
Reactive graphs in Action

David Tinoco, Alexandre Madeira, José Proença and Manuel A. Martins

FACS’24 - 20th International Conference in Formal Aspects of Components

Milan, 9-10 September 2024

Reactive graphs?

A reconfigurability dimension on LTS?

“In computer science the word reactivity has been used to denote systems that react to their

environment and are not meant to terminate, as coined by Pnueli and Harel in [104]. In this work the

word has a different meaning, reactive systems are history-dependent relational structures, where the

accessibility relation is determined not only by the point where one is, but also by the previous

transitions”

1

s0 s1

s2

s3

a

b

c

2

s0 s1

s2

s3

a

b

c

3

s0 s1

s2

s3

a

b

c

4

s0 s1

s2

s3

a

b

c

5

An example

The reactive graph

can be encoded as

6

An example

The reactive graph

can be encoded as

6

Contributions

In this talk we

� formalize a labelled versions of reactive graphs (LRG)

� introduce a set of constructors to build LRG , including the intrusive product - a

composition operator that captures interference of actions within models

� introduce Marge, an animator and analyser for LRG

7

Contributions

In this talk we

� formalize a labelled versions of reactive graphs (LRG)

� introduce a set of constructors to build LRG , including the intrusive product - a

composition operator that captures interference of actions within models

� introduce Marge, an animator and analyser for LRG

7

Contributions

In this talk we

� formalize a labelled versions of reactive graphs (LRG)

� introduce a set of constructors to build LRG , including the intrusive product - a

composition operator that captures interference of actions within models

� introduce Marge, an animator and analyser for LRG

7

Labelled Reactive Graphs

A labelled version of a reactive graph

A Multi-Actions Reactive Graph is a tuple M = (W ,Act,E , , , , ⋅,w0, α0) where:

� W – states

� Act – actions

� E – edges

� w0 ∈W – initial state;

� α0 ⊆ E – initially active edges

� ⊆ W ×Act ×W – ground edges

� ⊆ E × E – activating edges

� ⊆ E × E – deactivating edges

� ⋅ ∶ E Ð→ (∪ ∪) – internal details of edges

8

Semantics

Semantics

Some auxiliary notions
For e ∈ EM and a set of active edges α ⊆ EM :

from(es) ={e ∣ ∃et ⋅ e = (es , et)}
from∗(e, α) = ⋃r∈(from(e)∩α) from

∗(r , α/{e}) ∪ {r}

on(e, α) ={et ∣ etrg ∈ from∗(e, α) ∧ ∃es ⋅ etrg = (es , et) ∈ }

off(e, α) ={et ∣ etrg ∈ from∗(e, α) ∧ ∃es ⋅ etrg = (es , et) ∈ }

� off(e1, α0) = {e1, e2}, where e1 = ⟨Insert,1¿,Chocolate⟩ and e2 = ⟨Insert,0.5¿,Coffee⟩.

9

Semantics

Some auxiliary notions
For e ∈ EM and a set of active edges α ⊆ EM :

from(es) ={e ∣ ∃et ⋅ e = (es , et)}
from∗(e, α) = ⋃r∈(from(e)∩α) from

∗(r , α/{e}) ∪ {r}

on(e, α) ={et ∣ etrg ∈ from∗(e, α) ∧ ∃es ⋅ etrg = (es , et) ∈ }

off(e, α) ={et ∣ etrg ∈ from∗(e, α) ∧ ∃es ⋅ etrg = (es , et) ∈ }

� off(e1, α0) = {e1, e2}, where e1 = ⟨Insert,1¿,Chocolate⟩ and e2 = ⟨Insert,0.5¿,Coffee⟩.

9

Semantics

Semantics
The semantics of a reactive graph M is given by the evolution of the configuration ⟨w0, α0⟩ by
the rule

∃e ∈ α ⋅ e = w aÐ→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)
⟨w , α⟩ aÐ→M ⟨w ′, α′⟩

s0 s1

s2

s3

a

b

c

10

Semantics

Semantics
The semantics of a reactive graph M is given by the evolution of the configuration ⟨w0, α0⟩ by
the rule

∃e ∈ α ⋅ e = w aÐ→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)
⟨w , α⟩ aÐ→M ⟨w ′, α′⟩

s0 s1

s2

s3

a

b

c

10

Semantics

Semantics
The semantics of a reactive graph M is given by the evolution of the configuration ⟨w0, α0⟩ by
the rule

∃e ∈ α ⋅ e = w aÐ→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)
⟨w , α⟩ aÐ→M ⟨w ′, α′⟩

s0 s1

s2

s3

a

b

c

⟨s0,{s0
aÐ→ s1, s1

bÐ→ s2, . . .}⟩
aÐ→

⟨s1, ({s0
aÐ→ s1, s1

bÐ→ s2, . . .} ∪ {s1
cÐ→ s3}) ∖ {s1

bÐ→ s2}⟩

10

Semantics

Semantics
The semantics of a reactive graph M is given by the evolution of the configuration ⟨w0, α0⟩ by
the rule

∃e ∈ α ⋅ e = w aÐ→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)
⟨w , α⟩ aÐ→M ⟨w ′, α′⟩

s0 s1

s2

s3

a

b

c

⟨s0,{s0
aÐ→ s1, s1

bÐ→ s2, . . .}⟩
aÐ→ ⟨s1, ({s0

aÐ→ s1, s1
bÐ→ s2, . . .} ∪ {s1

cÐ→ s3}) ∖ {s1
bÐ→ s2}⟩

10

Semantics

Semantics
The semantics of a reactive graph M is given by the evolution of the configuration ⟨w0, α0⟩ by
the rule

∃e ∈ α ⋅ e = w aÐ→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)
⟨w , α⟩ aÐ→M ⟨w ′, α′⟩

s0 s1

s2

s3

a

b

c

⟨s0,{s0
aÐ→ s1, s1

bÐ→ s2, . . .}⟩
aÐ→ ⟨s1, ({s0

aÐ→ s1, s1
cÐ→ s3, . . .}⟩

10

Relevant Properties on modelling with reactive graphs

The specifier shall be aware of the presence of

Contradictory effects: a transition triggers both the enabling and disabling of the same edge.

Our semantics solve this conflict by giving priority to disabling

Unreachable transitions: even from reachable states, there are transitions that can not be

never triggered

Other properties of reactive graphs can be defined over its behaviour:

→M= ⋃{
aÐ→∣ a ∈ Act}

� Deadlocks

� Unreachable states

� Observational equivalence

� ...

11

Relevant Properties on modelling with reactive graphs

The specifier shall be aware of the presence of

Contradictory effects: a transition triggers both the enabling and disabling of the same edge.

Our semantics solve this conflict by giving priority to disabling

Unreachable transitions: even from reachable states, there are transitions that can not be

never triggered

Other properties of reactive graphs can be defined over its behaviour:

→M= ⋃{
aÐ→∣ a ∈ Act}

� Deadlocks

� Unreachable states

� Observational equivalence

� ...

11

Relevant Properties on modelling with reactive graphs

The specifier shall be aware of the presence of

Contradictory effects: a transition triggers both the enabling and disabling of the same edge.

Our semantics solve this conflict by giving priority to disabling

Unreachable transitions: even from reachable states, there are transitions that can not be

never triggered

Other properties of reactive graphs can be defined over its behaviour:

→M= ⋃{
aÐ→∣ a ∈ Act}

� Deadlocks

� Unreachable states

� Observational equivalence

� ...
11

Composition of models

Composition of reactive graphs

Goal
Help building complex systems by

composing simpler modules.

Four products of reactive graphs

� asynchronous and synchronous

� with and without intrusive transitions

12

Composition of reactive graphs

Goal
Help building complex systems by

composing simpler modules.

Four products of reactive graphs

� asynchronous and synchronous

� with and without intrusive transitions

12

Traditional composition

s0 s1a

Asynchronous (interleaving)

⟨s0,w0⟩ ⟨s1,w0⟩

⟨s0,w1⟩ ⟨s1,w1⟩

a

a a

a

w0 w1a

Synchronous (communicating)

⟨s0,w0⟩

⟨s1,w1⟩

a

∥

13

Composition with intrusive transitions (example 1)

s0 s1a

Asynchronous (interleaving)

⟨s0,w0⟩ ⟨s1,w0⟩

⟨s1,w1⟩

a

a

w0 w1a

Synchronous (communicating)

⟨s0,w0⟩

⟨s1,w1⟩

∥

14

Composition with intrusive transitions (example 2)

s0 s1a

Asynchronous

⟨s0,w0⟩ ⟨s1,w0⟩

⟨s0,w1⟩ ⟨s1,w1⟩

a

a

a

w0 w1a

Synchronous

⟨s0,w0⟩

⟨s1,w1⟩

a

∥

15

Intrusive transitions – a different way to communicate

shared memory

idle1

write1

access save

idle2

write2

access save

16

Products – formally

Asynchronous product with intrusive transitions
Given two multi-action reactive graphs M1,M2, and Γ⊕,Γ⊖ ⊆ E1 × E2 ∪ E2 × E1 is the set of

intrusive edges between M1 and M2. The effects produced by edge e ∈ EMi
in Mi is given for

the set follow:

αi(Γ⊕,Γ⊖, e) = (αi ∪ on(e, αi) ∪ Γ⊕(e)) ∖ (off(e, αi) ∪ Γ⊖(e))

with the rules

∃ e ∈ α1 ⋅ e = s1
aÐ→ s ′1 ∧ α′1 = (α1 ∪ on(e, α1))/off(e, α1) ∧ α′2 = α2(Γ⊕,Γ⊖, e)
⟨s1, α1⟩ �Γ⊕,Γ⊖ ⟨s2, α2⟩

aÐ→ ⟨s ′1, α′1⟩ �Γ⊕,Γ⊖ ⟨s2, α′2⟩

∃ e ∈ α2 ⋅ e = s2
aÐ→ s ′2 ∧ α′2 = (α2 ∪ on(e, α2))/off(e, α2) ∧ α′1 = α1(Γ⊕,Γ⊖, e)
⟨s1, α1⟩ �Γ⊕,Γ⊖ ⟨s2, α2⟩

aÐ→ ⟨s1, α′1⟩ �Γ⊕,Γ⊖ ⟨s ′2, α′2⟩

17

Products – formally

SOS rule for synchronous product with intrusive transitions

∃ e1 ∈ α1 ⋅ e1 = s1
aÐ→ s ′1

∃ e2 ∈ α2 ⋅ e2 = s2
aÐ→ s ′2

∧ α′1 = (α1 ∪ on(e1, α1) ∪ Γ⊕(e1))/(off(e1, α1) ∪ Γ⊖(e1))
α′2 = (α2 ∪ on(e2, α2) ∪ Γ⊕(e2))/(off(e2, α2) ∪ Γ⊖(e2))

⟨s1, α1⟩ :
:

:
:

Γ⊕,Γ⊖ ⟨s2, α2⟩
aÐ→ ⟨s ′1, α′1⟩ :

:
:
:

Γ⊕,Γ⊖ ⟨s ′2, α′2⟩

18

Marge – animator of Multi

Action Reactive Graphs

Marge – https://fm-dcc.github.io/MARGe

19

https://fm-dcc.github.io/MARGe

Marge - overview

� Developed in Scala, using CAOS (generating JavaScript with ScalaJS)

� Static website that loads a compiled JavaScript (fully offline, no server)

Available widgets

� Input

� View graph

� Run step-by-step

� Produce LTS

� Count edges/states

� Compare graphs

(bisim)

� Find conflicts

� Find deadlocks

� Run a product

Demo: https://fm-dcc.github.io/MARGe

20

https://fm-dcc.github.io/MARGe

Marge - overview

� Developed in Scala, using CAOS (generating JavaScript with ScalaJS)

� Static website that loads a compiled JavaScript (fully offline, no server)

Available widgets

� Input

� View graph

� Run step-by-step

� Produce LTS

� Count edges/states

� Compare graphs

(bisim)

� Find conflicts

� Find deadlocks

� Run a product

Demo: https://fm-dcc.github.io/MARGe

20

https://fm-dcc.github.io/MARGe

Wrap up

In this talk:
� Analysed reactive graphs

� Revisited (operational) semantics

� Animated and increased insights

– Marge

� Proposed compositions

(to improve specifications of

more complex systems)

Next steps
� Further improve specifications

� exploit labels for intrusion

� support dynamic SPL

� propose betted DSL in Marge

� support weights

� investigate logics

� capturing reconfigurations

� capturing weights

� support model checking

(e.g., via mCRL2)

Thank you!

21

Wrap up

In this talk:
� Analysed reactive graphs

� Revisited (operational) semantics

� Animated and increased insights

– Marge

� Proposed compositions

(to improve specifications of

more complex systems)

Next steps
� Further improve specifications

� exploit labels for intrusion

� support dynamic SPL

� propose betted DSL in Marge

� support weights

� investigate logics

� capturing reconfigurations

� capturing weights

� support model checking

(e.g., via mCRL2)

Thank you!

21

Wrap up

In this talk:
� Analysed reactive graphs

� Revisited (operational) semantics

� Animated and increased insights

– Marge

� Proposed compositions

(to improve specifications of

more complex systems)

Next steps
� Further improve specifications

� exploit labels for intrusion

� support dynamic SPL

� propose betted DSL in Marge

� support weights

� investigate logics

� capturing reconfigurations

� capturing weights

� support model checking

(e.g., via mCRL2)

Thank you!
21

Reactive graphs in Action

David Tinoco, Alexandre Madeira, José Proença and Manuel A. Martins

FACS’24 - 20th International Conference in Formal Aspects of Components

Milan, 9-10 September 2024

	Reactive graphs?
	Labelled Reactive Graphs
	Semantics
	Composition of models
	Marge – animator of Multi Action Reactive Graphs

