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The design and analysis of systems that combine computational behaviour with physical processes’
continuous dynamics – such as movement, velocity, and voltage – is a famous, challenging task.
Several theoretical results from programming theory emerged in the last decades to tackle the issue;
some of which are the basis of a proof-of-concept tool, called Lince, that aids in the analysis of such
systems, by presenting simulations of their respective behaviours.

However being a proof-of-concept, the tool is quite limited with respect to usability, and when
attempting to apply it to a set of common, concrete problems, involving autonomous driving and
others, it either simply cannot simulate them or fails to provide a satisfactory user-experience.

The current work complements the aforementioned theoretical approaches with a more practical
perspective, by improving Lince along several dimensions: to name a few, richer syntactic constructs,
more operations, more informative plotting systems and errors messages, and a better performance
overall. We illustrate our improvements via a variety of examples that involve both autonomous
driving and electrical systems.

1 Introduction

Motivation and context. This paper concerns the design and analysis of hybrid systems (i.e. those
that combine discrete with continuous behaviour) from a programming-oriented perspective. Such a
view emerged recently in a series of works [24, 21, 11, 15], and revolves around the idea of importing
principles and techniques from programming theory to better handle the behaviour of hybrid systems. In
this context programs combine standard program constructs, such as conditionals and while-loops, with
certain kinds of differential statement meant to express the dynamics of physical processes, such as time,
energy, and motion. Consider the following example of such a program:

p′ = v,v′ = 2 for 1 ; p′ = v,v′ =−2 for 1 (1)Examples

Basic composition Numerical derivative Numerical integral

Cruise control Adaptive cruise control

Automatic braking system AD: fixed AD: constant velocity

AD: constant acceleration AD: with uncertainties

Missile vs. Target Projetc motion without air effect

Damped Harmonic Oscillator Series RLC circuit Water tanks

Traffic lights Avoiding approx. error

Trigonometric computation Naive particle positioning

Landing system Bouncing ball (ED) Fireflies 2x (ED)

Fireflies 3x (ED)

Perturbations up-to (experimental)

all jumpsresampleTrajectories (fast/numerical)

Symbolic Evaluation

More information on the project:
https://github.com/arcalab/lince
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p:=0; v:=0;
p' = v, v' = 2 for 1;
p' = v, v' = -2 for 1;
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Figure 1: Simulation of (1).

In a nutshell, it is a sequential composition ( ;) of two
programs where each expresses how the position (p) and
velocity (v) of a vehicle evolve over time. The program
on the left (p′ = v,v′ = 2 for 1) is a differential statement
that reads “the vehicle accelerates at the rate of 2 m/s2 for 1
second”. The other program corresponds to a deceleration.
Both position and velocity over time are presented in Fig. 1,
where we see that the vehicle travels 2 meters and then stops.
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2 Formal Simulation and Visualisation of Hybrid Programs

Actually there has been a rapid proliferation of such systems, not only in the domain of autonomous
driving but also in the medical industry and industrial infrastructures, among others [24, 12, 19, 21].
This spurred extensive research on languages, semantics, and tools for their design and analysis. An
example is our work [10, 11] on the semantics of hybrid programs – i.e. those that combine program
constructs with differential statements, such as in (1) – from which arises a mathematical basis for reason-
ing about their behaviour, both operationally and denotationally. A proof-of-concept tool, called Lince,
also emerged from this: its engine is a previously developed operational semantics [11] that yields tra-
jectories of hybrid programs, just as we saw in Fig. 1. However because our focus was rather theoretical,
the tool was not developed with usability in mind, and thus lacks basic features for tackling a broad range
of important scenarios. Let us illustrate this problem with a very simple example.

Problem scenario. Suppose that we wish to move a stationary object a distance of dist meters – a basic
task in autonomous driving. For simplicity assume that we have access only to the acceleration rates
a m/s2 and −a m/s2, where a > 0. Our mission can be accomplished by taking the following variation
of Eq. (1),

p′ = v,v′ = a for t ; p′ = v,v′ =−a for t (2)

for a suitable duration t. Then in order to calculate t (i.e. the prescribed duration of each differential
statement) we simply observe that,

dist =
∫ t

0
va(x)dx +

∫ t

0
v−a(x)dx

where va(x) = a ·x and v−a(x) = va(t)+−a ·x are the velocity functions with respect to the time intervals
[0, t] and [t,2 · t] associated with the program’s execution. We now observe, by recalling Fig. 1, that the
value dist corresponds to the area of a triangle with basis 2 · t and height va(t). This geometric shape
yields the equations, {

dist = 1/2 · (2 · t) · va(t) (area)
va(t) = a · t (height)

=⇒ t =

√
dist

a

Finally observe that if dist = 3 and a = 1 then t =
√

3. Unfortunately the previous version of Lince does
not support square root operations which renders our mission impossible to accomplish.

Contributions and outline. As already alluded to, this paper complements our previous theoretical
work on the semantics of hybrid programming [10, 11]. Specifically it improves our proof-of-concept
tool Lince so that it can handle a myriad of important scenarios, whilst maintaining both its simplicity and
theoretical underpinnings. The improvements were made along different dimensions, and we highlight
the most relevant ones next1.

Extension of basic operations. As illustrated before, the previous version of Lince lacked essential arith-
metic operations for handling most basic tasks. Thus as the first main contribution we added standard
arithmetic operations, including divisions, trigonometric functions, and square root extractions. Notably
the fact that many of these operations are partial required us to extend the operational semantics devel-
oped in [11] (the main engine of Lince) with the possibility of failure. The extended semantics is detailed
in Section 2 and it is of course the basis of the new engine behind improved Lince.

1The improved version can be checked online at http://arcatools.org/lince.

http://arcatools.org/lince
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Extension of numerical methods. Again because our focus in previous work was rather theoretical the
previous version of Lince was unable to simulate standard scenarios in hybrid programming. A main rea-
son for this was our method of obtaining solutions of systems of ordinary differential equations (ODEs),
which although exact lacked in scalability. Precisely for this reason we now integrate a complementary,
numerical solver in Lince with the obvious compromise that the solutions obtained for such systems are
no longer exact.

The benefits of the extended language (and respective semantics), the numerical solver, and a number
of quality-of-life features, are summarised in Section 3 and illustrated with a standard, running example
concerning the famous concept of harmonic oscillation.

Extension of visualisation mechanisms. Lince is constituted by two core components: the simulator
which, by recurring to the aforementioned operational semantics, parses a received program and presents
its output with respect to a single time instant. And the visualiser which presents (a sample of) the
trajectory over time respective to the program at hand, by querying the operational semantics for a certain
sequence of time instants. After trying to properly visualise the behaviour of several types of hybrid
program with Lince we identified two major limitations with respect to this architecture. First many real-
world problems involve multiple spatial dimensions and thus the described view of trajectories over time
is often not the best representation of a hybrid program’s behaviour. Second the user is often interested in
observing the overall program behaviour for varying initial conditions, concerning for example position
and velocity. We therefore present in Section 4 an improved visualiser for Lince that precisely addresses
these two issues. We illustrate it via another classical scenario in autonomous driving, viz. manoeuvring
around an obstacle.

In Section 5 we illustrate that, whilst keeping its simplicity, Lince can now handle complex central
problems in the theory of hybrid systems; we focus specifically on the task of one player pursuing
another, e.g. a vehicle, a drone, or simply a projectile. Such pursuit games were discussed for example
in [20, 2, 6, 18], from an (hybrid-)automata, state-chart, and duration calculus perspective. Here we
present a programming-oriented approach. Finally in Section 6 we discuss future work and conclude.

Related work. Several tools for the design and analysis of hybrid systems were already proposed, e.g.
in the areas of deductive verification [24], model checking [3, 8, 4], simulation [16, 9, 15, 11], and
program semantics [24, 15, 11]. But only a few are committed to a programming-oriented approach,
rooted on formal semantics, and with effective simulation capabilities. The only ones we are aware
of are [15] and our own tool Lince [11]. Interestingly both cases adopt complementary approaches as
well: the former harbours a very powerful concurrent language, particularly well-suited for large-scale
distributed systems. The latter, harbouring a sequential while-language, aims at being minimalistic whilst
still capturing a broad range of interesting problems on which to study different aspects of (pure) hybrid
computation at a suitable abstraction level.

Aside from the obvious pedagogical benefit, our minimalistic approach also allows to capitalise
on different programming theories more easily. For example already in [11] we connected our tool to a
compositional, denotational semantics – particularly well-suited to study hybrid program equivalence and
combinations with other paradigms. An analogous concurrent semantics for [15] would be notoriously
more difficult to achieve (cf. [26, 28]). Similarly our language is amenable to algebraic reasoning in
the style of (weak) Kleene algebras [17, 14] whilst the connection between the latter and concurrent
object-oriented programming (as adopted in [15]) is less clear.
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2 Lince’s Foundations Extended with the Possibility of Failure

We now extend part of Lince’s foundations with the possibility of failure. Specifically we present an
extension of the language in [11] with partial operations, such as division and square root extraction,
and introduce a corresponding operational semantics. As explained in the introduction, such is necessary
for extending Lince to ‘real-world problems’ whilst preserving its merit of having a firm, mathematical
basis.

Language. First we postulate a finite set X = {x1, . . . ,xn} of variables and a stock of partial functions
f : Rn −⇀ R that contains the usual arithmetic operations. Then we define expressions and boolean
conditions via the following BNF grammars,

e ::= x | f (e, . . . ,e) b ::= e ≤ e | b∧b | b∨b | ¬b | tt | ff

We omit the explanation of these grammars as they are widely used (see e.g. [28, 26]). Next, we qualify
as ‘linear’ those expressions e which aside from the use of variables involve only the operations + and
r · (−) for some r ∈ R. For example the expression 2 · x is linear but the expression x · x is not. The
concept of linearity is key in the grammar of hybrid programs which we present next.

Programs are built according to the following BNF grammars,

a ::= x′1 = ℓ1, . . . ,x′n = ℓn for e | x := e

p ::= a | p ;p | if b then p else p | while b do { p }

where the terms ℓi (1 ≤ i ≤ n) are linear expressions. We qualify as ‘atomic’ those hybrid programs
that are built according to the first grammar. They can be either classical assignments or differential
statements as described in the introduction. The linearity constraint is here imposed merely to ensure
that the latter kind of statement will always have unique solutions, which renders our semantics more
lightweight whilst still being able to treat a broad range of problems (see more details in [11]).

The language of hybrid programs p itself is simply the usual while-language [28, 26] extended with
the aforementioned differential statements. It is easy to check that our grammar indeed extends that in
the previous version of Lince [11] where all expressions involved in the assignments and the durations
of differential statements had to be linear. This has of course significant implications in the operational
semantics introduced in [11].

Operational semantics. We need a series of preliminaries. First for simplicity we abbreviate differential
statements x′1 = ℓ1, . . . ,x′n = ℓn for e simply to x⃗′ = ℓ⃗ for e, where x⃗′ and ℓ⃗ abbreviate the corresponding
vectors of variables x′1 . . .x

′
n and linear expressions ℓ1 . . . ℓn. We call functions of the type σ : X → R

environments; they map variables to the respective valuations. We use the notation σ [⃗x 7→ v⃗] to denote
the environment that maps each xi in x⃗ to vi in v⃗ and the remaining variables as in σ . Finally we denote
by ϕ x⃗′=ℓ⃗

σ : R≥0 →Rn the (unique) solution of a system of differential equations x⃗′ = ℓ⃗ with σ as the initial
condition (recall our previous constraint about linearity which ensures that such solutions indeed exist).
When clear from context, we omit both the superscript and subscript in ϕ x⃗′=ℓ⃗

σ . Next, for an expression e
the notation JeK(σ) denotes the standard (partial) interpretation of expressions [28, 26] according to σ ,
and analogously for JbK(σ) where b is a boolean expression. For example Jx+1K(σ) = σ(x)+ 1 andJ1/xK(σ) is undefined if σ(x) = 0.

We now present an operational semantics for the language. Following traditions in programming
theory [22, 28, 26], we present it from two different, complementary perspectives, which gives a much
more complete understanding of the language’s features. Specifically we present the semantics in two
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different styles: one formalises the idea of a machine “running” a hybrid program and describes its step-
by-step evolution. The other abstracts away from all intermediate steps of this machine and is therefore
generally more suitable to reason about “input-output behaviours” (although we do not explore such a
feature here). Whilst the former style is the basis of Lince’s new version, the latter style is conceptually
more intuitive and therefore we present it first. The current section concludes with a proof that both
semantics are in fact equivalent. The curious reader can consult for example [28, 26] for a thorough
account on the key differences between the small-step and big-step styles in general program semantics.

Our ‘big-step’ operational semantics is given by an ‘input-output’ relation ⇓ which relates programs
p, environments σ , and time instants t to outputs v. The expression p ,σ , t ⇓ v can be read as “at time
instant t the program p starting from state σ outputs v”. The relation ⇓ is built inductively according to
the rules in Fig. 2. Specifically the first three rules describe how differential statements are evaluated:
first one computes the duration JeK(σ) of the differential statement at hand and an error is raised ifJeK(σ) is undefined; otherwise the output v is the respective modified state (as dictated by the differential
statement) paired with one of the flags stop or skip. Intuitively the flag stop indicates that we ‘reached’
the time instant at which the program needs to be evaluated and therefore the evaluation can stop moving
forward in time, which fact is reflected in rule (seq-stop). The flag skip is simply the negation of stop.
The remaining rules follow analogous principles and therefore we refrain from detailing them – instead
we will briefly show how the semantics works via instructive, concrete examples.

Example 2.1. Let us consider the following very simple program,

x′ =−1 for 1 ; x := 1/x

which continuously decreases the value of variable x during 1 second and then applies the (discrete)
operation x := 1/x. Suppose as well that our initial state is the environment σ defined by x 7→ 1. Then
by an application of rule (diff-stop) one deduces that this program outputs the environment x 7→ 1− t
at every time instant t < 1. On the other hand, by an application of rules (diff-skip), (asg-err), and
(seq-skip) one easily deduces that the evaluation of the program fails at every time instant t ≥ 1, due to
a division by 0.

Notably the fact that failure occurs only at the time instants t ≥ 1 is a fundamental difference with
respect to the famous hybrid programming language detailed in [24]. In the op. cit. the language
was designed in the spirit of Kleene algebra, which in particular forces the previous program to be
indistinguishable from e.g. the program x := x/0. Whilst such a feature could be desirable in some
verification scenarios it is clearly unnatural in a simulation-based environment such as ours.

Let us continue unravelling prominent features of our semantics with another example. Consider the
following hybrid program,

while x 6= 0 do { x′ =−1 for x/2 } ; x := 1/x

paired with the environment x 7→ 1. This program is an instance of a so-called Zeno loop: viz. the loop
involved unfolds infinitely many times with the duration of each iteration becoming shorter and shorter
(see details e.g. in [11]). In this particular case it is straightforward to check that the duration of the i-th
iteration is given by 1/2i, and thus that the total duration ∑∞

i=1
1/2i of the loop will be 1. Now, by applying

the operational rules in Fig. 2 one can successfully evaluate the program at every time instant t < 1
(intuitively because every such t is reached in a finite number of iterations). The same is false for time
instant t = 1 since such requires a complete unfolding of the loop which is of course computationally
unfeasible. Thus operationally the potential point of failure x := 1/x in the program above never occurs,
as the Zeno loop makes it impossible to actually reach this command in the evaluation. These infinite
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(diff-skip)
JeK(σ) = t

x⃗′ = ℓ⃗ for e ,σ , t ⇓ skip ,σ [⃗x 7→ ϕ(t)]

(diff-stop)
JeK(σ)> t

x⃗′ = ℓ⃗ for e ,σ , t ⇓ stop ,σ [⃗x 7→ ϕ(t)]
(diff-err)

JeK(σ) undefined

x⃗′ = ℓ⃗ for e ,σ , t ⇓ err

(asg-skip)
JeK(σ) defined

x := e ,σ ,0 ⇓ skip ,σ [x 7→ JeK(σ)]
(asg-err)

JeK(σ) undefined
x := e ,σ , t ⇓ err

(seq-skip)
p ,σ , t ⇓ skip ,τ q ,τ ,u ⇓ v

p ;q ,σ , t +u ⇓ v

(seq-stop)
p ,σ , t ⇓ stop ,τ
p ;q ,σ , t ⇓ stop ,τ

(seq-err)
p ,σ , t ⇓ err
p ;q ,σ , t ⇓ err

(if-true)
JbK(σ) = tt p ,σ , t ⇓ v

if b then p else q ,σ , t ⇓ v

(if-false)
JbK(σ) = ff q ,σ , t ⇓ v

if b then p else q ,σ , t ⇓ v
(if-err)

JbK(σ) undefined
if b then p else q ,σ , t ⇓ err

(wh-true)
JbK(σ) = tt p ;while b do { p } ,σ , t ⇓ v

while b do { p } ,σ , t ⇓ v

(wh-false)
JbK(σ) = ff

while b do { p } ,σ ,0 ⇓ skip ,σ
(wh-err)

JbK(σ) undefined
while b do { p } ,σ , t ⇓ err

Figure 2: Extension of the big-step operational semantics in [11] with the possibility of failure.

behaviours are bounded in Lince by manually setting limits on the total time and on the number of
unfoldings of while-loops, adjustable for each program.

Next, the semantics in the aforementioned ‘small-step’ style is given in the form of a relation →
that is defined inductively according to the rules in Fig. 3. These rules follow an analogous reasoning to
the ones in Fig. 2 so we refrain from repeating explanations.

As detailed in Corollary 1 our small-step semantics is deterministic. This is of course a key property
in what concerns its implementation and subsequent use in Lince for simulating hybrid programs. The
corollary is based on the following theorem.

Theorem 2.1. For every program p, environment σ , and time instant t there is at most one applicable
reduction rule.

Let →⋆ be the transitive closure of the small-step relation → that was previously presented.
Intuitively →⋆ represents an evaluation of one or more steps according to the small-step semantics. If
p,σ , t →⋆ v we call v ‘non-terminal’ whenever it is of the form p′,σ ′, t ′ for some hybrid program p′,
environment σ ′, and time instant t ′; we call v ‘terminal’ otherwise.
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(asg→) x := e ,σ , t → skip ,σ [x 7→ JeK(σ)] , t (if JeK(σ) defined)

(asg-err→) x := e ,σ , t → err (if JeK(σ) undefined)

(diff-stop→) x⃗′ = ℓ⃗ for e ,σ , t → stop ,σ [⃗x 7→ ϕ(t)] ,0 (if JeK(σ)> t)

(diff-skip→) x⃗′ = ℓ⃗ for e ,σ , t → skip ,σ [⃗x 7→ σ(t)] , t − JeK(σ) (if JeK(σ)≤ t)

(diff-err→) x⃗′ = ℓ⃗ for e ,σ , t → err (if JeK(σ) undefined)

(if-true→) if b then p else q ,σ , t → p ,σ , t (if JbK(σ) = tt)

(if-false→) if b then p else q ,σ , t → q ,σ , t (if JbK(σ) = ff)

(if-err→) if b then p else q ,σ , t → err (if JbK(σ) undefined)

(wh-true→) while b do { p } ,σ , t → p ;while b do { p } ,σ , t (if JbK(σ) = tt)

(wh-false→) while b do { p } ,σ , t → skip ,σ , t (if JbK(σ) = ff)

(wh-err→) while b do { p } ,σ , t → err (if JbK(σ) undefined)

(seq-stop→)
p ,σ , t → stop ,σ ′ , t ′

p ;q ,σ , t → stop ,σ ′ , t ′
(seq-skip→)

p ,σ , t → skip ,σ ′ , t ′

p ;q ,σ , t → q ,σ ′ , t ′

(seq-err→)
p ,σ , t → err
p ;q ,σ , t → err

(seq→)
p ,σ , t → p′ ,σ ′ , t ′

p ;q ,σ , t → p′;q ,σ ′ , t ′
(if p′ 6= stop and p′ 6= skip)

Figure 3: Extension of the small-step operational semantics in [11] with the possibility of failure.

Corollary 1 (Determinism). Consider a program p, an environment σ , and a time instant t. If p ,σ ,
t →⋆ v and p ,σ , t →⋆ u with both v and u terminal then we have v = u.

Proof. Follows by induction on the number of reduction steps and Theorem 2.1.

Next we will show that the small-step semantics and its big-step counterpart are indeed equivalent.
We will use the two following results for this effect.

Lemma 2.1. Given a program p, an environment σ and a time instant t

1. if p ,σ , t → p′ ,σ ′ , t ′ and p′ ,σ ′ , t ′ ⇓ skip ,σ ′′ then p ,σ , t ⇓ skip ,σ ′′;

2. if p ,σ , t → p′ ,σ ′ , t ′ and p′ ,σ ′ , t ′ ⇓ stop ,σ ′′ then p ,σ , t ⇓ stop ,σ ′′;

3. if p ,σ , t → p′,σ ′, t ′ and p′ ,σ ′ , t ′ ⇓ err then p ,σ , t ⇓ err;

Proof. Follows by induction over the rules concerning the small-step relation.
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Proposition 1. For all program p and q, environments σ and σ ′, and time instants t, t ′ and s, if p ,σ ,
t → q ,σ ′ , t ′ then p ,σ , t + s → q ,σ ′ , t ′+ s; and if p ,σ , t → skip ,σ ′ , t ′ then p ,σ , t + s → skip ,σ ′ ,
t ′+ s. If p ,σ , t → err then p ,σ , t + s → err

Proof. Follows straightforwardly by induction over the rules concerning the small-step relation and the
algebraic properties of addition.

Theorem 2.2 (Equivalence). The small-step semantics and the big-step semantics are related in the
following manner. Given a program p, an environment σ and a time instant t

1. p ,σ , t ⇓ skip ,σ ′ iff p ,σ , t →⋆ skip ,σ ′ ,0;

2. p ,σ , t ⇓ stop ,σ ′ iff p ,σ , t →⋆ stop ,σ ′ ,0;

3. p ,σ , t ⇓ err iff p ,σ , t →⋆ err.

Proof. The right-to-left direction is obtained by induction over the length of the small-step reduction
sequence using Lemma 2.1. The left-to-right direction follows by induction over the big-step derivations
together with Proposition 1.

3 An Improved Simulator for Hybrid Programs

This section summarises several improvements made to Lince’s simulator of hybrid programs since its
original publication [11]. These include (1) more expressive assignments and durations in differential
statements (by virtue of the results in the preceding section); (2) a more user-friendly program syntax (by
means of syntactic sugar); (3) more informative error messages; and (4) a numerical solver of systems
of ordinary differential equations. In order to render our summary more lively we complement it with
a running example involving an RLC circuit in series with an On-Off source. It is designed to stabilise
voltage across the capacitor in the circuit at a specific value.

Running example: RLC circuits and harmonic oscillation. We present in Fig. 4 the simulation of
an RLC circuit in series (RLCS). This simulation models an electric system composed of a resistor, a
capacitor, an inductor, and a power source connected in series. The power source strategically switches
on and off, as a way to stabilise voltage across the capacitor at a target value (say, 10V ). Such systems are
known to yield interesting results that are practically relevant for energy storage voltage control systems,
which help to mitigate voltage imbalances that could otherwise damage electronic equipment. More
details about such circuits and associated differential equations are available for example in [29, 13].
We present in Fig. 4 two variations of an RLCS circuit: one in which the capacitor voltage is in an
underdamped regime – with a resistance rU of 0.5Ω, a capacitance c of 0.047F , and an inductance l of
0.047H – and one in which the capacitor voltage is in an overdamped regime – with a resistance rO of 4Ω
and the same values as before for the capacitance and inductance. The general idea of our program is that
the associated controller will read the voltage across the capacitor (variable under for the underdamped
case, over for the overdamped one) every 0.01 seconds, and set the voltage at the source either to 0 (off)
or 18V (on) depending on the value read.

Improvement’s summary. The program just described is highly problematic for the original version
of Lince. This is due to two fundamental reasons related to the ODEs involved: specifically (1) the
equations used in the ODEs violate the linearity condition presented in Section 2 (they include variable
multiplications); and (2) the original solver of ODEs, mentioned in the introduction, fails to produce
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under := 0; dU := 0; vU := 0; rU := 0.5;
over := 0; dO := 0; vO := 0; rO := 4;
c := 0.047; l := 0.047;

while true do {
if (under <10) then vU := 18;

else vU := 0;
if (over <10) then vO := 18;

else vO := 0;
under ’= dU , over ’= dO ,
dU ’= -(dU*rU/l)

-under /(l*c)+vU /(l*c),
dO ’= -(dO*rO/l)

-over /(l*c)+vO /(l*c)
for 0.01;

}

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control Adaptive cruise control Automatic braking system

Autonomous driving (AD) with fixed reference AD with constant velocity reference AD with constant acceleration reference

AD with constant acceleration reference and uncertainties Missile vs. Target Projetc motion without air effect Damped Harmonic Oscillator

Series RLC circuit Water tanks Traffic lights Avoiding approx. error Trigonometric computation Naive particle positioning

Landing system Bouncing ball (ED) Fireflies 2x (ED) Fireflies 3x (ED) Cruise control Example 1 Missile vs. Target - Exemple 1

Perturbations up-to (experimental)

Plot length
maxTime:0.6,Axis:[under,over]

all jumpsresample

all jumpsresample

all jumpsresample

all jumpsresample

Trajectories (symbolic)

Trajectories (fast/numerical)

Trajectories Test Daniel (symbolic)

Test Daniel (fast/numerical)
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under:=0; dU:=0; vU:=0; rU:=0.5;
over:=0;  dO:=0; vO:=0; rO:=4;
c:=0.047;

while true do {
  if (under<10) then vU:=18;
                else vU:=0; 
  if (over<10)  then vO:=18;
                else vO:=0; 
  under'=dU, over'=dO, 
  dU'=-(dU*rU/c)
      -under/(c*c)+vU/(c*c),
  dO'=-(dO*rO/c)
      -over/(c*c)+vO/(c*c)
  for 0.01;
}
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Figure 4: Hybrid program (left) and its plot (right) of two variations of an RLC circuit that tries to
maintain the voltage in the capacitor at 10V .

solutions after few iterations, due to the sheer, exponential growth of the involved expressions’ size. We
detail these issues and others next.
Richer expressions. As illustrated in the introduction and in the previous RLCS example, there are
several essential, non-linear operations that are necessary to accomodate if one wishes to employ Lince
in the analysis of diverse, common hybrid scenarios. We therefore now permit non-linear expressions
outside of ODEs, essentially by using as basis the grammar of hybrid programs that was described
in Section 2. Thus expressions outside the ODEs can now include for example the operations: division
and multiplication of variables, more complex mathematical functions (such as square root extraction,
exponentials, logarithms, minimum/maximum, and (co)sine), and mathematical constants (namely pi
and Euler’s constant).

As for expressions inside ODEs, the linearity constraint is kept but the associated parser is much less
rigid. A core feature is that it now tries to convert non-linear expressions into equivalent linear ones via
algebraic laws. For example, it converts the expression x · 5, which syntactically is not a linear expres-
sion, into the linear one 5 · x since multiplication is commutative. Most notably, it converts non-linear
expressions x · y into scalar multiplications s · x or s · y if it can infer that either x or y is a constant with
value s. Such a feature is critical in our RLCS example, where we multiply variables in the respective
ODEs.
More informative error messages. Several errors were undetected at an early stage of the simulation
process, which resulted in unintelligible error messages in many situations. We thus added and improved
the detection and notification of several key errors occurring in typical usages of Lince, including when:
(1) a partial function fails (such as in division by 0); (2) a variable is not properly initialised; (3) the
number of arguments of a function is incorrect; (4) the solver fails to solve a system of ODEs; and (5)
ODEs contain non-linear expressions after de-sugaring. For example, in our RLCS simulation when
defining c to be 0 we now obtain the error “Error: the divisor of the division ’rU/(c)’ is zero.”. In our
experience, this more precise detection and notification of errors drastically improved user experience.
Numerical solver. As already mentioned, several hybrid programs such as our RLCS example cannot be
properly handled by the (exact) solver of ODEs (viz. SageMath [27]) used by Lince. We have therefore
implemented an alternative, numerical solver based on the popular fourth-order Runge-Kutta method.
At the theoretical level, this only required a small adaptation of the operational semantics presented
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in Section 2. Specifically we no longer assume that the solution ϕ x⃗′=ℓ⃗
σ associated to a system of ODEs

x⃗′ = ℓ⃗ and an initial condition σ is exact. At the practical level, this allowed us to keep the size of
expressions involved in computations highly manageable thus allowing Lince to cover a broader range
of examples such as the RLCS.

4 An Improved Visualiser for Hybrid Programs

Many hybrid programs cannot be easily understood by simply plotting values of variables over time. For
example, in some cases one may wish to analyse the movement of a vehicle in a 2D plane, or to analyse
how its behaviour varies due to changes in its initial position and velocity. This section presents an
extension of Lince’s visualisation capabilities in these two directions. In the same spirit of the preceding
section, we complement our description with a running example.

Running example: avoiding and manoeuvring around obstacles. The Automatic Emergency Braking
(AEB) system is an autonomous driving device that after reading its distance to an obstacle and its current
velocity, decides whether to decelerate until stopping [1]. Here we present a more advanced version of
the AEB that after stopping also manoeuvres around the obstacle – clearly a process involving two or
even three spatial dimensions. Such a system is called Automatic Emergency Braking with an Overtaking
Manoeuvre (AEBOM).

The continuous dynamics of the AEBOM (i.e. the differential equations involved) is typically given
by Dubins dynamics which essentially describe the object’s orientation over time (an angle) and its effect
on the object’s velocity along the different spatial dimensions [25]. We adopt this approach as well. For
simplicity we additionally assume that our object is a robot that is able to rotate around itself. The overall
process of our AEBOM is thus as follows: move forward until detecting the obstacle and in which case
decelerate until stopping; then rotate to the left and move forward a prescribed number of meters (that
depends on the obstacle’s size); then rotate right and move forward again a prescribed number of meters;
and finally repeat the last step.

Figure 5 depicts the original visualisation of the AEBOM simulation on the left, and a customised
2D visualisation that uses our extension on the right. The respective implementation of the AEBOM,
included in Lince online, is not relevant to show at this stage, because our focus is at the moment on
describing new visualisation mechanisms and not features concerning code. Observe as well that the
plot on the right provides novel insights with respect to the one on the left: whilst in the right it is clear
that the robot does not collide with the obstacle and performs the overtaking manoeuvre safely, in the
left it is much harder to see that the same occurs. We provide more details about our improved plotting
system next.

Higher-dimensional trajectories and beyond. Our new visualisation framework in Lince uses the
Plotly JavaScript library to display plots2. Among other things, we now support 2D and 3D scatter plots,
and include dedicated markers such as the large circles indicating the start and end points of trajectories.
When hovering over these markers, extra information is displayed, e.g. the respective values, relevant
information about the conditionals involved, and potential warnings. We also exploit the animation
functionality of Plotly in plots that do not include the time component, by moving a highlighting circle
through the trajectories capturing how values vary throughout time. This feature is active by default. To
take all these possiblities into account, Lince allows the user to adjust different settings of the plot under

2http://plotly.com/

http://plotly.com/
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x:=0; y:=0;vx:=0; vy:=10;xl:=0; yl:=120;
detection_d:=100;
safety_d:=5;
a:=4;
theta:=0; 
w:=(1/20)*2*pi(); 

//Obstacle -> 1m by 1m

while (y + vy*0.1-yl > detection_d) do {
y'=vy,vy'= 0 for 0.1;
}

stoping_time:=vy/a;
distance_traveled:=vy * stoping_time + 0.5 * (-a) * stoping_time^2;

while (yl - y > safety_d + distance_traveled) do {
y'=vy,vy'= 0 for 0.1;
}

y'=vy,vy'=-a for stoping_time;
vy:=0;

w:=-w;
theta'=w for (pi()*0.5)/(-w);

x'=vx,vx'=-a for sqrt(1/a);
x'=vx,vx'=a for sqrt(1/a);
vx:=0;

w:=-w;
theta'=w for (pi()*0.5)/w;

while (y<yl) do {
y'=vy,vy'=a for 0.1;
}

stoping_time:=vy/a;
y'=vy,vy'=-a for stoping_time;
vy:=0;

theta'=w for (pi()*0.5)/w;
 
x'=vx,vx'=a for sqrt(1/a);
x'=vx,vx'=-a for sqrt(1/a);
vx:=0;
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Figure 5: Plot of AEBOM using the traditional plotting system in Lince (left), and a new customised 2D
plot (right) relating x with y (the robot’s coordinates) and xl with yl (the obstacle’s coordinates).

analysis so that she can obtain the best possible configuration for her needs. We very briefly detail such
settings next:

• Axis: Allows defining the relationships between variables which will automatically be presented in
the respective plots. For example, by setting [x, y, v], if the graph type is scatter, three separate
graphs will be generated where the vertical axis represents each of the variables x, y, and v, while
the horizontal axis represents time. Choosing which variables to map to the axes is crucial for
proper data analysis, allowing direct visual comparisons between different variables over time or
with each other.

• Max Time: Refers to the duration of the simulation.

• Max Iterations: Specifies the maximum number of iterations (in while-loops) that the simulation
can perform.

• Graph Type: Defines the type of graph to be used for visualising the simulation data, by selecting
from the available types (‘scatter’ or ‘scatter3d’). In a nutshell, a scatter plot is a 2D graph used
to display the relationship between two variables, with data points plotted in the two-dimensional
plane. Scatter3D serves the same purpose but involves three variables, with data points plotted in
the three-dimensional space.

The summarised settings are presented in Fig. 6, where the values there listed are the ones used to
obtain the plot in Fig. 5 on the right.

Figure 6: Input boxes that allow for the configuration of the visualisation.

Variability of initial conditions. As mentioned before, it is highly relevant take into account how the
behaviour of a hybrid program varies due to changes in its initial conditions. In the AEBOM previously
described in particular, it is of fundamental importance to understand how the robot manoeuvres around
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an obstacle with respect to different initial positions and velocities – for it is unrealistic to expect that it
moves with well-known, exact conditions. A similar, more general discussion can be consulted in [25].

In order to address this aspect we extended Lince in two steps: first its syntax now allows the listing
of different initial conditions at the same time. Such is illustrated in Fig. 7 on the left, with a snippet of
code used to specify initial values with respect to our robot in the AEBOM example. The latter’s initial
position (x,y) for example, can now be either (0,0), (2,0), or (4,0); and similarly we have different
initial velocities (vy) towards the obstacle, 4, 8, and 12 m/s. Second Lince now pre-processes such listings
in the code and derives all possible combinations of initial conditions, which of course yields several
hybrid programs at once (in the standard syntax). These data is then fed into Lince’s visualiser which
presents multiple simulations overlapped in the same plot. Such is seen in Fig. 7 on the right, again
with our AEBOM example, where we see that our robot behaves in the same way under different initial
conditions.

// Initial Conditions
x := [0 ,2 ,4];
y := 0;
vx := 0;
vy := [4 ,8 ,12];
xl := [0 ,2 ,4];
yl := [120 ,135 ,150];

...

Figure 7: Visualisation of multiple simulations overlapped concerning the AEBOM.

5 Lince at Work: a Showcase of the Overall List of Improvements

This section illustrates the overall list of improvements made to Lince (as described in the preceding
sections) working together in the design and analysis of a complex hybrid scenario – specifically we
focus on a multi-dimensional pursuit game between two players (for example two drones) [20, 2, 6, 18].
Our illustration focuses mainly on two aspects: (1) Lince’s capability to simulate such scenarios, with
optimally configured 3D plotting systems; and (2) the time that Lince takes to simulate increasingly
larger systems, to provide insights over limitations of the current implementation.
Pursuit Games. Pursuit games are a captivating class of problems involving multiple agents, where
at least one them (the pursuer) aims to capture or reach another (the evader) [20, 2, 6, 18, 25]. Such
games are extensively studied across various disciplines, including mathematics, game theory, robotics,
and computer science, due to their practical and theoretical significance. Indeed they model a wide
range of real-world situations, from military and security operations to animal behaviour and industrial
applications.

In this section we explore a specific 3D pursuit game, where we perceive the pursuer as a drone that
attempts to capture another one in the three-dimensional space. This scenario is particularly challenging,
due to the additional complexity introduced by the third dimension which requires a higher level of
planning and coordination between the drones’ movements. In order to model this problem we base our
game’s continuous dynamics on Dubins dynamics [25], i.e. as in Section 4 but now in three dimensions.

Our overarching strategy for the pursuer is to simply point its orientation to the evader’s position at
every iteration in a certain while-loop. Of course there are other options, such as that of (variations of)
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Dubins paths [25, 5], but our version already suffices to properly illustrate Lince at work. Technically
our approach utilises the angular velocity tensor to perform 3D infinitesimal rotations [7]. Additionally
we use the cross product between the projection of the relative velocity vector and the relative position
vector in each plane to determine the orientation of rotation among the three axes. We do not show
here the coding details of all these processes, since this is unnecessary for our illustration. However
the interested reader can consult details about these in [5, 7], and the complete code of our program is
included in the examples available in Lince online.

We now show the simulation of our game in Lince across different scenarios. In the first case, the
pursuer starts from the position (300,300,600) with a velocity of (-20,-10,0)m/s, while the evader begins
at the position (600,600,500) with a velocity of (10,0,10)m/s. The pursuer’s angular velocity along each
axis is (1/20)*2*pi()rad/s (20 seconds to complete a full rotation); and for the evader (1/40)*2*pi()rad/s

(40 seconds to complete a full rotation). The pursuer is allowed to actuate every 0.1s, and it wins the
game if it reaches a distance of less than one meter with respect to the evader. Finally, for simplicity we
assume a pre-defined set of movements for the latter player. Using these parameters, we simulated the
corresponding program in Lince and generated a 3D scatter plot of the positional variables for both the
pursuer and the evader, resulting in the graphical representation shown in the Fig. 8 after 73 seconds.

Figure 8: Two views of the same plot, where a pursuer (blue) captures an evader (orange).

We can see that the decision strategy for the pursuer adopted in this hybrid program successfully
guided it to the evader, resulting in a capture at the position (691.26,441.92,561.12) after 27.7 seconds.
However if we change the initial velocity of the evader to a higher value, such as (20,0,9)m/s, we no
longer can visualise the capture of the evader within the limits used for this simulation (Fig. 9). Indeed,
Lince supports the customisation of bounds both on the maximal time and on the number of times loops
are unfolded, to avoid infinite computations. In this case, using larger bounds would allow the pursuer to
capture the evader in the plot.

Figure 9: Similar plot to the one in Fig. 8, but using different initial velocities while keeping the same
bounds on the size of the plot; this leaves out the point of the capture.

Finally by taking advantage of the variability results presented in Section 4 we very briefly study the
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Figure 10: Two simulations (left and middle) of a pursuit game using different initial velocities
((1/40)*2*pi()rad/s and (1/100)*2*pi(), respectively); the right plot depicts both simulations overlaid.

effects of using different velocities in this pursuit game. Specifically we adjust the angular velocity of
the pursuer along each axis to be either (1/40)*2*pi()rad/s or (1/100)*2*pi()rad/s, whilst keeping all other
aspects. The resulting graphical representation (after 220 seconds) is shown in Fig. 10. From the plots we
observe that the pursuer successfully captures the evader when the angular velocity is (1/40)*2*pi()rad/s

at the position (692.07,415.62,464.63) in 34.8 seconds (left plot). However with an angular velocity
of (1/100)*2*pi()rad/s, the pursuer does not capture the evader in this time frame (middle plot). These
simulations showcase Lince’s ability to model and simulate complex scenarios, thus providing valuable
insights into a system’s behavior.
A brief overview of Lince’s time performance. As shown in the previous example, Lince still has a few
limitations concerning performance. In order to give the reader a more concrete idea of them we provide
next an overview of how Lince fares perfomance-wise against the examples presented in this paper. First
we need to give further context on how Lince operates.

The first main observation is that now that Lince is equipped with an effective numerical solver
(recall Section 3) it can operate in two starkly different ways: one analytical with exact methods that
rely on SageMath’s framework [27], the other numerical, based on progressively closer approximations
as described in Section 3. Both operation modes have significant differences performance-wise: most
notably the former is obviously slower and gives timeouts much more frequently than the latter (recall
our RLCS example in Section 3). Interestingly the bottleneck hinges not only on the employment of a
precise solver, but also on the fact that:

1. this solver is external to Lince, specifically our tool needs to interact with a server, with all the
usual delays that this implies;

2. along the evaluation of a hybrid program, Lince needs to simplify resulting expressions over and
over to make them tractable (due to them being symbolic and not numerical).

We saw first-hand in Section 3 how all these extra tasks running behind the curtains inhibit Lince to
simulate programs such as the RCLS circuit. The numerical solver, on the other hand, avoid these
problems, but at the cost of less precision which may have deep implications if one wishes to have full
guarantees that a simulation is correct, particularly if the system at hand is chaotic [23]. Needless to say,
to find methods that have the virtues of both approaches is a very interesting challenge.

Table 1 lists several execution times of Lince against different variations of the examples presented in
the paper. More specifically, each row represents one of our three examples with varying sampling times
and total number of iterations. The example AEB is a variation of AEBOM, where the vehicle stops
instead of performing an overtaking manoeuvre. All these examples are fully available in our improved
Lince online.
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Table 1: An overview of Lince’s time performance with respect to the examples discussed in this paper.
We consider different sampling times, number of iterations, and both exact and approximate methods.

Sampling
Time

Nž of
Iterations

Time
Symb-Server

Time
Symb-Total

Time
Numerical-Total

RLCS
0.01s 1000 - - 11.46s
0.1s 1000 - - 10.98s
1s 150 - - 1.14s

AEB
0.01s 184 23.56s 23.70s 0.41s
0.1s 19 13.04s 13.08s 0.18s
1s 2 11.90s 11.97s 0.14s

AEBOM
0.01s 1000 - - 8.85s
0.1s 128 - - 0.62s
1s 21 - - 0.35s

Pursuit Games
0.01s 1000 - - 66.60s
0.1s 322 - - 18.26s
1s 150 - - 7.85s

We used a Linux laptop with a Intel quad-core i5 processor and 16GB RAM running both the server
and the client. The columns Sampling time and Nž of Iterations refer respectively to the rate at which
computational tasks need to be performed and the total number of times the while-loop in the program
involved is unfolded. The column Time Symb-Total presents the time since a new program is loaded,
before parsing, until the plot is displayed in the browser. The column Time Symb-Server measures only
the time taken since the launch of a dedicated process running SageMath until it is terminated at the end
of a trajectory. The column Time Numerical-Total measures the time taken since a program is loaded
until its plot is displayed, computed using numerical approximations. Some observations over the values
on Table 1 follow below.

• Most examples, except for AEB, reach a timeout (set in our server) when using the symbolic
analysis, marked in the table with “-”. The feasibility of AEB is mainly due to the smaller number
of required calls to the symbolic engine.

• In the AEB example we observe that, when using exact methods, around 99% of the total time was
spent by the computations at the server.

• The numerical mechanisms in the AEB example yield simulations significantly faster than in the
exact counterpart.

• The total time taken to numerically simulate the RLCS and AEBOM examples are shorter than
in the Pursuit Games example. This is because these two examples involve fewer computations
and the Pursuit Games use a 3D scatter plot, which is more computationally intensive than the 2D
scatter plot.

• Larger sampling times imply reduced times in generating both the exact and numerical plots, due
to the decreased number of computational operations. Consequently, it takes longer to simulate
controllers with higher precision that actuate on physical processes such as movement, velocity,
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and time. However, many critical systems, e.g., in the context of autonomous driving and other
embedded systems, may require such a high precision.

6 Conclusion and Future work

We presented an improved version of Lince, which can now handle a broader class of hybrid programs
and aims overall at improving user experience. As previously discussed, this required an extension
with the possibility of failure of the operational semantics introduced in [11], the implementation of an
efficient numerical solver, and more informative error messages, among other things.

We believe that our work opens up several research paths that we would like to explore next. For
example, thanks to the numerical solver it is now straightforward to extend our language with non-linear
differential equations, which widens even more the range of programs that Lince can currently tackle.
Another interesting research path is the addition of probabilistic constructs to Lince, such as measure
sampling. We conjecture that this could be handled easily in Lince via a random-number generator and
part of the implemented variability mechanisms that were presented in Section 4.

Yet another interesting research line is to connect Lince to the theorem prover for hybrid programs
KeYmaera X [25] – specifically the connection would consist of a suitable encoding from programs
written in Lince to programs written in KeYmaera X. Such would establish a workflow in which the
engineer first analyses a given hybrid program via simulation mechanisms (provided by Lince) and
subsequently proves properties about this program (e.g. correctness) via KeYmaera X.
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