visualisation of Hybrid Programs. In Proceedings Sixth Interna-
tional Workshop on Formal Methods for Autonomous Systems, FMAS@iFM 2024,
Manchester, UK, 11th and 12th of November 2024 (EPTCS, Vol. 411), Matt Luckcuck

and Mengwei Xu (Eds.). 20–37. doi:10.4204/EPTCS.411.2

[28] Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceed-
ings of the Fourth Annual Symposium on Logic in Computer Science (LICS ’89),
Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 14–23.

[29] Eugenio Moggi. 1991. Notions of computation and monads. Information and
computation 93, 1 (1991), 55–92.

[30] Renato Neves. 2018. Hybrid programs. Ph. D. Dissertation. University of Minho.

https://repositorium.sdum.uminho.pt/handle/1822/56808

[31] Prakash Panangaden. 1999. The category of Markov kernels. Electronic Notes in
Theoretical Computer Science 22 (1999), 171–187.

[32] Prakash Panangaden. 2009. Labelled Markov Processes. Imperial College Press.

[33] Yu Peng, Shuling Wang, Naijun Zhan, and Lijun Zhang. 2015. Extending hybrid

CSP with probability and stochasticity. In Dependable Software Engineering: The-
ories, Tools, and Applications: First International Symposium, SETTA 2015, Nanjing,
China, November 4-6, 2015, Proceedings 1. Springer, 87–102.

[34] André Platzer. 2011. Stochastic differential dynamic logic for stochastic hybrid

programs. In International Conference on Automated Deduction. Springer, 446–460.
[35] André Platzer. 2018. Logical foundations of cyber-physical systems. Vol. 662.

Springer.

[36] John C Reynolds. 1998. Theories of programming languages. Cambridge University

Press. doi:10.1017/CBO9780511626364

[37] Tetsuya Sato. 2018. The Giry monad is not strong for the canonical symmetric

monoidal closed structure on Meas. Journal of Pure and Applied Algebra 222, 10
(2018), 2888–2896.

[38] Glynn Winskel. 1993. The formal semantics of programming languages - an
introduction. MIT Press. doi:10.7551/mitpress/3054.001.0001

https://doi.org/10.1007/3-540-29587-9
https://doi.org/10.1017/CBO9780511755347
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1145/2933575.2935319
https://doi.org/10.1093/acprof:oso/9780199234868.003.0003
https://doi.org/10.1145/3537668.3537670
https://doi.org/10.4204/EPTCS.411.2
https://repositorium.sdum.uminho.pt/handle/1822/56808
https://doi.org/10.1017/CBO9780511626364
https://doi.org/10.7551/mitpress/3054.001.0001

	Abstract
	1 Introduction
	2 The language and its operational semantics
	3 Measure theory
	4 Denotational semantics
	5 Conclusions and future work
	Acknowledgments
	References

