
Reducing the gap between theory and practice in
real-time systems with MARS

Giann Spilere Nandi, David Pereira, José Proença, Eduardo Tovar, Luı́s Nogueira
CISTER, Polytechnic Institute of Porto, Porto, Portugal

{giann, drp, pro, emt, lmn}@isep.ipp.pt

Abstract—A significant number of dependable systems rely on
scheduling algorithms to achieve temporal correctness. Despite
their relevance in real-world applications, only a narrow subset
of the works in the literature of real-time systems are readily
available to be reproduced in real-world hardware platforms.
This lack of support not only hinders the reproducibility of
research results, but also reduces the opportunity for new
platform-specific research directions to emerge. In this work we
discuss the use and development of an open-source tool named
MARS capable of porting various scheduling tests and algorithms
to hardware platforms used in distributed real-time dependable
systems.

I. INTRODUCTION

Guaranteeing temporal correctness is one of the corner-
stones of dependable systems. To achieve that, domains like
avionics, automotive, healthcare, and industrial automation
employ scheduling algorithms to ensure that systems respond
to events within strict time constraints [1]. The fundamental
aspects used by these algorithms have been extensively re-
searched and are widely discussed in the literature of real-time
systems, which include an ample variety of works that propose
scheduling algorithms and schedulability analysis tests for
several distinct abstract system configurations [12], [4].

Despite their relevance and direct impact in real-world ap-
plications, not every work in the literature describing schedul-
ing algorithms is accompanied by an equivalent implemen-
tation in a real-world platform. For instance, as far as the
authors know, despite the significant amount of work published
in the field of mode-change protocols in the past two decades
[11], [5], [2], no public library implementing these concepts is
available for the community to experiment and reproduce their
results in hardware platforms. This gap between the advances
in the theoretical domain and their readiness to be validated
in real-world scenarios not only hinders the reproducibility
of many studies, but also obstructs research opportunities that
could uncover platform-specific problems and optimizations.

As part of the development of an open-source project named
MARS1, we are implementing a compiler for a domain-
specific language that, among other functionalities, performs
the schedulability analysis of a user-defined set of real-time
tasks. We achieve that by combining custom implementations
of scheduling analysis algorithms available in the literature
and integrating third-party schedulability analysis tools.

1https://bitbucket.org/mars-language/marscomp/

 CORE 1
ESP32

 CORE 0

micro-ROS task
task1

... taskN

Fig. 1. Illustration of how MARS allocates the symmetrical cores of the
ESP32 microcontroller to run soft real-time micro-ROS task on CORE 0 and
other hard real-time tasks on CORE 1.

The remainder of this work briefly presents implementa-
tion details of MARS and discuss how its toolset could be
extended to help reduce the gap between theory and practice
of real-time systems in the context of distributed extremely
resource-constrained devices used in dependable real-world
applications.

II. PROPOSED WORK AND INITIAL RESULTS

MARS is an open-source tool and domain-specific lan-
guage designed to ease the generation and safe instrumen-
tation of runtime monitors into real-time distributed resource-
constrained devices. Due to space constraints, this document
will not go into details about the syntax and semantics of the
domain-specific language. Instead, the focus will be on how
MARS can be used and extended to perform schedulability
analysis of various configurations of embedded real-time sys-
tems.

Designed to be compatible with a wide variety of use
cases and aligned with current industry and academic trends
[1], MARS integrates tools that allow developers to generate
C code that implements the behavior of distributed nodes
executing on single-core and multi-core systems running on
top of a real-time operating system. More specifically, MARS
leverages i) the publish-subscribe communication scheme
implemented by micro-ROS [14], which allows extremely
resource-constrained devices to participate in ROS22 networks;
ii) the API provided by ESP-IDF 4.33 to port applications
to our currently supported hardware platform: the ESP32
microcontroller4; and finally iii) the FreeRTOS API, which

2https://www.ros.org
3https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/

system/freertos.html
4Development kits based on ESP32 are powered by an Xtensa 32-bit LX6

symmetrical dual-core processor, up to 16MB of integrated memory, 512KB
SRAM, and integrated WiFi and Bluetooth Low Energy.



provides, on a tiny footprint, a library with basic functions to
control the ESP32’s processor scheduling.

Figure 1 illustrates how MARS currently utilizes the two
symmetrical cores of the ESP32. As of now, CORE 0 is
used exclusively for micro-ROS and its internal soft-real
time user-defined callback execution order5. These include
functionalities like managing the wifi communication, man-
aging periodic user-implemented functions, running runtime
monitors, publishing data on topics, and listening to new data
on the topics the node currently subscribes to. On CORE 1,
MARS allows developers to specify a set of hard real-time
tasks, composed of periodic and sporadic monitors and user-
implemented functions. This separation of concerns allows
ESP32 nodes to participate in distributed ROS2 applications
under soft real-time constraints while also allowing develop-
ers to execute local hard real-time tasks respecting a given
scheduling policy (e.g., rate-monotonic).

Figure 2 illustrates, at a high level of abstraction, how
MARS performs its scheduling analysis. First, a set of real-
time tasks and their scheduling parameters (e.g., task priority,
worst-case execution time, deadline) are fed as input to MARS,
which proceeds to analyze it according to a user-selected
scheduling policy. Finally, depending on the results, MARS
either confirms the schedulability of the task set and generates
the respective C code to be flashed on the ESP32, or informs
that the system is not schedulable and aborts the process.

So far, the development efforts have been focused on the
implementation and integration of single-core scheduling tests,
starting with the classic analysis for single-core fixed-priority
preemptive tasks [3]. We have also integrated the single-
core fixed-priority non-preemptive schedulability analysis tool
proposed in [10], but the use of non-preemptive tasks in
the context of micro-ROS/ESP-IDF applications still requires
further validation.

Further development efforts for MARS will consist of
integrating other well-known scheduling algorithms, prioritiz-
ing those not natively supported by FreeRTOS (e.g., earliest
deadline first, mode-change protocols), and either extending or
integrating previous related efforts and tools in the literature
[6], [9], [7], [13]. To further contextualize, while there have
been efforts for simulating and verifying the schedulability
of task sets (most notably Cheddar[13]), these efforts are not
directly linked to toolchains capable of generating code ready
to be deployed in distributed extremely resource-constrained
devices.

Future research directions also include investigating the
worst-case execution time of the micro-ROS task and how
it scales when adding publishers, subscribers, or other micro-
ROS functionalities. This would provide a better understanding
of how to safely extend our efforts to include CORE 0 and
CORE 1 in the scheduling process of hard reak-time tasks.
Furthermore, updating to the newest APIs of ESP-IDF and
FreeRTOS would allow a finer control over the hardware and

5We point the reader to the micro-ROS documentation for more details
https://micro.ros.org/docs/concepts/client library/execution management/

x...

INPUT

taskN

task1

sc
he

du
lin

g 
pa

ra
m

et
er

s

MARS

collection of static
scheduling analysis
tools and algorithms

sc
he

du
lin

g 
po

lic
y

OUTPUT

schedulable
➝ C code

not
schedulable

Fig. 2. High level illustration of the execution flow adopted by MARS to
analyze a set of tasks and their respective scheduling parameters, evaluate
their schedulability according to a user-selected scheduling policy, and the
output generated according to the analysis results.

system scheudling. Finally, we also want to equip the compiler
with functionalities aimed at easing the chore of defining
scheduling parameters, like the flexible parameter assignment
proposed in [8], which could help developers to safely fine-
tune the temporal parameters of their task sets.

Although the current development efforts of MARS are
focused on the ESP32 platform and single-core analysis, it
being open-source should be interpreted as an invitation for
anyone to modify its source code and integrate it into their
desired target platforms and toolchains.

We hope that MARS can serve as a common framework for
developers to i) reproduce works in the literature in the context
of the embedded platforms of their choice; ii) apply a wider
variety of scheduling algorithms and tests in their practical
use-case scenarios; and iii) further explore research opportu-
nities, potentially uncovering platform-specific problems that
could lead to safety violations in safety-critical applications,
or even discovering new optimization possibilities.

III. CONCLUSION

In this work we discussed the importance of reducing the
gap between theory and practice in the context of real-time
dependable systems. We have also briefly introduced a tool
named MARS, which implements a collection of scheduling
algorithms and tests for applications running soft and hard
real-time tasks on an ESP32 platform. Due to the open-source
nature of MARS, we hope that others extended its source-code
to support additional hardware platforms and implement more
real-time concepts potentially useful for the area of dependable
distributed systems running on extremely resource-constrained
devices

ACKNOWLEDGMENT

This work was partially supported by project Route
25 (ref. TRB/2022/00061-C645463824-00000063), funded by
the EU/Next Generation, within call n.º 02/C05-i01/2022
of the Recovery and Resilience Plan (RRP); CISTER,
ISEP/IPP Research Unit (UIDP/UIDB/04234/2020); and by
grant 2022.13599.BD, financed by FCT through the European
Social Fund (ESF) and the Regional Operational Programme
(ROP) Norte 2020. Disclaimer: this document reflects only the
authors’ view and the Commission is not responsible for any
use that may be made of the information it contains.



REFERENCES

[1] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer,
and Robert I. Davis. A comprehensive survey of industry practice in
real-time systems. Real-Time Systems, 58(3):358–398, November 2021.

[2] Hyeongboo Baek, Kang G. Shin, and Jinkyu Lee. Response-time
analysis for multi-mode tasks in real-time multiprocessor systems. IEEE
Access, 8:86111–86129, 2020.

[3] Robert I. Davis. A review of fixed priority and edf scheduling for hard
real-time uniprocessor systems. SIGBED Rev., 11(1):8–19, feb 2014.

[4] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Comput. Surv., 43(4), oct 2011.

[5] Wen-Hung Huang and Jian-Jia Chen. Techniques for schedulability
analysis in mode change systems under fixed-priority scheduling. In
2015 IEEE 21st International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 176–186, 2015.

[6] Rafia Inam, Mikael Sjödin, and Reinder J. Bril. Mode-change mech-
anisms support for hierarchical freertos implementation. In :, pages
Article number 6648010–, 2013.

[7] Robin Kase. Efficient scheduling library for freertos, 2016.
[8] Mitra Nasri. On flexible and robust parameter assignment for periodic

real-time components. SIGBED Rev., 14(3):8–15, nov 2017.
[9] Francisco E. Páez, José M. Urriza, Ricardo Cayssials, and Javier D.

Orozco. Freertos user mode scheduler for mixed critical systems. In
2015 Sixth Argentine Conference on Embedded Systems (CASE), pages
37–42, 2015.

[10] Sayra Ranjha, Geoffrey Nelissen, and Mitra Nasri. Partial-order re-
duction for schedule-abstraction-based response-time analyses of non-
preemptive tasks. In 2022 IEEE 28th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 121–132, 2022.

[11] Jorge Real and Alfons Crespo. Mode change protocols for real-
time systems: A survey and a new proposal. Real-Time Systems,
26(2):161–197, March 2004.

[12] Mehrin Rouhifar and Reza Ravanmehr. A survey on scheduling ap-
proaches for hard real-time systems. International Journal of Computer
Applications, 131(17):41–48, 2015.

[13] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a flexible real
time scheduling framework. ACM SIGAda Ada Letters, XXIV(4):1–8,
November 2004.

[14] Jan Staschulat, Ingo Lütkebohle, and Ralph Lange. The rclc executor:
Domain-specific deterministic scheduling mechanisms for ros appli-
cations on microcontrollers: work-in-progress. In 2020 International
Conference on Embedded Software (EMSOFT), pages 18–19, 2020.


