
RESEARCH ARTICLE

Secure integration of extremely resource-constrained nodes 

on distributed ROS2 applications [version 1; peer review: 

awaiting peer review]

Giann Spilere Nandi 1, David Pereira 1, José Proença 1, Eduardo Tovar1, 
Antonio Rodriguez2, Pablo Garrido2

1Informatics Engineering, CISTER Research Centre/ISEP, Porto, Porto, 4200-135, Portugal 
2eProsima, Tres Cantos, Madrid, 28760, Spain 

First published: 14 Jul 2023, 3:113  
https://doi.org/10.12688/openreseurope.16108.1
Latest published: 14 Jul 2023, 3:113  
https://doi.org/10.12688/openreseurope.16108.1

v1

 
Abstract 
Background: modern robots employ artificial intelligence algorithms 
in a broad ange of applications. These robots acquire information 
about their surroundings and use these highly-specialized algorithms 
to reason about their next actions. Despite their effectiveness, 
artificial intelligence algorithms are highly susceptible to adversarial 
attacks. This work focuses on mitigating attacks aimed at tampering 
with the communication channel between nodes running micro-ROS, 
which is an adaptation of the Robot Operating System (ROS) for 
extremely resource-constrained devices (usually assigned to collect 
information), and more robust nodes running ROS2, typically in 
charge of executing computationally costly tasks, like processing 
artificial intelligence algorithms. 
Methods: we followed the instructions described in the Data 
Distribution Service for Extremely Resource Constrained 
Environments (DDS-XRCE) specification on how to secure the 
communication between micro-ROS and ROS2 nodes and developed a 
custom communication transport that combines the application 
programming interface (API) provided by eProsima and the 
implementation of the Transport Security Layer version 1.3 (TLS 1.3) 
protocol developed by wolfSSL. 
Results: first, we present the first open-source transport layer based 
on TLS 1.3 to secure the communication between micro-ROS and 
ROS2 nodes, providing initial benchmarks that measure its temporal 
overhead. Second, we demystify how the DDS-XRCE and DDS Security 
specifications interact from a cybersecurity point of view. 
Conclusions: by providing a custom encrypted transport for micro-
ROS and ROS2 applications to communicate, extremely resource-
constrained devices can now participate in DDS environments without 
compromising the security, privacy, and authenticity of their message 
exchanges with ROS2 nodes. Initial benchmarks show that encrypted 

Open Peer Review

Approval Status  AWAITING PEER REVIEW

Any reports and responses or comments on the 

article can be found at the end of the article.

Open Research Europe

 
Page 1 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

https://open-research-europe.ec.europa.eu/articles/3-113/v1
https://open-research-europe.ec.europa.eu/articles/3-113/v1
https://orcid.org/0000-0002-3206-0599
https://orcid.org/0000-0002-7561-6649
https://orcid.org/0000-0003-0971-8919
https://doi.org/10.12688/openreseurope.16108.1
https://doi.org/10.12688/openreseurope.16108.1
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.16108.1&domain=pdf&date_stamp=2023-07-14


Corresponding author: Giann Spilere Nandi (giann@isep.ipp.pt)
Author roles: Spilere Nandi G: Conceptualization, Investigation, Methodology, Software, Writing – Original Draft Preparation, Writing – 
Review & Editing; Pereira D: Conceptualization, Funding Acquisition, Investigation, Project Administration, Supervision, Writing – 
Original Draft Preparation, Writing – Review & Editing; Proença J: Conceptualization, Investigation, Project Administration, Supervision, 
Writing – Original Draft Preparation, Writing – Review & Editing; Tovar E: Funding Acquisition, Project Administration, Supervision; 
Rodriguez A: Conceptualization, Investigation, Software, Validation; Garrido P: Conceptualization, Software, Validation
Competing interests: No competing interests were disclosed.
Grant information: This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No [876852](Verification and Validation of Automated Systems’ Safety and Security [VALU3S]). This work was also 
partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER 
Research Unit (UIDP/UIDB/04234/2020); by project Route 25 (ref. TRB/2022/00061-C645463824-00000063), funded by the EU/Next 
Generation, within call n.º 02/C05-i01/2022 of the Recovery and Resilience Plan (RRP); it was also supported by grant 2022.13599.BD, 
financed by FCT through the European Social Fund (ESF) and the Regional Operational Programme (ROP) Norte 2020; Disclaimer: This 
document reflects only the author’s view and the Commission is not responsible for any use that may be made of the information it 
contains 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2023 Spilere Nandi G et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Spilere Nandi G, Pereira D, Proença J et al. Secure integration of extremely resource-constrained nodes on 
distributed ROS2 applications [version 1; peer review: awaiting peer review] Open Research Europe 2023, 3:113 
https://doi.org/10.12688/openreseurope.16108.1
First published: 14 Jul 2023, 3:113 https://doi.org/10.12688/openreseurope.16108.1 

single-value messages present around 20% time overhead compared 
to the default non-encrypted micro-ROS transport. Finally, we 
presented an analysis of how the DDS-XRCE and DDS Security 
specifications relate to each other, providing insights not present in 
the literature that are crucial for further investigating the security 
characteristics of combining these specifications.

Keywords 
security, ros2, micro-ros, embedded systems, robotics, distributed 
systems, publish-subscribe

 

This article is included in the Electrical, 

Electronic and Information Engineering 

gateway.

Open Research Europe

 
Page 2 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

mailto:giann@isep.ipp.pt
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.16108.1
https://doi.org/10.12688/openreseurope.16108.1
https://open-research-europe.ec.europa.eu/gateways/eei-engineering
https://open-research-europe.ec.europa.eu/gateways/eei-engineering
https://open-research-europe.ec.europa.eu/gateways/eei-engineering


Introduction
Current robotic applications have enhanced their problem-solving  
capabilities by using state-of-the-art artificial intelligence (AI) 
algorithms and distributed computation technologies. Computer  
vision, for example, allows robots to identify objects around 
them and assess what to do next1. Ultra-reliable low-latency 
communication technologies, like 5G, allow the offloading  
of heavy computational tasks to the cloud with little  
to no noticeable delay on data exchanges2. Modern robots, espe-
cially those with higher degrees of autonomy, rely on data 
collected through embedded sensors and external nodes to  
reason about their subsequent actions3. Although this is an 
intricate aspect of endowing robots with autonomous behav-
ior, current literature shows that numerous AI algorithms are  
highly susceptible to adversarial attacks4.

Several methods to disrupt the functioning of AI algorithms 
have been described in the literature5. Among them are those 
aimed at tampering with the algorithms’ input data, which  
may focus on reducing their performance, obtaining spe-
cific outputs, or even halting a system’s execution altogether. 
Because of that, guaranteeing that robots comply with secu-
rity requirements is a growing concern for the future of robotic  
applications6.

With the two current versions of the Robot Operating  
System (ROS/ROS2) being the current de-facto platform for 
robot development7, we focus our efforts on mitigating attacks  
that tamper with the communication channel between ROS2 
and micro-ROS nodes. micro-ROS is a stripped-down ver-
sion of ROS2 that ports core functionalities of the fully-fledged  
version of ROS2 to extremely resource-constrained nodes8. 
While these devices usually sense their environment and per-
form simple computations, more robust nodes running ROS2 
are responsible for dealing with more complex tasks, like the  
timely processing of AI algorithms.

More specifically, we place our work in the context of dis-
tributed ROS2 applications and develop the necessary tools 
to guarantee that nodes running micro-ROS applications can  
securely communicate with nodes running ROS2 applications. 
We accomplish that by mutually authenticating micro-ROS and 
ROS2 nodes and encrypting their communication using a cus-
tom transport based on the well-established security protocol  
Transport Layer Security 1.3 (TLS 1.3)9.

The contribution of this paper is two-fold. First, we present 
the first open-source custom transport based on TLS 1.3 to 
secure the communication between micro-ROS and ROS2. The  
proposed transport is publicly available and allows research-
ers and practitioners to boost the security guarantees of their 
projects, requiring little to no modifications at the application  
level. Initial benchmarks show that our proposed transport, 
compared to the fastest UDP-based transport of micro-ROS, 
increases the round-trip delay of messages by around 2 ms, 
which is remarkably low, considering the additional layer of  
reliability and security that our transport provides.

Second, we demystify how the Data Distribution Service for 
Extremely Resource Constrained Environments (DDS-XRCE)10 

and DDS Security11 specifications, which are the basis of  
micro-ROS and secure ROS2 applications, interact from a 
cybersecurity point of view. We do it by presenting a com-
prehensible model that condenses core details of combining  
both specifications, serving as a reference for applications aim-
ing at end-to-end secure communication between standard  
DDS/ROS2 and micro-ROS nodes.

The remainder of this document is organized as follows: Sec-
tion “Motivating example” presents a use case that will be 
used as a reference throughout this document and illustrates  
the use of AI in the context of distributed robotic applica-
tions. Section “Background” provides background informa-
tion to contextualize our contributions. Section “Proposed work  
and discussion” presents and discusses our contributions. Sec-
tion “Conclusion and future work” presents our concluding 
remarks and the envisioned next steps for this project. Finally, 
section “Data and software availability” points the reader to  
this work’s source-code and benchmark data.

Motivating example
AI has been one of the main drivers of innovation in recent 
years. Its contributions impacted, and continue to impact, sev-
eral research fields and applications, including computer vision,  
robotics, and health12,13. Although efforts towards porting AI 
to extremely resource-constrained devices have been made 
in recent years14, a large portion of these devices are still not  
capable of locally processing complex AI algorithms in an 
acceptable amount of time. One common approach to over-
come this limitation is to minimize the work done on the micro-
controller and offload the more resource-intensive tasks to  
more robust distributed nodes.

To exemplify the above scenario and motivate our work, we 
present a use case inspired by the work of Lourenço15, illus-
trated in Figure 1. The illustrated system consists of four  
entities: C1, R1, D1, and D2. C1 is a wearable device powered 
by an ESP32 microcontroller responsible for collecting elec-
trocardiogram (ECG) signals and transmitting them to a node  
R1 wirelessly. R1 runs on a Raspberry Pi 4 Model B and 
is a component of a service robot designed to help the 
user wearing C1 on daily tasks, monitor the user’s signals  
for any health anomalies, and inform a set of trusted indi-
viduals on the cloud, represented by D1 and D2, about the 
user’s current condition. R1 comprises AI algorithms that  
process the signals collected by C1 to provide:

•    Authentication: by analyzing the user’s ECG signals, R1 
can authenticate and validate the user’s identity. This rela-
tion between heart-beat signals and one’s identity comes  
from the individual properties associated with every per-
son’s heart’s unique behavior, analogous to what is done  
with fingerprints and facial details15.

•    Health Monitoring: although unique to every person, 
ECG signals share common traits that could indicate  
various body conditions, including heart anomalies, levels  
of fatigue, and emotional distress16.

While there are several commercial solutions to secure the 
communication among R1 , D1, and D2, no work in the  
literature, as far as we are concerned, proposes a secure  

Page 3 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023



open-source transport for C1 and R1 to communicate. By  
leaving the channel between C1 and R1 exposed, potential  
vulnerabilities can be exploited to affect nodes D1 and D2.  
To address it, we propose a custom transport layer for C1  
and R1 to communicate securely.

Background
This section provides the necessary background informa-
tion for the reader to understand this paper’s contribution. It 
is divided into three subsections, each representing one of  
the core subjects of this work.

ROS2 and DDS
By providing tools that considerably accelerate the implemen-
tation of robotic applications, combined with the immense  
amount of academic work surrounding it, ROS/ROS21 estab-
lished itself as the de-facto framework for robotic software 
development. Despite the name, ROS is a framework that sits 
on top of traditional operating systems and provides develop-
ers with a set of software libraries and tools for building robot  
applications.

More than a decade after its initial release, ROS is currently 
going through a redesign, under the name of ROS217, to sup-
port the new generation of distributed robotic applications. This  
section briefly introduces ROS2 and its underlying commu-
nication middleware, the data distribution service (DDS). 
ROS2 follows up on the good facets that made ROS a mas-
sive success while also redesigning its core to suit the  
needs of modern real-time systems and industrial applica-
tions. Among the many changes between ROS and ROS2 is  
the adoption of DDS as the default communication middleware.

DDS is a machine-to-machine communication specification 
designed and maintained by the Object Management Group 
(OMG), based on the publish-subscribe communication pattern.  

Although relatively unknown, DDS is used in several  
applications2 and is the foundation of industry standards 
like the automotive AUTOSAR.3 DDS differs from other  
publish-subscribe protocols like MQTT4 and ZeroMQ5 by 
being data-centric and having an extensive quality of service  
control over its transmitted data. In DDS, participants show 
interest in data abstracted in the form of topics by subscribing  
to them (i.e., wanting to receive updates about it) and  
publishing on them (i.e., sending updates).

Data exchanges in DDS follow a peer-to-peer approach, 
which avoids the typical central point of failure present in bro-
kered solutions. On top of increasing the system’s fault toler-
ance, peer-to-peer communications exhibit high-performance 
and low latency, as no intermediate entity is needed for two  
entities to communicate.

micro-ROS
When considering the importance of microcontrollers in robot-
ics, supporting their integration on ROS2 applications is  
another crucial step towards simplifying the design of distrib-
uted applications. As a result of a European initiative6, micro-
ROS is a framework that provides seamless integration between  
ROS2 nodes and microcontrollers by porting core functionalities  
of ROS2 to a lightweight format.

While it is true that ROS2 can run on single-board comput-
ers like the Raspberry Pi 4 (Quad-core Cortex-A72 with up 
to 8GB of RAM), its fully-fledged version certainly cannot  
be ported to extremely resource-constrained boards7, like the 
Espressif ESP32 (ultra-low power dual-core Xtensa LX6 with 
520kB of RAM) or the Raspberry Pi Pico (Dual-core Arm  
Cortex-M0+ with 264kB of RAM). Designed to comply with 
these constraints, micro-ROS needs no more than a few kilo-
bytes of RAM and can be incorporated in applications based 
on bare-metal and lightweight real-time operating systems  
(e.g., NuttX8, FreeRTOS9, Zephyr10).

Like in ROS2, micro-ROS adopts concepts used in stand-
ard DDS communications but adapts them to microcontrol-
lers’ harsh working conditions. Most of these adaptations are 
described in the DDS-XRCE, designed to allow microcontrollers 

1https://docs.ros.org

Figure 1. Node C1 collects electrocardiogram signals and 
transmit them to R1 over a non-secure channel. R1 is 
responsible for processing it and forwarding the results to a set 
of trusted nodes in the cloud, represented by D1 and D2. Where  
RPi = Rasberry Pi and DDS = Data distribution service.

2https://www.dds-foundation.org

3https://www.autosar.org

4https://mqtt.org

5https://zeromq.org

6http://www.ofera.eu

7https://docs.ros.org/en/iron/Installation.html

8https://nuttx.apache.org

9https://www.freertos.org

10https://www.zephyrproject.org

Page 4 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

https://docs.ros.org
https://www.dds-foundation.org
https://www.autosar.org
https://mqtt.org
https://zeromq.org
http://www.ofera.eu
https://docs.ros.org/en/iron/Installation.html
https://nuttx.apache.org
https://www.freertos.org
https://www.zephyrproject.org


to communicate in a DDS domain similarly to how a  
ROS2 node would.

The DDS-XRCE protocol relies on two core entities: the 
XRCE-Client and the XRCE-Agent18. The XRCE-Client lives 
in the microcontroller and, through an XRCE-Agent, can  
participate in DDS networks by publishing on and subscrib-
ing to topics. The XRCE-Agent lives on a ROS2 node and acts 
on the XRCE-Client’s behalf. Through message exchanges, 
XRCE-Clients request XRCE-Agents to perform operations,  
and XRCE-Agents reply with the result of the said operation. 
We may refer to XRCE-Clients as Clients and XRCE-Agents  
as Agents for brevity reasons.

Clients have a pre-defined number of operations they can 
request an agent to perform. Among these are the operations 
designed to create DDS entities, which are at the center of  
this work’s contribution. A DDS Entity is the base class for 
many of the objects that are part of the publish-subscribe 
scheme of DDS. Below, we succinctly describe some of the  
entities a client can request an agent to create11:

•    Topic: the main data abstraction used in publish-subscribe  
communication schemes. DomainParticipants can  
publish on a topic or subscribe to a topic. Every time  
a DomainParticipant publishes data on a topic, all  
Domain-Participants who subscribe to it should receive it;

•    Publisher: the Entity that holds a set of DataWriters, 
which is the entity responsible for publishing data on  
a topic (publishes data on multiple topics);

•    Subscriber: the entity that holds a set of DataReaders, 
which is the entity responsible for reading data published  
on a topic (reads data from multiple topics);

•    DomainParticipant: the entity responsible for encap-
sulating a set of Publishers and Subscribers in a DDS 
domain. A domain is a conceptual representation of the 
system. Entities in a Domain can only communicate  
with other entities in the same domain.

By requesting the creation of a DomainParticipant, a client 
can participate on a DDS domain similarly to how other ROS2 
nodes do. The key difference is that while a client depends 
on an agent to host its DomainParticipant, a standard ROS2  
node can do it by itself.

Cyber threats and artificial intelligence algorithms
Despite its effectiveness in problem-solving, AI algorithms 
have shown to be highly susceptible to numerous sorts of adver-
sarial attacks. These attacks range from tampering with the  
source of information to altering the algorithm itself5. These 
attacks can impact a targeted system in different ways, includ-
ing confidence decline, intended misclassification, or even 
completely halting computation altogether. We use this  

section to motivate the use of security mechanisms in distrib-
uted robotic applications by exemplifying the possible damage  
caused by successful cyber attacks.

Let us point back to the use case presented in “Motivating 
example”. Figure 2 illustrates a scenario where a malicious par-
ticipant M controls the communication channel used by C1  
and R1. If C1 were to transmit heartbeat signals in the 
form of plain text in this insecure channel, M could directly 
breach security properties like secrecy, privacy, and data  
integrity.

Starting with secrecy, by knowing that R1 uses personal 
ECG signals to validate the identity of its users, M could per-
form an identity theft attack by playing back to R1 signals it  
eavesdropped from previous message exchanges. This attack 
would lead to R1 incorrectly authenticating M as a legitimate 
individual, allowing M to perform actions under a user’s identity  
and potentially further impact the functioning of R1.

Regarding data integrity, M could tamper with the data trans-
mitted to R1 and disrupt the expected behavior of its AI  
algorithms. For instance, M could manipulate the ECG signals  
and misclassify a healthy heart behavior as abnormal or 
lead a genuine heart attack to be misclassified as a healthy 
heart behavior. Data could also be tampered with to reduce 
the accuracy of an algorithm’s output, leading R1 to behave 
unpredictably, reducing the trust levels of those using  
it. When it comes to privacy, M could eavesdrop on sensitive 
health information, leading to the disclosing of a user’s health 
condition. Such data disclosures could be especially trouble-
some for users who depend on regular medicine ingestion,  
as ill-intentioned individuals could threaten one’s safety.

Proposed work and discussion
To address the above issues, we propose an open-source cus-
tom transport communication layer that secures the commu-
nication between micro-ROS and ROS2 nodes and complies  
with the DDS-XRCE specification.

Implementing the custom transport
Our work consists of integrating an encryption protocol into  
a custom communication transport for XRCE-Clients and 
XRCE-Agents, providing guarantees of secrecy, privacy, and 
integrity for their message exchanges while still complying 
with the DDS-XRCE specification10. More specifically, our  
work combines the lightweight TLS 1.3 library developed 
and maintained by wolfSSL12 and the application program-
ming interface (API)13 provided by eProsima for implement-
ing of custom transports for micro-ROS nodes. Although TLS  
1.3 is still not as popular as its predecessor, it offers superior 
security guarantees and significant performance improvements  
compared to previous versions19.

11Please refer to the DDS-XRCE specification for more details10

12https://www.wolfssl.com

13https://micro.ros.org/docs/tutorials/advanced/create_custom_transports/

Page 5 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

https://www.wolfssl.com
https://micro.ros.org/docs/tutorials/advanced/create_custom_transports/


Figure 2. A malicious participant M intercepting plain text 
messages exchanged between C1 and R1.

Custom transports for micro-ROS consist of developing a set 
of four functions for the micro-ROS client (developed in C20) 
and four functions for the micro-ROS agent (developed in  
C++21). For the sake of better readability, we omit the func-
tion parameters and return types of the functions. On the  
client’s side, we developed the following functions:

•    ct_tls_open: this function is the starting point of the 
custom transport. It establishes a Transmission Control 
Protocol (TCP) connection with the agent and executes  
the handshake protocol described in the TLS 1.3  
specification. Although unusual for the majority of TLS 
1.3 applications, we enforce that the client authenticates 
the agent, and that the agent authenticates the client, fur-
ther strengthening the security guarantees. To do so, it 
uses a set of keys and certificates that should be pro-
vided by the user and stored in the transport’s assigned  
folder14;

•    ct_tls_write: once the handshake has been per-
formed and a mutual encryption key for the agent and the 
client has been established, this function is responsible  
writing messages in the transport. In the context of this 
work, writing means encrypting messages using the  
shared secret derived from the handshake and sending it  
to the appropriate recipient;

•    ct_tls_read: similarly to the write function, the 
read function uses the agreed encryption key to deci-
pher the messages received in the transport. It is impor-
tant to clarify that our transport encrypts not only the  
publishing and subscribing messages, but all data com-
municated between the client and the agent after the  
successful handshake;

•    ct_tls_close: finally, this funtion* terminates the 
transport communication by closing the socket previously  
created for the transport.

Analogously, the agent also implements the following set of  
functions:

•    init_function: this functions accepts connections from  
clients and performs the handshake protocol described  
in the TLS 1.3 specification;

•    send_msg_function: just like in the client’s side, 
this function encrypts data using the common shared key 
derived from the handshake process and sends data on  
the communication channel;

•    recv_msg_function: similarly to the client’s read 
function, this function deciphers messages coming from  
clients using the respective agreed key;

•    fini_function: closes the connection and frees any 
allocated memory used during the message exchanges.

Although not necessarily related to the transport itself, it 
is important to highlight the roles that clients and agents 
play in the communication process. While the client runs an  
application responsible for subscribing to topics and publish-
ing on topics, the agent’s main job is to forward such mes-
sages between the various participants of a DDS domain. We  
point the reader to the “Software availability” section22 of this 
document for the complete source code for both the client  
and the agent transports.

Benchmarks
Enhancing systems with security mechanisms inevitably incurs 
overheads of some kind. Quantifying such overheads is espe-
cially relevant in the case of microcontrollers, where com-
putational resources are extremely scarce. As an initial effort  
to evaluate the impact of our custom transport, we benchmarked 
a ping-pong application to calculate a message’s round-trip delay 
(RTD).

In the context of micro-ROS, a ping-pong application means 
having a micro-ROS node publishing messages on a topic 
it also subscribes to. Pointing back to our use case and  
considering that C1 publishes on a topic T1, our experi-
ment consists of: C1 sending a message msg

i
 , related to topic 

T1, to agent AG; AG processing msg
i
 and disseminating it  

to all nodes subscribing to T1; C1 receiving msg
i
 back as 

a result of being subscribed to T1. The source-code for the 
ping-pong application is available in the “Data and software  
availability” section22 of this document.

To obtain an estimate of the average and minimum RTD 
achieved by our custom transport, we evaluated the RTD of 
4500 sequential messages containing a single incremental value,  
equally split into 10 runs of the same experiment. More spe-
cifically, in each of the 10 experiments, messages contain-
ing the message’s index were sent, i.e., 1 for the first message,  
450 for the last message. We then compared these measure-
ments to the results obtained by performing the same 10 
runs of the experiment using the fastest standard transport of  
micro-ROS (best-effort UDP), which comes by default with  
every micro-ROS application15.

14https://bitbucket.org/mars-language/micro_ros_tls13/src/master/certs

15https://micro.ros.org/docs/tutorials/advanced/microxrcedds_rmw_
configuration/

Page 6 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

https://bitbucket.org/mars-language/micro_ros_client_tls13/src/540ec55215b1b2b55c2d65cea90c9a2ba1b3d95a/main/tls_transport.c#lines-32
https://bitbucket.org/mars-language/micro_ros_client_tls13/src/540ec55215b1b2b55c2d65cea90c9a2ba1b3d95a/main/tls_transport.c#lines-147
https://bitbucket.org/mars-language/micro_ros_client_tls13/src/540ec55215b1b2b55c2d65cea90c9a2ba1b3d95a/main/tls_transport.c#lines-167
https://bitbucket.org/mars-language/micro_ros_client_tls13/src/540ec55215b1b2b55c2d65cea90c9a2ba1b3d95a/main/tls_transport.c#lines-138
https://bitbucket.org/mars-language/micro_ros_agent_tls13/src/92825303f1f0a64422a14145a7eda1d49509038a/custom_agent.cpp#lines-53
https://bitbucket.org/mars-language/micro_ros_agent_tls13/src/92825303f1f0a64422a14145a7eda1d49509038a/custom_agent.cpp#lines-183
https://bitbucket.org/mars-language/micro_ros_agent_tls13/src/92825303f1f0a64422a14145a7eda1d49509038a/custom_agent.cpp#lines-141
https://bitbucket.org/mars-language/micro_ros_agent_tls13/src/92825303f1f0a64422a14145a7eda1d49509038a/custom_agent.cpp#lines-135
https://bitbucket.org/mars-language/micro_ros_tls13/src/master/certs
https://micro.ros.org/docs/tutorials/advanced/microxrcedds_rmw_configuration/
https://micro.ros.org/docs/tutorials/advanced/microxrcedds_rmw_configuration/


Figure 3 illustrates the well-controlled setup used to obtain 
the 9000 RTD values resulting from the above-mentioned 
experiments (4500 UDP + 4500 custom transport). This setup  
comprises three entities, a micro-ROS node C1 running on an 
ESP32, a router that intermediates the communication between 
C1 and R1, and a ROS2 node R1 hosting a micro-ROS agent 
running on a Ubuntu desktop16. While C1 communicates  
wirelessly with the router, R1 and the router exchange mes-
sages using ethernet. Setup I illustrates the UDP transport setup 
for micro-ROS15, and Setup II represents our custom trans-
port, which has an underlying TCP protocol powering the  
TLS 1.3 security protocol and follows the encryption steps  
explained in the subsection above.

Figure 4 represents our analysis of the collected data. To cal-
culate the average RTD of each transport, we averaged their 
10 samples of the 450 messages sent in each run. Similarly, 
we calculated the transports’ minimum RTD by picking the 
minimum value among the 10 samples of each of the 450  
messages published by C1.

Our results show that we can obtain RTDs as low as 10 ms 
using our custom transport, which is only 2 ms longer than 
the minimum RTD value obtained with the best-effort UDP  
transport. This difference is remarkably low, especially when 
considering that our transport provides data delivery guaran-
tees (given by TCP) and needs to perform four encryption/ 
decryption operations (illustrated in Figure 3): i) C1 encrypts 

and sends the mesage; ii) R1 receives and deciphers the mes-
sage; iii) R1 encrypts and sends the message back; iv) C1 
receives and deciphers the returning message. The averaged  
RTD values followed a similar trend, with the UDP val-
ues being mainly in the range of 10 to 12 ms, while our cus-
tom transport obtained RTDs predominantly between 12 and  
14 ms23.

Combining the DDS-XRCE and DDS security 
specifications
The DDS-XRCE and DDS security specifications extensively 
describe how applications implementing them should behave 
in their respective contexts. Contrastingly, their combination  
is not clearly documented in the literature and leaves room 
for questions only answerable by those with extensive knowl-
edge of their specification and implementation levels. From a 
cybersecurity point of view, this lack of material addressing  
the relationship between both specifications makes it chal-
lenging to assess how systems built around them are affected  
by cyber threats.

This section demystifies how these specifications relate by 
explaining their interaction and presenting a conceptual 
model that abstracts and condenses practical aspects of their  
implementation. To achieve that, we further detail the behav-
ior of XRCE-Clients and XRCE-Agents in a DDS domain 
that supports the Authentication and Access Control plugins  
described in the DDS security specification11.

Authentication
Aiming at protecting DDS domains from malicious par-
ticipants, the DDS security specification requires every  

Figure 3. Two benchmark setups evaluate the round-trip delay of a message published on Topic T1 to return to node C1, 
which is subscribing to T1. Measurement Setup I uses an unprotected channel to communicate over User Datagram Protocol (UDP). 
Measurement Setup II uses our custom transport based on the Transport Security Layer 1.3 (TLS 1.3) over Transmission Control Protocol 
(TCP) and performs four additional security-related actions.

16https://ubuntu.com/download/desktop

Page 7 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

https://ubuntu.com/download/desktop


Figure 4. Histogram presenting benchmarks obtained from 
a best-effort User Datagram Protocol (UDP) transport and a 
Transport Layer Security version 1.3 (TLS 1.3) transport. Values 
for average and minimum round-trip delays are presented.

DomainParticipant to go through an authentication process11. 
Successful authentications depend on a set of certificates and  
public/private keys.17

Although these files are mandatory for every DomainPartici-
pant authenticating on a DDS domain, clients are not required 
to possess them to request the creation of DomainParticipants  
on their behalf. In fact, the DDS-XRCE specification refrains 
from describing any security-related functions and configura-
tions of XRCE-Clients. Nonetheless, not having these files 
does not exempt DomainParticipants associated with XRCE- 
Clients from authenticating on DDS domains.

Like other computationally costly tasks, the authentication 
of DomainParticipants is delegated to XRCE-Agents. To 
understand how this process happens, let us take a step back  
and first address the creation of a DomainParticipant by an 
agent. As described in the “Background” section, Domain-
Participants encapsulate the means to send and receive data 
related to a topic. To create a DomainParticipant, a client must  
send a message to an agent describing the exact profile of 
the DomainParticipant that will act on his behalf. If this pro-
file is compatible with what the agent can create, the agent  
creates the DomainParticipant and informs the client about 
it. Among the settings on this profile is a reference to the 
set of certificates and keys that the client would like the  
DomainParticipant to use for authentication purposes.

One of the critical points to be understood here is that clients 
can only reference files that, in theory, already exist on the 
agent’s side. Clients do not, in general, know the content of 
these files, nor can they access it through the XRCE protocol. 
In other words, clients are agnostic to the content of the cer-
tificates and keys used to authenticate their DomainParticipants  
on a given DDS domain, but they can reference these files  
during the creation of the requested DomainParticipant.

Deriving models that comply with the above mentioned con-
straints is possible and encouraged. This section presents one 

17Generating and managing these certificates and keys is a problem of its own  
and is out of this document’s scope.

compatible configuration, illustrated in Figure 2, that developers  
could directly adopt in their projects. To illustrate how this 
setup works, we expand our use case of Section II by adding  
another micro-ROS node named C2.

Similar to C1, C2 is responsible for monitoring vital sig-
nals (blood-related data in this case) and sending them to 
our ROS2 node R1. To secure their communications, C1 and  
C2 perform TLS 1.3 handshakes with R1, resulting in com-
munication channels encrypted by the shared secrets KC1AG 
and KC2AG, respectively. Once clients and agent establish a  
secure channel, C1 and C2 can request agent AG to create  
the DomainParticipants P1 and P2 to act on their behalf.

In this generic configuration, AG contains only one set of cer-
tificates and keys that all the DomainParticipants it hosts 
should share. In practice, that means P1 and P2 will use  
the same certificates and keys to authenticate on the DDS 
Domain and establish shared secrets with other DomainPar-
ticipants. Despite sharing the security files provided by AG,  
P1 and P2 authenticate themselves individually to other 
DomainParticipants. To illustrate this behavior, our generic 
model represents the P1 and D1 mutually authenticating each  
other and P2 mutually authenticating D1 and D2.

As illustrated in Figure 5, the above behavior results in P1 
and D1 encrypting their communication with a shared secret 
KD1P2, P2 and D1 encrypting their communication with  
a shared secret KD1P2, and finally, P2 encrypting its com-
munication with D2 with a shared secret KD2P2. It is impor-
tant to stress that the shared secrets KD1P1 and KD1P2  
do not necessarily need to be the same, as the output of hand-
shake protocols depends on more than just the public and  
private keys used during the process.

One key aspect that needs to be clear about this model is 
that two types of authentication are happening. The first one 
takes place between clients and agents through our custom  
transport. Although unusual to most TLS 1.3 applications, 
authenticating clients to agents is crucial to increase the trust in 
all the DomainParticipants who enter a DDS domain. The sec-
ond authentication happens between the DomainParticipants  

Figure 5. Generic model illustrating how eXtremely Resource 
Constrained Environments Clients (XRCE-Clients) C1 and C2 
have their respective DomainParticipants authenticated by 
standard Data Distribution Service (DDS) nodes D1 and D2.

Page 8 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023



hosted by agents and other DomainParticipants, like nodes D1  
and D2.

The main difference between these two authentication proc-
esses is that while clients have individual keys and certificates 
to authenticate themselves to an agent, the DomainParticipants  
hosted by that agent share a set of keys and certificates to 
authenticate themselves to other DomainParticipants. It is 
essential to mention that, regardless of P1 and P2 sharing, or  
not, keys and certificates, AG would still need to know the 
content of these files to act on behalf of clients C1 and 
C2. As previously mentioned, the above model is just one  
possible abstraction of the specifications. For instance, one 
could create another model where AG provides unique keys  
and certificates to authenticate its hosted DomainParticipants, 
limiting the number of clients allowed to connect to the Agent  
to only those knowing what to reference in the first place. 
Analyzing the pros and cons of various possible models is 
something we wish to address in future works but is out of  
the scope of this publication.

Access control
While the Authentication plugin aims to guarantee that only 
trusted DomainParticipants enter a DDS domain, the Access 
Control plugin aims to enforce that trusted DomainParticipants  
perform only the set of actions they are allowed to perform.

Similar to the authentication of DomainParticipants, the access 
control permissions of XRCE-Clients on a DDS Domain are 
also dependent on their respective XRCE-Agents. From a  
cyber security point of view, the critical point to be clarified 
here is the boundaries of what a client can request an Agent 
to do on its behalf. The DDS-XRCE specification currently  
limits the client’s requests to permissions associated with the  
agent it connects.

In practice, this means that the permissions of a client in a 
Domain are a subset of the permissions of the agent it con-
nects. That is, a client can have as many permissions as the  
host of its DomainParticipants. More accurately, the client’s 
permissions on a given domain are the permissions associ-
ated with the security settings referenced during the creation  
of its DomainParticipant.

Conclusion and future Work
This work briefly reviewed the impact of cyber attacks in  
distributed robotic applications and presented a custom trans-
port for mitigating cyberattacks that target the communication  
channel between micro-ROS and ROS2 nodes. Our transport  
uses TLS 1.3 to authenticate and encrypt its messages and  
presents a remarkably low temporal overhead.

On top of that, we explained how the DDS-XRCE and 
DDS Security specifications interact from a cyber security 
point of view, providing researchers and developers with a  
comprehensible model to serve as a reference.

In future iterations of this work, we plan on i) optimizing 
the current code for better performance; ii) deriving a set of  
possible DDS-XRCE + DDS Security models; iii) perform-
ing formal verifications on these models to understand their  
pros and cons.

Ethics and consent
Ethical approval and consent were not required.

Data and software availability
This section points the reader to the data collected during the 
benchmark experiments and the source code needed to rep-
licate the experiments and apply the custom transport in  
their own micro-ROS/ROS2 applications.

Underlying data
HarvardDataverse: Repository: Round-trip delays for  
micro-ROS transports. https://doi.org/10.7910/DVN/ZXDBX023.

This project contains the following underlying data:

•    rtd.xlsx: spreadsheet file containing a total of 20  
round-trip delay benchmark experiments. The “UDP” 
sheet stores 10 experiments, showing the timestamp of 
when the message left, and the timestamp of when the  
message returned. The “TLS” sheet follows this same 
structure. Finally, the “SUMMARY” sheet presents a 
frequency table, which was used to plot the histogram  
of Figure 4.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

To replicate the experiments and compare its results to 
the RTD we obtained, start of by arranging the Measure-
ment Setup II illustrated in Figure 3. Next, run the agent  
application included with the provided agent’s docker image. 
Third, configure the WiFi parameters and the agent’s IP on the 
ping-pong client application before flashing it to the required  
ESP32 board. Finally, connect the ESP32 via USB to the 
machine used to flash the application and run the command 
to read the serial output printed by the board. No further cod-
ing or configuration is needed, as the client is pre-configured  
to continuously individually publish integer values to a topic 
it also subscribes to. Details on how to perform each of these 
actions are provided in the link to the Docker repository in  
the “Software availability” section

Software availability
Software available from: https://hub.docker.com/repository/ 
docker/gcncister/mars/general

Client’s source code available from: https://bitbucket.org/mars- 
language/micro_ros_client_tls13

Page 9 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

http://dx.doi.org/10.7910/DVN/ZXDBX0
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://hub.docker.com/repository/docker/gcncister/mars/general
https://hub.docker.com/repository/docker/gcncister/mars/general
https://bitbucket.org/mars-language/micro_ros_client_tls13
https://bitbucket.org/mars-language/micro_ros_client_tls13


Agent’s source code available from: https://bitbucket.org/mars- 
language/micro_ros_agent_tls13

Archived source code at the time of publication: https://doi.
org/10.5281/zenodo.807241922

License: GPL-3.0

As described in previous sections, this work presents a custom 
transport developed for micro-ROS and ROS2 applications to  
communicate securely. To do so, two network participants are 
required: the Client and the Agent. We point the reader to the  

work’s Docker repository (https://hub.docker.com/repository/
docker/gcncister/mars/general), which contains pre-configured  
Docker images for those who wish to test them and adapt it 
to their own applications. Instructions on how to compile and  
execute can be found on the given repository, together with 
the source code for the custom transport developed for both 
the Client and the Agent and the ping-pong application used  
for benchmarking.

Acknowledgments
All figures in this document were designed using icons made 
by Smashicons, Freepik, monkik, and Pixel perfect from  
www.flaticon.com.

References

1. Iscimen B, Atasoy H, Kutlu Y, et al.: Smart robot arm motion using computer 
vision. Elektronika ir Elektrotechnika. 2015; 21(6): 3–7.  
Publisher Full Text 

2. Voigtlander F, Ramadan A, Eichinger J, et al.: 5g for robotics: Ultra-low latency 
control of distributed robotic systems. In: 2017 International Symposium on 
Computer Science and Intelligent Controls (ISCSIC). IEEE, 2017.  
Publisher Full Text 

3. Alatise MB, Hancke GP: A review on challenges of autonomous mobile robot 
and sensor fusion methods. IEEE Access, 2020; 8: 39830–39846.  
Publisher Full Text 

4. Akhtar N, Mian A: Threat of adversarial attacks on deep learning in 
computer vision: A survey. IEEE Access. 2018; 6: 14410–14430.  
Publisher Full Text 

5. Qiu S, Liu Q, Zhou S, et al.: Review of artificial intelligence adversarial attack 
and defense technologies. Appl Sci. 2019; 9(5): 909.  
Publisher Full Text 

6. Fosch-Villaronga E, Mahler T: Cybersecurity, safety and robots: 
Strengthening the link between cybersecurity and safety in the context of 
care robots. Comput Law Secur Rev. 2021; 41: 105528.  
Publisher Full Text 

7. Albonico M, Đorđević M, Hamer E, et al.: Software engineering research on 
the robot operating system: A systematic mapping study. J Syst Softw. 2023; 
197: 111574.  
Publisher Full Text 

8. Staschulat J, Lange R, Dasari DN: Budget-based real-time executor for  
micro-ros. arXiv. preprint arXiv: 2105.05590, 2021.  
Publisher Full Text 

9. Dowling B, Fischlin M, Günther F, et al.: A cryptographic analysis of the TLS 
1.3 handshake protocol. J Cryptol. 2021; 34(4): 37.  
Publisher Full Text 

10. Object Management Group: DDS For Extremely Resource Constrained 
Environments 1.0. 2020.  
Reference Source

11. Object Management Group: DDS Security Specification Version 1.1. 
Reference Source

12. Shinde PP, Shah S: A review of machine learning and deep learning 

applications. In: 2018 Fourth International Conference on Computing 
Communication Control and Automation (ICCUBEA). IEEE, 2018.  
Publisher Full Text 

13. Sünderhauf N, Brock O, Scheirer W, et al.: The limits and potentials of deep 
learning for robotics. Int J Robot Res. 2018; 37(4–5): 405–420.  
Publisher Full Text 

14. Alongi F, Ghielmetti N, Pau D, et al.: Tiny neural networks for environmental 
predictions: An integrated approach with miosix. In: 2020 IEEE International 
Conference on Smart Computing (SMARTCOMP). IEEE, 2020.  
Publisher Full Text 

15. Lourenço A, Silva H, Fred A: Unveiling the biometric potential of finger-
based ECG signals. Comput Intell Neurosci. 2011; 2011: 1–8.  
PubMed Abstract | Publisher Full Text | Free Full Text 

16. Lourenço A, Alves AP, Carreiras C, et al.: CardioWheel: ECG biometrics on the 
steering wheel. In: Machine Learning and Knowledge Discovery in Databases, 
Springer International Publishing, 2015; 267–270.  
Publisher Full Text 

17. Macenski S, Foote T, Gerkey B, et al.: Robot operating system 2: Design, 
architecture, and uses in the wild. Sci Robot. 2022; 7(66): eabm6074.  
PubMed Abstract | Publisher Full Text 

18. Solpan S, Kucuk K: DDS-XRCE standard performance evaluation of different 
communication scenarios in IoT technologies. EAI Endorsed Trans IoT. 2022; 
8(4): e1.  
Publisher Full Text 

19. Kobeissi N: Formal verification for real-world cryptographic protocols and 
implementations. Theses, Université Paris sciences et lettres, 2018.  
Reference Source

20. Kernighan BW, Ritchie DM: The c programming language. 2002. 
21. Josuttis NM: The c++ standard library: a tutorial and reference. 2012. 

Reference Source
22. Spilere Nandi G, Pereira D, Proença J, et al.: Custom Transport for micro-ROS 

Based on TLS 1.3. [Source code], Zenodo.2023.  
http://www.doi.org/10.5281/zenodo.8072420 

23. Spilere Nandi G: Round-trip delays for micro-ROS transports. [Data], Harvard 
Dataverse, V1, 2023.  
http://www.doi.org/10.7910/DVN/ZXDBX0 

Page 10 of 10

Open Research Europe 2023, 3:113 Last updated: 14 JUL 2023

https://bitbucket.org/mars-language/micro_ros_agent_tls13
https://bitbucket.org/mars-language/micro_ros_agent_tls13
https://doi.org/10.5281/zenodo.8072419
https://doi.org/10.5281/zenodo.8072419
https://www.gnu.org/licenses/gpl-3.0.en.html
https://hub.docker.com/repository/docker/gcncister/mars/general
https://hub.docker.com/repository/docker/gcncister/mars/general
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/monkik
https://icon54.com/
http://www.flaticon.com
http://dx.doi.org/10.5755/j01.eee.21.6.13749
http://dx.doi.org/10.1109/ISCSIC.2017.27
http://dx.doi.org/10.1109/ACCESS.2020.2975643
http://dx.doi.org/10.1109/ACCESS.2018.2807385
http://dx.doi.org/10.3390/app9050909
http://dx.doi.org/10.1016/j.clsr.2021.105528
http://dx.doi.org/10.1016/j.jss.2022.111574
http://dx.doi.org/10.48550/arXiv.2105.05590
http://dx.doi.org/10.1007/s00145-021-09384-1
https://www.omgwiki.org/ddsf/doku.php?id=ddsf:public:guidebook:06_append:01_family_of_standards:04_gate:ddsxrce
https://www.omg.org/spec/DDS-SECURITY/1.1/About-DDS-SECURITY
http://dx.doi.org/10.1109/ICCUBEA.2018.8697857
http://dx.doi.org/10.1177/0278364918770733
http://dx.doi.org/10.1109/SMARTCOMP50058.2020.00076
http://www.ncbi.nlm.nih.gov/pubmed/21837235
http://dx.doi.org/10.1155/2011/720971
http://www.ncbi.nlm.nih.gov/pmc/articles/3151498
http://dx.doi.org/10.1007/978-3-319-23461-8_27
http://www.ncbi.nlm.nih.gov/pubmed/35544605
http://dx.doi.org/10.1126/scirobotics.abm6074
http://dx.doi.org/10.4108/eetiot.v8i4.2691
https://www.researchgate.net/publication/329981020_Formal_Verification_for_Real-World_Cryptographic_Protocols_and_Implementations
https://www.mica.edu.vn/perso/Vu-Hai/EE3490/Ref/The C++Standard Library - 2nd Edition.pdf
http://www.doi.org/10.5281/zenodo.8072420
http://dx.doi.org/10.5281/zenodo.8072420
http://www.doi.org/10.7910/DVN/ZXDBX0
http://dx.doi.org/10.7910/DVN/ZXDBX0

