
Reconfigurable graphs for event structures

José Proença

based on work with Alexandre Madeira, Manuel Martins, David Tinoco @ Univ. Aveiro, Portugal

APM Workshop 2024, Turin, 2-4 October 2024

CISTER & U.Porto, Porto, Portugal

Behavioural Feature Models, Event Structures, and Reconfigurable Graphs

Behavioural feature models
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’24, September 2-6, 2024, Luxembourg Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Therefore, we introduce featured event structures. Event structures
describe “a set of event occurrences with relations to express how
events causally depend on others” [60]. Featured event structures
extend event structureswith a labeling function on events, similar to
the labeling of transitions in featured transition systems, and de�ne
ordering and con�ict relations between loosely coupled events. In
this paper, we formally de�ne featured event structures and explain
how they are used to obtain semantics for compositional BFMs.

In summary, the main contributions of this paper are as follows:
• Behavioral Feature Models, a unifying model for structural

and behavioral variability in software product lines;
• featured event structures, enabling compositional semantics

for Behavioral Feature Models; and
• a case study showcasing a Behavioral Feature Model for the

well-known mine pump system.
The remainder of this paper is organized as follows. In Sect. 2, we

introduce our running example, the cleaning robot. In Sect. 3, we
provide the background de�nitions needed for the developments
in the rest of the paper. In Sect. 4, we present the concept of BFMs,
their syntax and semantics. We show how the behavior of products
can be derived from BFMs in Sect. 5. We apply them to specify the
mine pump system in Sect. 6. In Sect. 7, we position our contribution
within the state of the art and review related work. Finally, in Sect. 8,
we conclude the paper and present the directions of our ongoing
research. Appendix B and A contain two illustrative �gures of the
case study, which are not necessary for appreciating the case study.

2 MOTIVATING EXAMPLE
We illustrate the concepts presented in this paper by considering the
features of a software product line for a cleaning robot. Its behavior
can be summarized as follows: the robot starts by optionally map-
ping the cleaning area, followed by a cleaning procedure consisting
of moving to the next position and cleaning there. In case the robot
detects an obstacle, using either a lidar or a camera, it cannot move
to the next position. Instead, the robot has to bypass the obstacle
and then continue cleaning. After the cleaning procedure, the robot
goes to charge. The software needed for the cleaning robot can be
described in an FM, depicted in Fig. 1.

A Behavioral Feature Model (BFM) can be used to describe the
features of the cleaning robot together with their associated behav-
ior. By associating events to each feature, we capture the behavior
of the robot in a compositional way. The feature robot has the event
charge, the optional sub-feature mapping, and the mandatory sub-
features cleaning and obstacle detection. The mapping feature has
the event map. The cleaning feature has the events move, goAround
and clean, where either of the �rst two events enables the last.
Furthermore, all of these events enable the event charge of the fea-
ture robot. The feature obstacleDetection has the sub-features lidar
and camera, which are related via an xor relation. The former has
an event liDet for detecting obstacles with the lidar, the latter an
event caDet for detecting obstacles with the camera. Both events
disable the eventmove and enable the event goAround of the feature
cleaning. If the feature mapping is included in a con�guration, then
it enables the events of the sub-BFMs of cleaning and obstacleDe-
tection, including the events of the lidar and camera features. A
graphical representation of the resulting BFM (de�ned in Sect. 4)

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

mapping

xor

optional feature

Figure 1: An FM of the cleaning robot.

is given in Fig. 2 where the behavioral part is highlighted with
gray backgrounds and gray arrows.
If we consider a con�guration of the cleaning robot with all the

features present apart from camera, then the events of the BFM
and their associated constraints describe the possible behavior of
the robot in terms of traces of events. For example, the possible
behavior of this con�guration of the cleaning robot is captured by
(pre�xes of) the following two traces:

hmap ·move · clean · chargei,
hmap · liDet · goAround · clean · chargei.

In a con�guration of the cleaning robot without the mapping and
camera features, these traces would not be possible. Instead, the
possible behavior of such a con�guration is captured by traces
without the map event, such as:

hmove · clean · chargei, hliDet · goAround · clean · chargei.
Observe that the events in these traces are scattered across the
di�erent features of the BFM. However, the behavior described in
these traces must respect a certain order, e.g., goAround happens
before clean. Additionally, the presence of some events disables the
presence of others, e.g., liDet disables move.

The behavior of any feature in the BFM can be described similarly
in terms of traces of events that respect the speci�ed ordering re-
strictions. For example, the possible behavior of the feature cleaning
includes the following two traces:

hmove · cleani, hgoAround · cleani.
In this paper, we propose BFMs to capture such behavioral con-
straints compositionally, describing the possible behavior of prod-
ucts in a software product line starting from the behavior of the
features.

3 BACKGROUND
We brie�y introduce feature models in Sect. 3.1, which we extend to
Behavioral Feature Models in Sect. 4, and bundle event structures in
Sect. 3.2, which are extended to featured event structures in Sect. 4.2
to provide the semantics of Behavioral Feature Models.

3.1 Feature Models
We follow the common approach, e.g., taken by Apel et al. [3], for
de�ning the syntax and semantics of feature models. In the sequel,
let �= denote a �nite index set � with minimal cardinality = (so �2
denotes an index set � such that |� | � 2).

2

||

||Beh Beh

Beh Beh

by Pässler, Fortz, ter Beek,

Damiani, Mousavi, Johnsen,

Tapia Tarifa [unpublished]

(Bundle) Event structures
a

b

c

d

e

f

g

h

#

by Nielsen, Plotkin, and

Winskel [TCS’81] and

Langerak [FORTE’92]

Reconfigurable graphs

s0 s1

s2

s3

a
b

c

by Tinoco, Madeira, Martins,

Proença [FACS’24]

Goal:
Investigate dependencies & conflicts

in (Networks of) Reconfigurable graphs

José Proença – Dependencies with reconfigurable graphs 1 / 30

Behavioural Feature Models, Event Structures, and Reconfigurable Graphs

Behavioural feature models
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’24, September 2-6, 2024, Luxembourg Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Therefore, we introduce featured event structures. Event structures
describe “a set of event occurrences with relations to express how
events causally depend on others” [60]. Featured event structures
extend event structureswith a labeling function on events, similar to
the labeling of transitions in featured transition systems, and de�ne
ordering and con�ict relations between loosely coupled events. In
this paper, we formally de�ne featured event structures and explain
how they are used to obtain semantics for compositional BFMs.

In summary, the main contributions of this paper are as follows:
• Behavioral Feature Models, a unifying model for structural

and behavioral variability in software product lines;
• featured event structures, enabling compositional semantics

for Behavioral Feature Models; and
• a case study showcasing a Behavioral Feature Model for the

well-known mine pump system.
The remainder of this paper is organized as follows. In Sect. 2, we

introduce our running example, the cleaning robot. In Sect. 3, we
provide the background de�nitions needed for the developments
in the rest of the paper. In Sect. 4, we present the concept of BFMs,
their syntax and semantics. We show how the behavior of products
can be derived from BFMs in Sect. 5. We apply them to specify the
mine pump system in Sect. 6. In Sect. 7, we position our contribution
within the state of the art and review related work. Finally, in Sect. 8,
we conclude the paper and present the directions of our ongoing
research. Appendix B and A contain two illustrative �gures of the
case study, which are not necessary for appreciating the case study.

2 MOTIVATING EXAMPLE
We illustrate the concepts presented in this paper by considering the
features of a software product line for a cleaning robot. Its behavior
can be summarized as follows: the robot starts by optionally map-
ping the cleaning area, followed by a cleaning procedure consisting
of moving to the next position and cleaning there. In case the robot
detects an obstacle, using either a lidar or a camera, it cannot move
to the next position. Instead, the robot has to bypass the obstacle
and then continue cleaning. After the cleaning procedure, the robot
goes to charge. The software needed for the cleaning robot can be
described in an FM, depicted in Fig. 1.

A Behavioral Feature Model (BFM) can be used to describe the
features of the cleaning robot together with their associated behav-
ior. By associating events to each feature, we capture the behavior
of the robot in a compositional way. The feature robot has the event
charge, the optional sub-feature mapping, and the mandatory sub-
features cleaning and obstacle detection. The mapping feature has
the event map. The cleaning feature has the events move, goAround
and clean, where either of the �rst two events enables the last.
Furthermore, all of these events enable the event charge of the fea-
ture robot. The feature obstacleDetection has the sub-features lidar
and camera, which are related via an xor relation. The former has
an event liDet for detecting obstacles with the lidar, the latter an
event caDet for detecting obstacles with the camera. Both events
disable the eventmove and enable the event goAround of the feature
cleaning. If the feature mapping is included in a con�guration, then
it enables the events of the sub-BFMs of cleaning and obstacleDe-
tection, including the events of the lidar and camera features. A
graphical representation of the resulting BFM (de�ned in Sect. 4)

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

mapping

xor

optional feature

Figure 1: An FM of the cleaning robot.

is given in Fig. 2 where the behavioral part is highlighted with
gray backgrounds and gray arrows.
If we consider a con�guration of the cleaning robot with all the

features present apart from camera, then the events of the BFM
and their associated constraints describe the possible behavior of
the robot in terms of traces of events. For example, the possible
behavior of this con�guration of the cleaning robot is captured by
(pre�xes of) the following two traces:

hmap ·move · clean · chargei,
hmap · liDet · goAround · clean · chargei.

In a con�guration of the cleaning robot without the mapping and
camera features, these traces would not be possible. Instead, the
possible behavior of such a con�guration is captured by traces
without the map event, such as:

hmove · clean · chargei, hliDet · goAround · clean · chargei.
Observe that the events in these traces are scattered across the
di�erent features of the BFM. However, the behavior described in
these traces must respect a certain order, e.g., goAround happens
before clean. Additionally, the presence of some events disables the
presence of others, e.g., liDet disables move.

The behavior of any feature in the BFM can be described similarly
in terms of traces of events that respect the speci�ed ordering re-
strictions. For example, the possible behavior of the feature cleaning
includes the following two traces:

hmove · cleani, hgoAround · cleani.
In this paper, we propose BFMs to capture such behavioral con-
straints compositionally, describing the possible behavior of prod-
ucts in a software product line starting from the behavior of the
features.

3 BACKGROUND
We brie�y introduce feature models in Sect. 3.1, which we extend to
Behavioral Feature Models in Sect. 4, and bundle event structures in
Sect. 3.2, which are extended to featured event structures in Sect. 4.2
to provide the semantics of Behavioral Feature Models.

3.1 Feature Models
We follow the common approach, e.g., taken by Apel et al. [3], for
de�ning the syntax and semantics of feature models. In the sequel,
let �= denote a �nite index set � with minimal cardinality = (so �2
denotes an index set � such that |� | � 2).

2

||

||Beh Beh

Beh Beh

by Pässler, Fortz, ter Beek,

Damiani, Mousavi, Johnsen,

Tapia Tarifa [unpublished]

(Bundle) Event structures
a

b

c

d

e

f

g

h

#

by Nielsen, Plotkin, and

Winskel [TCS’81] and

Langerak [FORTE’92]

Reconfigurable graphs

s0 s1

s2

s3

a
b

c

by Tinoco, Madeira, Martins,

Proença [FACS’24]

Goal:
Investigate dependencies & conflicts

in (Networks of) Reconfigurable graphs

José Proença – Dependencies with reconfigurable graphs 1 / 30

Behavioural Feature Models

Behavioural Feature Model of a Cleaning Robot

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’24, September 2-6, 2024, Luxembourg Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Therefore, we introduce featured event structures. Event structures
describe “a set of event occurrences with relations to express how
events causally depend on others” [60]. Featured event structures
extend event structureswith a labeling function on events, similar to
the labeling of transitions in featured transition systems, and de�ne
ordering and con�ict relations between loosely coupled events. In
this paper, we formally de�ne featured event structures and explain
how they are used to obtain semantics for compositional BFMs.

In summary, the main contributions of this paper are as follows:
• Behavioral Feature Models, a unifying model for structural

and behavioral variability in software product lines;
• featured event structures, enabling compositional semantics

for Behavioral Feature Models; and
• a case study showcasing a Behavioral Feature Model for the

well-known mine pump system.
The remainder of this paper is organized as follows. In Sect. 2, we

introduce our running example, the cleaning robot. In Sect. 3, we
provide the background de�nitions needed for the developments
in the rest of the paper. In Sect. 4, we present the concept of BFMs,
their syntax and semantics. We show how the behavior of products
can be derived from BFMs in Sect. 5. We apply them to specify the
mine pump system in Sect. 6. In Sect. 7, we position our contribution
within the state of the art and review related work. Finally, in Sect. 8,
we conclude the paper and present the directions of our ongoing
research. Appendix B and A contain two illustrative �gures of the
case study, which are not necessary for appreciating the case study.

2 MOTIVATING EXAMPLE
We illustrate the concepts presented in this paper by considering the
features of a software product line for a cleaning robot. Its behavior
can be summarized as follows: the robot starts by optionally map-
ping the cleaning area, followed by a cleaning procedure consisting
of moving to the next position and cleaning there. In case the robot
detects an obstacle, using either a lidar or a camera, it cannot move
to the next position. Instead, the robot has to bypass the obstacle
and then continue cleaning. After the cleaning procedure, the robot
goes to charge. The software needed for the cleaning robot can be
described in an FM, depicted in Fig. 1.

A Behavioral Feature Model (BFM) can be used to describe the
features of the cleaning robot together with their associated behav-
ior. By associating events to each feature, we capture the behavior
of the robot in a compositional way. The feature robot has the event
charge, the optional sub-feature mapping, and the mandatory sub-
features cleaning and obstacle detection. The mapping feature has
the event map. The cleaning feature has the events move, goAround
and clean, where either of the �rst two events enables the last.
Furthermore, all of these events enable the event charge of the fea-
ture robot. The feature obstacleDetection has the sub-features lidar
and camera, which are related via an xor relation. The former has
an event liDet for detecting obstacles with the lidar, the latter an
event caDet for detecting obstacles with the camera. Both events
disable the eventmove and enable the event goAround of the feature
cleaning. If the feature mapping is included in a con�guration, then
it enables the events of the sub-BFMs of cleaning and obstacleDe-
tection, including the events of the lidar and camera features. A
graphical representation of the resulting BFM (de�ned in Sect. 4)

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

mapping

xor

optional feature

Figure 1: An FM of the cleaning robot.

is given in Fig. 2 where the behavioral part is highlighted with
gray backgrounds and gray arrows.
If we consider a con�guration of the cleaning robot with all the

features present apart from camera, then the events of the BFM
and their associated constraints describe the possible behavior of
the robot in terms of traces of events. For example, the possible
behavior of this con�guration of the cleaning robot is captured by
(pre�xes of) the following two traces:

hmap ·move · clean · chargei,
hmap · liDet · goAround · clean · chargei.

In a con�guration of the cleaning robot without the mapping and
camera features, these traces would not be possible. Instead, the
possible behavior of such a con�guration is captured by traces
without the map event, such as:

hmove · clean · chargei, hliDet · goAround · clean · chargei.
Observe that the events in these traces are scattered across the
di�erent features of the BFM. However, the behavior described in
these traces must respect a certain order, e.g., goAround happens
before clean. Additionally, the presence of some events disables the
presence of others, e.g., liDet disables move.

The behavior of any feature in the BFM can be described similarly
in terms of traces of events that respect the speci�ed ordering re-
strictions. For example, the possible behavior of the feature cleaning
includes the following two traces:

hmove · cleani, hgoAround · cleani.
In this paper, we propose BFMs to capture such behavioral con-
straints compositionally, describing the possible behavior of prod-
ucts in a software product line starting from the behavior of the
features.

3 BACKGROUND
We brie�y introduce feature models in Sect. 3.1, which we extend to
Behavioral Feature Models in Sect. 4, and bundle event structures in
Sect. 3.2, which are extended to featured event structures in Sect. 4.2
to provide the semantics of Behavioral Feature Models.

3.1 Feature Models
We follow the common approach, e.g., taken by Apel et al. [3], for
de�ning the syntax and semantics of feature models. In the sequel,
let �= denote a �nite index set � with minimal cardinality = (so �2
denotes an index set � such that |� | � 2).

2

||

||Beh Beh

Beh Beh

⇒

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Behavioral Feature Models SPLC’24, September 2-6, 2024, Luxembourg

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

cause

mapping

conflict

xor

optional feature

liDet
clean

goAround

move

map

charge

caDet

Figure 2: A BFM of the cleaning robot.

De�nition 3.1 (Feature model syntax). Let # be a set of feature
names with 5 2 # . A feature model (FM) over # has the following
syntax.

FM ::= (5 , (SFMi)82� 0 , FC)
SFM ::= Uop(FM) | Op(FM8)82� 2
Uop ::= opt | mnd
Op ::= or | xor
FC ::= ú | exc(5 , 5) | req(5 , 5) | FC FC

where exc is a symmetric and req an anti-symmetric relation over
⇥ # .

In Def. 3.1, FMs are de�ned compositionally: an FM has sub-FMs
SFM8 , i.e., an indexed number of children that are typed FMs. A
child FM may be typed as optional (opt) or mandatory (mnd), or as
a choice between FMs, either a regular choice (or) or an exclusive
choice (xor).We assume that all the feature names in FM are distinct.
Observe that Def. 3.1 allows cross-tree constraints FC to be situated
inside sub-FMs SFM8 ; without any loss of generality, we assume
that cross-tree constraints are situated in the smallest SFM8 that
contains the mentioned features. This will facilitate composition,
decomposition, and reusability, as explained later. We use Yfm as
syntactic sugar to denote the empty sub-FM (SFMi)82; .

Example 3.2. Let #A be a set of feature names containing the fea-
tures robot,mapping, cleaning, obstacleDetection, lidar , and camera,
represented as A ,<, 2 , > , li, and ca, respectively. We de�ne the FM
Fr of the cleaning robot example shown in Fig. 1 and described in
Sect. 2 as follows:

Fr = (A , (opt(F<),mnd(F2),mnd(F>)),ú)
F< = (<, Yfm,ú)
F2 = (2, Yfm,ú)
F> = (>, xor(Fli, Fca),ú)
Fli = (li, Yfm,ú)
Fca = (ca, Yfm,ú)

To de�ne the semantics of FMs, we use Boolean formulae called
feature expressions, de�ned below, which have feature names as
their atomic propositions.

De�nition 3.3 (Feature expressions). Let # be a set of feature
names and let G range over # . The set of feature expressions over # ,
denoted FExp(#), includes all Boolean expressions over elements
of # (modulo logical equivalence). Thus, a feature expression q 2
FExp(#) is of the form

q ::= G | q ^ q | q _ q | q ! q | q $ q | ¬q | ff | tt .
The semantics of FMs is de�ned in terms of feature expressions.

De�nition 3.4 (FM semantics). Let FM and FM8 be feature models
over a set of feature names # , such that 5 is the feature name
associated with FM and 58 the feature name associated with FM8 .
The semantics of the feature model FM is a feature expression over
, de�ned inductively as follows:
»(5 , (SFM8)82� 0 , FC)… ⌘

”
82� 0»(5 , SFMi,ú)… ^ »FC…

»(5 , opt(FM1), FC)… ⌘ (51 ! 5) ^ »FM1… ^ »FC…
»(5 ,mnd(FM1), FC)… ⌘ (51 $ 5) ^ »FM1… ^ »FC…
»(5 , or(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

82� 2»FM8… ^ »FC…
»(5 , xor(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

:< 92� 2 ¬(59 ^ 5:)
^”

82� 2»FM8… ^ »FC…
»FC1 FC2… ⌘ »FC1… ^ »FC2…
»exc(51, 52)… ⌘ ¬(51 ^ 52)
»req(51, 52)… ⌘ ¬51 _ 52
»ú… ⌘ tt

Note that
”

82;»(5 , SFMi,ú)… = tt. This formulation of the se-
mantics of an FM does not include the root feature in the feature
expression, thereby allowing feature models to be further composed.
However, once an FM F has been decided upon and will not be
changed anymore, we can close it, denoted by close(F), making it
un-composable. Thus, we de�ne the semantics of a closed FM as
»close(F)… ⌘ 5 ^ »F…, with 5 the feature name (root feature) of F .

Example 3.5. The semantics of the cleaning robot FM de�ned in
Example 3.2 is as follows:

»close(FA)… = A ^ (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»FA… = ((< ! A) ^ tt ^ tt) ^ ((2 $ A) ^ tt ^ tt)
^ ((> $ A) ^ ((li _ ca) $ >)
^ ¬(li ^ ca) ^ tt) ^ »ú…

= (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»F<… = »ú… = tt
»F2… = »ú… = tt
»F>… = ((li _ ca) $ >) ^ ¬(li ^ ca) ^ »Fli…

^ »Fca… ^ »ú…
= ((li _ ca) $ >) ^ ¬(li ^ ca)

»Fli… = »ú… = tt
»Fca… = »ú… = tt

We obtain an FM’s products by evaluating its feature expression.

De�nition 3.6 (Products in feature models). Let # be a set of
feature names, and let � ✓ # . An evaluation over � is a function
eval� : FExp(#) �! B which maps all variables G 2 # of a
feature expression q to tt if G 2 � and to ff otherwise. For a feature
expression q 2 FExp(#), the products described by q are all sets of
feature names such that q holds. Formally:

products(q) ⌘ { � | eval� (q) and � 2 P(#) }.
3

⇒

Family of Event Structures

� called Featured Event Structure

� Events labelled with feature conditions

� Similar to featured transition systems (more traditional)

José Proença – Dependencies with reconfigurable graphs Behavioural Feature Models 2 / 30

Behavioural Feature Model of a Cleaning Robot

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’24, September 2-6, 2024, Luxembourg Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Therefore, we introduce featured event structures. Event structures
describe “a set of event occurrences with relations to express how
events causally depend on others” [60]. Featured event structures
extend event structureswith a labeling function on events, similar to
the labeling of transitions in featured transition systems, and de�ne
ordering and con�ict relations between loosely coupled events. In
this paper, we formally de�ne featured event structures and explain
how they are used to obtain semantics for compositional BFMs.

In summary, the main contributions of this paper are as follows:
• Behavioral Feature Models, a unifying model for structural

and behavioral variability in software product lines;
• featured event structures, enabling compositional semantics

for Behavioral Feature Models; and
• a case study showcasing a Behavioral Feature Model for the

well-known mine pump system.
The remainder of this paper is organized as follows. In Sect. 2, we

introduce our running example, the cleaning robot. In Sect. 3, we
provide the background de�nitions needed for the developments
in the rest of the paper. In Sect. 4, we present the concept of BFMs,
their syntax and semantics. We show how the behavior of products
can be derived from BFMs in Sect. 5. We apply them to specify the
mine pump system in Sect. 6. In Sect. 7, we position our contribution
within the state of the art and review related work. Finally, in Sect. 8,
we conclude the paper and present the directions of our ongoing
research. Appendix B and A contain two illustrative �gures of the
case study, which are not necessary for appreciating the case study.

2 MOTIVATING EXAMPLE
We illustrate the concepts presented in this paper by considering the
features of a software product line for a cleaning robot. Its behavior
can be summarized as follows: the robot starts by optionally map-
ping the cleaning area, followed by a cleaning procedure consisting
of moving to the next position and cleaning there. In case the robot
detects an obstacle, using either a lidar or a camera, it cannot move
to the next position. Instead, the robot has to bypass the obstacle
and then continue cleaning. After the cleaning procedure, the robot
goes to charge. The software needed for the cleaning robot can be
described in an FM, depicted in Fig. 1.

A Behavioral Feature Model (BFM) can be used to describe the
features of the cleaning robot together with their associated behav-
ior. By associating events to each feature, we capture the behavior
of the robot in a compositional way. The feature robot has the event
charge, the optional sub-feature mapping, and the mandatory sub-
features cleaning and obstacle detection. The mapping feature has
the event map. The cleaning feature has the events move, goAround
and clean, where either of the �rst two events enables the last.
Furthermore, all of these events enable the event charge of the fea-
ture robot. The feature obstacleDetection has the sub-features lidar
and camera, which are related via an xor relation. The former has
an event liDet for detecting obstacles with the lidar, the latter an
event caDet for detecting obstacles with the camera. Both events
disable the eventmove and enable the event goAround of the feature
cleaning. If the feature mapping is included in a con�guration, then
it enables the events of the sub-BFMs of cleaning and obstacleDe-
tection, including the events of the lidar and camera features. A
graphical representation of the resulting BFM (de�ned in Sect. 4)

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

mapping

xor

optional feature

Figure 1: An FM of the cleaning robot.

is given in Fig. 2 where the behavioral part is highlighted with
gray backgrounds and gray arrows.
If we consider a con�guration of the cleaning robot with all the

features present apart from camera, then the events of the BFM
and their associated constraints describe the possible behavior of
the robot in terms of traces of events. For example, the possible
behavior of this con�guration of the cleaning robot is captured by
(pre�xes of) the following two traces:

hmap ·move · clean · chargei,
hmap · liDet · goAround · clean · chargei.

In a con�guration of the cleaning robot without the mapping and
camera features, these traces would not be possible. Instead, the
possible behavior of such a con�guration is captured by traces
without the map event, such as:

hmove · clean · chargei, hliDet · goAround · clean · chargei.
Observe that the events in these traces are scattered across the
di�erent features of the BFM. However, the behavior described in
these traces must respect a certain order, e.g., goAround happens
before clean. Additionally, the presence of some events disables the
presence of others, e.g., liDet disables move.

The behavior of any feature in the BFM can be described similarly
in terms of traces of events that respect the speci�ed ordering re-
strictions. For example, the possible behavior of the feature cleaning
includes the following two traces:

hmove · cleani, hgoAround · cleani.
In this paper, we propose BFMs to capture such behavioral con-
straints compositionally, describing the possible behavior of prod-
ucts in a software product line starting from the behavior of the
features.

3 BACKGROUND
We brie�y introduce feature models in Sect. 3.1, which we extend to
Behavioral Feature Models in Sect. 4, and bundle event structures in
Sect. 3.2, which are extended to featured event structures in Sect. 4.2
to provide the semantics of Behavioral Feature Models.

3.1 Feature Models
We follow the common approach, e.g., taken by Apel et al. [3], for
de�ning the syntax and semantics of feature models. In the sequel,
let �= denote a �nite index set � with minimal cardinality = (so �2
denotes an index set � such that |� | � 2).

2

||

||Beh Beh

Beh Beh

⇒

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Behavioral Feature Models SPLC’24, September 2-6, 2024, Luxembourg

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

cause

mapping

conflict

xor

optional feature

liDet
clean

goAround

move

map

charge

caDet

Figure 2: A BFM of the cleaning robot.

De�nition 3.1 (Feature model syntax). Let # be a set of feature
names with 5 2 # . A feature model (FM) over # has the following
syntax.

FM ::= (5 , (SFMi)82� 0 , FC)
SFM ::= Uop(FM) | Op(FM8)82� 2
Uop ::= opt | mnd
Op ::= or | xor
FC ::= ú | exc(5 , 5) | req(5 , 5) | FC FC

where exc is a symmetric and req an anti-symmetric relation over
⇥ # .

In Def. 3.1, FMs are de�ned compositionally: an FM has sub-FMs
SFM8 , i.e., an indexed number of children that are typed FMs. A
child FM may be typed as optional (opt) or mandatory (mnd), or as
a choice between FMs, either a regular choice (or) or an exclusive
choice (xor).We assume that all the feature names in FM are distinct.
Observe that Def. 3.1 allows cross-tree constraints FC to be situated
inside sub-FMs SFM8 ; without any loss of generality, we assume
that cross-tree constraints are situated in the smallest SFM8 that
contains the mentioned features. This will facilitate composition,
decomposition, and reusability, as explained later. We use Yfm as
syntactic sugar to denote the empty sub-FM (SFMi)82; .

Example 3.2. Let #A be a set of feature names containing the fea-
tures robot,mapping, cleaning, obstacleDetection, lidar , and camera,
represented as A ,<, 2 , > , li, and ca, respectively. We de�ne the FM
Fr of the cleaning robot example shown in Fig. 1 and described in
Sect. 2 as follows:

Fr = (A , (opt(F<),mnd(F2),mnd(F>)),ú)
F< = (<, Yfm,ú)
F2 = (2, Yfm,ú)
F> = (>, xor(Fli, Fca),ú)
Fli = (li, Yfm,ú)
Fca = (ca, Yfm,ú)

To de�ne the semantics of FMs, we use Boolean formulae called
feature expressions, de�ned below, which have feature names as
their atomic propositions.

De�nition 3.3 (Feature expressions). Let # be a set of feature
names and let G range over # . The set of feature expressions over # ,
denoted FExp(#), includes all Boolean expressions over elements
of # (modulo logical equivalence). Thus, a feature expression q 2
FExp(#) is of the form

q ::= G | q ^ q | q _ q | q ! q | q $ q | ¬q | ff | tt .
The semantics of FMs is de�ned in terms of feature expressions.

De�nition 3.4 (FM semantics). Let FM and FM8 be feature models
over a set of feature names # , such that 5 is the feature name
associated with FM and 58 the feature name associated with FM8 .
The semantics of the feature model FM is a feature expression over
, de�ned inductively as follows:
»(5 , (SFM8)82� 0 , FC)… ⌘

”
82� 0»(5 , SFMi,ú)… ^ »FC…

»(5 , opt(FM1), FC)… ⌘ (51 ! 5) ^ »FM1… ^ »FC…
»(5 ,mnd(FM1), FC)… ⌘ (51 $ 5) ^ »FM1… ^ »FC…
»(5 , or(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

82� 2»FM8… ^ »FC…
»(5 , xor(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

:< 92� 2 ¬(59 ^ 5:)
^”

82� 2»FM8… ^ »FC…
»FC1 FC2… ⌘ »FC1… ^ »FC2…
»exc(51, 52)… ⌘ ¬(51 ^ 52)
»req(51, 52)… ⌘ ¬51 _ 52
»ú… ⌘ tt

Note that
”

82;»(5 , SFMi,ú)… = tt. This formulation of the se-
mantics of an FM does not include the root feature in the feature
expression, thereby allowing feature models to be further composed.
However, once an FM F has been decided upon and will not be
changed anymore, we can close it, denoted by close(F), making it
un-composable. Thus, we de�ne the semantics of a closed FM as
»close(F)… ⌘ 5 ^ »F…, with 5 the feature name (root feature) of F .

Example 3.5. The semantics of the cleaning robot FM de�ned in
Example 3.2 is as follows:

»close(FA)… = A ^ (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»FA… = ((< ! A) ^ tt ^ tt) ^ ((2 $ A) ^ tt ^ tt)
^ ((> $ A) ^ ((li _ ca) $ >)
^ ¬(li ^ ca) ^ tt) ^ »ú…

= (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»F<… = »ú… = tt
»F2… = »ú… = tt
»F>… = ((li _ ca) $ >) ^ ¬(li ^ ca) ^ »Fli…

^ »Fca… ^ »ú…
= ((li _ ca) $ >) ^ ¬(li ^ ca)

»Fli… = »ú… = tt
»Fca… = »ú… = tt

We obtain an FM’s products by evaluating its feature expression.

De�nition 3.6 (Products in feature models). Let # be a set of
feature names, and let � ✓ # . An evaluation over � is a function
eval� : FExp(#) �! B which maps all variables G 2 # of a
feature expression q to tt if G 2 � and to ff otherwise. For a feature
expression q 2 FExp(#), the products described by q are all sets of
feature names such that q holds. Formally:

products(q) ⌘ { � | eval� (q) and � 2 P(#) }.
3

⇒

Family of Event Structures

� called Featured Event Structure

� Events labelled with feature conditions

� Similar to featured transition systems (more traditional)

José Proença – Dependencies with reconfigurable graphs Behavioural Feature Models 2 / 30

Behavioural Feature Model of a Cleaning Robot

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’24, September 2-6, 2024, Luxembourg Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Therefore, we introduce featured event structures. Event structures
describe “a set of event occurrences with relations to express how
events causally depend on others” [60]. Featured event structures
extend event structureswith a labeling function on events, similar to
the labeling of transitions in featured transition systems, and de�ne
ordering and con�ict relations between loosely coupled events. In
this paper, we formally de�ne featured event structures and explain
how they are used to obtain semantics for compositional BFMs.

In summary, the main contributions of this paper are as follows:
• Behavioral Feature Models, a unifying model for structural

and behavioral variability in software product lines;
• featured event structures, enabling compositional semantics

for Behavioral Feature Models; and
• a case study showcasing a Behavioral Feature Model for the

well-known mine pump system.
The remainder of this paper is organized as follows. In Sect. 2, we

introduce our running example, the cleaning robot. In Sect. 3, we
provide the background de�nitions needed for the developments
in the rest of the paper. In Sect. 4, we present the concept of BFMs,
their syntax and semantics. We show how the behavior of products
can be derived from BFMs in Sect. 5. We apply them to specify the
mine pump system in Sect. 6. In Sect. 7, we position our contribution
within the state of the art and review related work. Finally, in Sect. 8,
we conclude the paper and present the directions of our ongoing
research. Appendix B and A contain two illustrative �gures of the
case study, which are not necessary for appreciating the case study.

2 MOTIVATING EXAMPLE
We illustrate the concepts presented in this paper by considering the
features of a software product line for a cleaning robot. Its behavior
can be summarized as follows: the robot starts by optionally map-
ping the cleaning area, followed by a cleaning procedure consisting
of moving to the next position and cleaning there. In case the robot
detects an obstacle, using either a lidar or a camera, it cannot move
to the next position. Instead, the robot has to bypass the obstacle
and then continue cleaning. After the cleaning procedure, the robot
goes to charge. The software needed for the cleaning robot can be
described in an FM, depicted in Fig. 1.

A Behavioral Feature Model (BFM) can be used to describe the
features of the cleaning robot together with their associated behav-
ior. By associating events to each feature, we capture the behavior
of the robot in a compositional way. The feature robot has the event
charge, the optional sub-feature mapping, and the mandatory sub-
features cleaning and obstacle detection. The mapping feature has
the event map. The cleaning feature has the events move, goAround
and clean, where either of the �rst two events enables the last.
Furthermore, all of these events enable the event charge of the fea-
ture robot. The feature obstacleDetection has the sub-features lidar
and camera, which are related via an xor relation. The former has
an event liDet for detecting obstacles with the lidar, the latter an
event caDet for detecting obstacles with the camera. Both events
disable the eventmove and enable the event goAround of the feature
cleaning. If the feature mapping is included in a con�guration, then
it enables the events of the sub-BFMs of cleaning and obstacleDe-
tection, including the events of the lidar and camera features. A
graphical representation of the resulting BFM (de�ned in Sect. 4)

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

mapping

xor

optional feature

Figure 1: An FM of the cleaning robot.

is given in Fig. 2 where the behavioral part is highlighted with
gray backgrounds and gray arrows.
If we consider a con�guration of the cleaning robot with all the

features present apart from camera, then the events of the BFM
and their associated constraints describe the possible behavior of
the robot in terms of traces of events. For example, the possible
behavior of this con�guration of the cleaning robot is captured by
(pre�xes of) the following two traces:

hmap ·move · clean · chargei,
hmap · liDet · goAround · clean · chargei.

In a con�guration of the cleaning robot without the mapping and
camera features, these traces would not be possible. Instead, the
possible behavior of such a con�guration is captured by traces
without the map event, such as:

hmove · clean · chargei, hliDet · goAround · clean · chargei.
Observe that the events in these traces are scattered across the
di�erent features of the BFM. However, the behavior described in
these traces must respect a certain order, e.g., goAround happens
before clean. Additionally, the presence of some events disables the
presence of others, e.g., liDet disables move.

The behavior of any feature in the BFM can be described similarly
in terms of traces of events that respect the speci�ed ordering re-
strictions. For example, the possible behavior of the feature cleaning
includes the following two traces:

hmove · cleani, hgoAround · cleani.
In this paper, we propose BFMs to capture such behavioral con-
straints compositionally, describing the possible behavior of prod-
ucts in a software product line starting from the behavior of the
features.

3 BACKGROUND
We brie�y introduce feature models in Sect. 3.1, which we extend to
Behavioral Feature Models in Sect. 4, and bundle event structures in
Sect. 3.2, which are extended to featured event structures in Sect. 4.2
to provide the semantics of Behavioral Feature Models.

3.1 Feature Models
We follow the common approach, e.g., taken by Apel et al. [3], for
de�ning the syntax and semantics of feature models. In the sequel,
let �= denote a �nite index set � with minimal cardinality = (so �2
denotes an index set � such that |� | � 2).

2

||

||Beh Beh

Beh Beh

⇒

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Behavioral Feature Models SPLC’24, September 2-6, 2024, Luxembourg

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

cause

mapping

conflict

xor

optional feature

liDet
clean

goAround

move

map

charge

caDet

Figure 2: A BFM of the cleaning robot.

De�nition 3.1 (Feature model syntax). Let # be a set of feature
names with 5 2 # . A feature model (FM) over # has the following
syntax.

FM ::= (5 , (SFMi)82� 0 , FC)
SFM ::= Uop(FM) | Op(FM8)82� 2
Uop ::= opt | mnd
Op ::= or | xor
FC ::= ú | exc(5 , 5) | req(5 , 5) | FC FC

where exc is a symmetric and req an anti-symmetric relation over
⇥ # .

In Def. 3.1, FMs are de�ned compositionally: an FM has sub-FMs
SFM8 , i.e., an indexed number of children that are typed FMs. A
child FM may be typed as optional (opt) or mandatory (mnd), or as
a choice between FMs, either a regular choice (or) or an exclusive
choice (xor).We assume that all the feature names in FM are distinct.
Observe that Def. 3.1 allows cross-tree constraints FC to be situated
inside sub-FMs SFM8 ; without any loss of generality, we assume
that cross-tree constraints are situated in the smallest SFM8 that
contains the mentioned features. This will facilitate composition,
decomposition, and reusability, as explained later. We use Yfm as
syntactic sugar to denote the empty sub-FM (SFMi)82; .

Example 3.2. Let #A be a set of feature names containing the fea-
tures robot,mapping, cleaning, obstacleDetection, lidar , and camera,
represented as A ,<, 2 , > , li, and ca, respectively. We de�ne the FM
Fr of the cleaning robot example shown in Fig. 1 and described in
Sect. 2 as follows:

Fr = (A , (opt(F<),mnd(F2),mnd(F>)),ú)
F< = (<, Yfm,ú)
F2 = (2, Yfm,ú)
F> = (>, xor(Fli, Fca),ú)
Fli = (li, Yfm,ú)
Fca = (ca, Yfm,ú)

To de�ne the semantics of FMs, we use Boolean formulae called
feature expressions, de�ned below, which have feature names as
their atomic propositions.

De�nition 3.3 (Feature expressions). Let # be a set of feature
names and let G range over # . The set of feature expressions over # ,
denoted FExp(#), includes all Boolean expressions over elements
of # (modulo logical equivalence). Thus, a feature expression q 2
FExp(#) is of the form

q ::= G | q ^ q | q _ q | q ! q | q $ q | ¬q | ff | tt .
The semantics of FMs is de�ned in terms of feature expressions.

De�nition 3.4 (FM semantics). Let FM and FM8 be feature models
over a set of feature names # , such that 5 is the feature name
associated with FM and 58 the feature name associated with FM8 .
The semantics of the feature model FM is a feature expression over
, de�ned inductively as follows:
»(5 , (SFM8)82� 0 , FC)… ⌘

”
82� 0»(5 , SFMi,ú)… ^ »FC…

»(5 , opt(FM1), FC)… ⌘ (51 ! 5) ^ »FM1… ^ »FC…
»(5 ,mnd(FM1), FC)… ⌘ (51 $ 5) ^ »FM1… ^ »FC…
»(5 , or(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

82� 2»FM8… ^ »FC…
»(5 , xor(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

:< 92� 2 ¬(59 ^ 5:)
^”

82� 2»FM8… ^ »FC…
»FC1 FC2… ⌘ »FC1… ^ »FC2…
»exc(51, 52)… ⌘ ¬(51 ^ 52)
»req(51, 52)… ⌘ ¬51 _ 52
»ú… ⌘ tt

Note that
”

82;»(5 , SFMi,ú)… = tt. This formulation of the se-
mantics of an FM does not include the root feature in the feature
expression, thereby allowing feature models to be further composed.
However, once an FM F has been decided upon and will not be
changed anymore, we can close it, denoted by close(F), making it
un-composable. Thus, we de�ne the semantics of a closed FM as
»close(F)… ⌘ 5 ^ »F…, with 5 the feature name (root feature) of F .

Example 3.5. The semantics of the cleaning robot FM de�ned in
Example 3.2 is as follows:

»close(FA)… = A ^ (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»FA… = ((< ! A) ^ tt ^ tt) ^ ((2 $ A) ^ tt ^ tt)
^ ((> $ A) ^ ((li _ ca) $ >)
^ ¬(li ^ ca) ^ tt) ^ »ú…

= (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»F<… = »ú… = tt
»F2… = »ú… = tt
»F>… = ((li _ ca) $ >) ^ ¬(li ^ ca) ^ »Fli…

^ »Fca… ^ »ú…
= ((li _ ca) $ >) ^ ¬(li ^ ca)

»Fli… = »ú… = tt
»Fca… = »ú… = tt

We obtain an FM’s products by evaluating its feature expression.

De�nition 3.6 (Products in feature models). Let # be a set of
feature names, and let � ✓ # . An evaluation over � is a function
eval� : FExp(#) �! B which maps all variables G 2 # of a
feature expression q to tt if G 2 � and to ff otherwise. For a feature
expression q 2 FExp(#), the products described by q are all sets of
feature names such that q holds. Formally:

products(q) ⌘ { � | eval� (q) and � 2 P(#) }.
3

⇒

Family of Event Structures

� called Featured Event Structure

� Events labelled with feature conditions

� Similar to featured transition systems (more traditional)

José Proença – Dependencies with reconfigurable graphs Behavioural Feature Models 2 / 30

Event Structures

Event structures

Landscape (partial): static and dynamic classes of event structures.

Prime

Bundle

Flow

GrowingAsymmetric

Extended Bundle

ShrinkingStable Dual

Dynamic

Causality

Resolvable

Conflict

HDES

Arrows represent (strict) inclusion in terms of expressiveness

Arbach, Karcher, Peters, Nestmann, Dynamic causality in event structures

[FORTE 2015/LMCS 2018]

José Proença – Dependencies with reconfigurable graphs Event structures 3 / 30

Event structures

Landscape (partial): static and dynamic classes of event structures.

Prime

Bundle

Growing

Extended Bundle

Shrinking

Dynamic

Counters

Resolvable

Conflict

Branching PomsetsTree-like
?X

X

X

X

Arrows represent (strict) inclusion in terms of expressiveness

Used also to relate branching pomsets – Edixhoven, Jongmans, Proença, Castellani, Branching

pomsets: design, expressiveness and applications to choreographies [JLAMP 2024]

José Proença – Dependencies with reconfigurable graphs Event structures 3 / 30

Bundle event structures by Example

a

b

c

d

e

f

g

h

#

Valid traces

� a ⋅ c ⋅ e ⋅ g ⋅ h

� d ⋅ b ⋅ e ⋅ g ⋅ h

� d ⋅ f ⋅ a ⋅ h

� ...

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Behavioral Feature Models SPLC’24, September 2-6, 2024, Luxembourg

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

cause

mapping

conflict

xor

optional feature

liDet
clean

goAround

move

map

charge

caDet

Figure 2: A BFM of the cleaning robot.

De�nition 3.1 (Feature model syntax). Let # be a set of feature
names with 5 2 # . A feature model (FM) over # has the following
syntax.

FM ::= (5 , (SFMi)82� 0 , FC)
SFM ::= Uop(FM) | Op(FM8)82� 2
Uop ::= opt | mnd
Op ::= or | xor
FC ::= ú | exc(5 , 5) | req(5 , 5) | FC FC

where exc is a symmetric and req an anti-symmetric relation over
⇥ # .

In Def. 3.1, FMs are de�ned compositionally: an FM has sub-FMs
SFM8 , i.e., an indexed number of children that are typed FMs. A
child FM may be typed as optional (opt) or mandatory (mnd), or as
a choice between FMs, either a regular choice (or) or an exclusive
choice (xor).We assume that all the feature names in FM are distinct.
Observe that Def. 3.1 allows cross-tree constraints FC to be situated
inside sub-FMs SFM8 ; without any loss of generality, we assume
that cross-tree constraints are situated in the smallest SFM8 that
contains the mentioned features. This will facilitate composition,
decomposition, and reusability, as explained later. We use Yfm as
syntactic sugar to denote the empty sub-FM (SFMi)82; .

Example 3.2. Let #A be a set of feature names containing the fea-
tures robot,mapping, cleaning, obstacleDetection, lidar , and camera,
represented as A ,<, 2 , > , li, and ca, respectively. We de�ne the FM
Fr of the cleaning robot example shown in Fig. 1 and described in
Sect. 2 as follows:

Fr = (A , (opt(F<),mnd(F2),mnd(F>)),ú)
F< = (<, Yfm,ú)
F2 = (2, Yfm,ú)
F> = (>, xor(Fli, Fca),ú)
Fli = (li, Yfm,ú)
Fca = (ca, Yfm,ú)

To de�ne the semantics of FMs, we use Boolean formulae called
feature expressions, de�ned below, which have feature names as
their atomic propositions.

De�nition 3.3 (Feature expressions). Let # be a set of feature
names and let G range over # . The set of feature expressions over # ,
denoted FExp(#), includes all Boolean expressions over elements
of # (modulo logical equivalence). Thus, a feature expression q 2
FExp(#) is of the form

q ::= G | q ^ q | q _ q | q ! q | q $ q | ¬q | ff | tt .
The semantics of FMs is de�ned in terms of feature expressions.

De�nition 3.4 (FM semantics). Let FM and FM8 be feature models
over a set of feature names # , such that 5 is the feature name
associated with FM and 58 the feature name associated with FM8 .
The semantics of the feature model FM is a feature expression over
, de�ned inductively as follows:
»(5 , (SFM8)82� 0 , FC)… ⌘

”
82� 0»(5 , SFMi,ú)… ^ »FC…

»(5 , opt(FM1), FC)… ⌘ (51 ! 5) ^ »FM1… ^ »FC…
»(5 ,mnd(FM1), FC)… ⌘ (51 $ 5) ^ »FM1… ^ »FC…
»(5 , or(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

82� 2»FM8… ^ »FC…
»(5 , xor(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

:< 92� 2 ¬(59 ^ 5:)
^”

82� 2»FM8… ^ »FC…
»FC1 FC2… ⌘ »FC1… ^ »FC2…
»exc(51, 52)… ⌘ ¬(51 ^ 52)
»req(51, 52)… ⌘ ¬51 _ 52
»ú… ⌘ tt

Note that
”

82;»(5 , SFMi,ú)… = tt. This formulation of the se-
mantics of an FM does not include the root feature in the feature
expression, thereby allowing feature models to be further composed.
However, once an FM F has been decided upon and will not be
changed anymore, we can close it, denoted by close(F), making it
un-composable. Thus, we de�ne the semantics of a closed FM as
»close(F)… ⌘ 5 ^ »F…, with 5 the feature name (root feature) of F .

Example 3.5. The semantics of the cleaning robot FM de�ned in
Example 3.2 is as follows:

»close(FA)… = A ^ (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»FA… = ((< ! A) ^ tt ^ tt) ^ ((2 $ A) ^ tt ^ tt)
^ ((> $ A) ^ ((li _ ca) $ >)
^ ¬(li ^ ca) ^ tt) ^ »ú…

= (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»F<… = »ú… = tt
»F2… = »ú… = tt
»F>… = ((li _ ca) $ >) ^ ¬(li ^ ca) ^ »Fli…

^ »Fca… ^ »ú…
= ((li _ ca) $ >) ^ ¬(li ^ ca)

»Fli… = »ú… = tt
»Fca… = »ú… = tt

We obtain an FM’s products by evaluating its feature expression.

De�nition 3.6 (Products in feature models). Let # be a set of
feature names, and let � ✓ # . An evaluation over � is a function
eval� : FExp(#) �! B which maps all variables G 2 # of a
feature expression q to tt if G 2 � and to ff otherwise. For a feature
expression q 2 FExp(#), the products described by q are all sets of
feature names such that q holds. Formally:

products(q) ⌘ { � | eval� (q) and � 2 P(#) }.
3

Valid traces

� (map)? ⋅move ⋅ clean ⋅ charge

� (map)? ⋅ liDet ⋅ goAround ⋅ clean ⋅ charge

� (map)? ⋅ caDet ⋅ goAround ⋅ clean ⋅ charge

José Proença – Dependencies with reconfigurable graphs Event structures 4 / 30

Bundle event structures by Example

a

b

c

d

e

f

g

h

#

Valid traces

� a ⋅ c ⋅ e ⋅ g ⋅ h

� d ⋅ b ⋅ e ⋅ g ⋅ h

� d ⋅ f ⋅ a ⋅ h

� ...

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Behavioral Feature Models SPLC’24, September 2-6, 2024, Luxembourg

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

cause

mapping

conflict

xor

optional feature

liDet
clean

goAround

move

map

charge

caDet

Figure 2: A BFM of the cleaning robot.

De�nition 3.1 (Feature model syntax). Let # be a set of feature
names with 5 2 # . A feature model (FM) over # has the following
syntax.

FM ::= (5 , (SFMi)82� 0 , FC)
SFM ::= Uop(FM) | Op(FM8)82� 2
Uop ::= opt | mnd
Op ::= or | xor
FC ::= ú | exc(5 , 5) | req(5 , 5) | FC FC

where exc is a symmetric and req an anti-symmetric relation over
⇥ # .

In Def. 3.1, FMs are de�ned compositionally: an FM has sub-FMs
SFM8 , i.e., an indexed number of children that are typed FMs. A
child FM may be typed as optional (opt) or mandatory (mnd), or as
a choice between FMs, either a regular choice (or) or an exclusive
choice (xor).We assume that all the feature names in FM are distinct.
Observe that Def. 3.1 allows cross-tree constraints FC to be situated
inside sub-FMs SFM8 ; without any loss of generality, we assume
that cross-tree constraints are situated in the smallest SFM8 that
contains the mentioned features. This will facilitate composition,
decomposition, and reusability, as explained later. We use Yfm as
syntactic sugar to denote the empty sub-FM (SFMi)82; .

Example 3.2. Let #A be a set of feature names containing the fea-
tures robot,mapping, cleaning, obstacleDetection, lidar , and camera,
represented as A ,<, 2 , > , li, and ca, respectively. We de�ne the FM
Fr of the cleaning robot example shown in Fig. 1 and described in
Sect. 2 as follows:

Fr = (A , (opt(F<),mnd(F2),mnd(F>)),ú)
F< = (<, Yfm,ú)
F2 = (2, Yfm,ú)
F> = (>, xor(Fli, Fca),ú)
Fli = (li, Yfm,ú)
Fca = (ca, Yfm,ú)

To de�ne the semantics of FMs, we use Boolean formulae called
feature expressions, de�ned below, which have feature names as
their atomic propositions.

De�nition 3.3 (Feature expressions). Let # be a set of feature
names and let G range over # . The set of feature expressions over # ,
denoted FExp(#), includes all Boolean expressions over elements
of # (modulo logical equivalence). Thus, a feature expression q 2
FExp(#) is of the form

q ::= G | q ^ q | q _ q | q ! q | q $ q | ¬q | ff | tt .
The semantics of FMs is de�ned in terms of feature expressions.

De�nition 3.4 (FM semantics). Let FM and FM8 be feature models
over a set of feature names # , such that 5 is the feature name
associated with FM and 58 the feature name associated with FM8 .
The semantics of the feature model FM is a feature expression over
, de�ned inductively as follows:
»(5 , (SFM8)82� 0 , FC)… ⌘

”
82� 0»(5 , SFMi,ú)… ^ »FC…

»(5 , opt(FM1), FC)… ⌘ (51 ! 5) ^ »FM1… ^ »FC…
»(5 ,mnd(FM1), FC)… ⌘ (51 $ 5) ^ »FM1… ^ »FC…
»(5 , or(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

82� 2»FM8… ^ »FC…
»(5 , xor(FM8)82� 2 , FC)… ⌘

� �‘
82� 2 58

�
$ 5

�
^”

:< 92� 2 ¬(59 ^ 5:)
^”

82� 2»FM8… ^ »FC…
»FC1 FC2… ⌘ »FC1… ^ »FC2…
»exc(51, 52)… ⌘ ¬(51 ^ 52)
»req(51, 52)… ⌘ ¬51 _ 52
»ú… ⌘ tt

Note that
”

82;»(5 , SFMi,ú)… = tt. This formulation of the se-
mantics of an FM does not include the root feature in the feature
expression, thereby allowing feature models to be further composed.
However, once an FM F has been decided upon and will not be
changed anymore, we can close it, denoted by close(F), making it
un-composable. Thus, we de�ne the semantics of a closed FM as
»close(F)… ⌘ 5 ^ »F…, with 5 the feature name (root feature) of F .

Example 3.5. The semantics of the cleaning robot FM de�ned in
Example 3.2 is as follows:

»close(FA)… = A ^ (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»FA… = ((< ! A) ^ tt ^ tt) ^ ((2 $ A) ^ tt ^ tt)
^ ((> $ A) ^ ((li _ ca) $ >)
^ ¬(li ^ ca) ^ tt) ^ »ú…

= (< ! A) ^ (2 $ A) ^ (> $ A)
^ ((li _ ca) $ >) ^ ¬(li ^ ca)

»F<… = »ú… = tt
»F2… = »ú… = tt
»F>… = ((li _ ca) $ >) ^ ¬(li ^ ca) ^ »Fli…

^ »Fca… ^ »ú…
= ((li _ ca) $ >) ^ ¬(li ^ ca)

»Fli… = »ú… = tt
»Fca… = »ú… = tt

We obtain an FM’s products by evaluating its feature expression.

De�nition 3.6 (Products in feature models). Let # be a set of
feature names, and let � ✓ # . An evaluation over � is a function
eval� : FExp(#) �! B which maps all variables G 2 # of a
feature expression q to tt if G 2 � and to ff otherwise. For a feature
expression q 2 FExp(#), the products described by q are all sets of
feature names such that q holds. Formally:

products(q) ⌘ { � | eval� (q) and � 2 P(#) }.
3

Valid traces

� (map)? ⋅move ⋅ clean ⋅ charge

� (map)? ⋅ liDet ⋅ goAround ⋅ clean ⋅ charge

� (map)? ⋅ caDet ⋅ goAround ⋅ clean ⋅ charge

José Proença – Dependencies with reconfigurable graphs Event structures 4 / 30

Reconfigurable Graphs

Reconfigurable Coffee Machine

The reconfigurable graph

InsertCoffee Chocolate

1¿

Get chocolate

0.5¿

Get coffee

can be encoded as

Insert

Chocolate Insert

Coffee Insert Coffee Insert

1¿ Get chocolate

0.5¿

Ge
t c
off
ee

0.
5¿

Ge
t c
off
ee

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 5 / 30

Reconfigurable Coffee Machine

The reconfigurable graph

InsertCoffee Chocolate

1¿

Get chocolate

0.5¿

Get coffee

can be encoded as

Insert

Chocolate Insert

Coffee Insert Coffee Insert

1¿ Get chocolate

0.5¿

Ge
t c
off
ee

0.
5¿

Ge
t c
off
ee

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 5 / 30

Reconfigurable Counter

s0 s1

a

b

When can these be useful?

Tool to experiment with semantics/compositions:

https://fm-dcc.github.io/marge

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 6 / 30

https://fm-dcc.github.io/marge

Reconfigurable Counter

s0 s1

a

b

When can these be useful?

Tool to experiment with semantics/compositions:

https://fm-dcc.github.io/marge

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 6 / 30

https://fm-dcc.github.io/marge

Reactive graphs: A reconfigurability dimension on LTS

“In computer science the word reactivity has been used to denote

systems that react to their environment and are not meant to

terminate, as coined by Pnueli and Harel in [On the development of

reactive systems, 1985]. In this work the word has a different meaning,

reactive systems are history-dependent relational structures, where the

accessibility relation is determined not only by the point where one is,

but also by the previous transitions”

Dov M. Gabbay (2013)

I call Reconfigurable Graph instead of Reactive Graph in this talk

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 7 / 30

s0 s1

s2

s3

a

b

c

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 8 / 30

s0 s1

s2

s3

a

b

c

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 9 / 30

s0 s1

s2

s3

a

b

c

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 10 / 30

s0 s1

s2

s3

a

b

c

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 11 / 30

A labelled version of a reactive graph

A Multi-Actions Reactive Graph is a tuple M = (W ,Act,E , , , , ⋅,w0, α0) where:

� W – states

� Act – actions

� E – edges

� w0 ∈W – initial state;

� α0 ⊆ E – initially active edges

� ⊆ W ×Act ×W – ground edges

� ⊆ E × E – activating edges

� ⊆ E × E – deactivating edges

� ⋅ ∶ E Ð→ (∪ ∪) – internal details of edges

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 12 / 30

Semantics

A reconfigurable graph M can evolve its configuration ⟨w0, α0⟩ by the rule

∃e ∈ α ⋅ e = w
a
Ð→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)

⟨w , α⟩
a
Ð→M ⟨w ′, α′⟩

s0 s1

s2

s3

a
b

c

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 13 / 30

Semantics

A reconfigurable graph M can evolve its configuration ⟨w0, α0⟩ by the rule

∃e ∈ α ⋅ e = w
a
Ð→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)

⟨w , α⟩
a
Ð→M ⟨w ′, α′⟩

s0 s1

s2

s3

a
b

c

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 13 / 30

Semantics

A reconfigurable graph M can evolve its configuration ⟨w0, α0⟩ by the rule

∃e ∈ α ⋅ e = w
a
Ð→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)

⟨w , α⟩
a
Ð→M ⟨w ′, α′⟩

s0 s1

s2

s3

a
b

c

⟨s0,{s0
a
Ð→ s1, s1

b
Ð→ s2, . . .}⟩

a
Ð→

⟨s1, ({s0
a
Ð→ s1, s1

b
Ð→ s2, . . .} ∪ {s1

c
Ð→ s3}) ∖ {s1

b
Ð→ s2}⟩

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 13 / 30

Semantics

A reconfigurable graph M can evolve its configuration ⟨w0, α0⟩ by the rule

∃e ∈ α ⋅ e = w
a
Ð→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)

⟨w , α⟩
a
Ð→M ⟨w ′, α′⟩

s0 s1

s2

s3

a
b

c

⟨s0,{s0
a
Ð→ s1, s1

b
Ð→ s2, . . .}⟩

a
Ð→ ⟨s1, ({s0

a
Ð→ s1, s1

b
Ð→ s2, . . .} ∪ {s1

c
Ð→ s3}) ∖ {s1

b
Ð→ s2}⟩

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 13 / 30

Semantics

A reconfigurable graph M can evolve its configuration ⟨w0, α0⟩ by the rule

∃e ∈ α ⋅ e = w
a
Ð→ w ′ ∧ α′ = (α ∪ on(e, α))/off(e, α)

⟨w , α⟩
a
Ð→M ⟨w ′, α′⟩

s0 s1

s2

s3

a
b

c

⟨s0,{s0
a
Ð→ s1, s1

b
Ð→ s2, . . .}⟩

a
Ð→ ⟨s1, ({s0

a
Ð→ s1, s1

c
Ð→ s3, . . .}⟩

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 13 / 30

Applicable in dynamic software product lines?

setup ready received

routed-safe

routed-unsafe

sent

sent-encrypt

safe

unsafe

encrypt

dencrypt

-

-
receive

route

route

send

send

send

ready

ready

Example adapted from

Cordy, Classen, Heymans,

Legay, Schobbens: Model

checking adaptive software

with featured transition

systems (ASAS 2013).

José Proença – Dependencies with reconfigurable graphs Reconfigurable Graphs 14 / 30

Composition of models

Composition of reactive graphs

Goal

Help building complex systems by

composing simpler modules.

Four products of reactive graphs
� asynchronous and synchronous

� with and without intrusive transitions

José Proença – Dependencies with reconfigurable graphs Composition of models 15 / 30

Composition of reactive graphs

Goal

Help building complex systems by

composing simpler modules.

Four products of reactive graphs
� asynchronous and synchronous

� with and without intrusive transitions

José Proença – Dependencies with reconfigurable graphs Composition of models 15 / 30

Traditional composition

s0 s1a

Asynchronous (interleaving)

⟨s0,w0⟩ ⟨s1,w0⟩

⟨s0,w1⟩ ⟨s1,w1⟩

a

a a

a

w0 w1a

Synchronous (communicating)

⟨s0,w0⟩

⟨s1,w1⟩

a

∥

José Proença – Dependencies with reconfigurable graphs Composition of models 16 / 30

Composition with intrusive transitions (example 1)

s0 s1a

Asynchronous (interleaving)

⟨s0,w0⟩ ⟨s1,w0⟩

⟨s1,w1⟩

a

a

w0 w1a

Synchronous (communicating)

⟨s0,w0⟩

⟨s1,w1⟩

∥

José Proença – Dependencies with reconfigurable graphs Composition of models 17 / 30

Composition with intrusive transitions (example 2)

s0 s1a

Asynchronous

⟨s0,w0⟩ ⟨s1,w0⟩

⟨s0,w1⟩ ⟨s1,w1⟩

a

a

a

w0 w1a

Synchronous

⟨s0,w0⟩

⟨s1,w1⟩

a

∥

José Proença – Dependencies with reconfigurable graphs Composition of models 18 / 30

Intrusive transitions – a different way to communicate

shared memory

idle1

write1

access save

idle2

write2

access save

José Proença – Dependencies with reconfigurable graphs Composition of models 19 / 30

Products – formally

Asynchronous product with intrusive transitions

Given c1 = ⟨s1, α1⟩ and c2 = ⟨s2, α2⟩, the product, c1 ∥Γ⊕,Γ⊖ c2 is defined as follows:

αi(Γ
⊕,Γ⊖, e) = (αi ∪ on(e, αi) ∪ Γ

⊕
(e)) ∖ (off(e, αi) ∪ Γ

⊖
(e))

∃ e ∈ α1 ⋅ e = s1
a
Ð→ s ′1 ∧ α′1 = (α1 ∪ on(e, α1))/off(e, α1) ∧ α′2 = α2(Γ

⊕,Γ⊖, e)

⟨s1, α1⟩ ∥Γ⊕,Γ⊖ ⟨s2, α2⟩
a
Ð→ ⟨s ′1, α

′

1⟩ ∥Γ⊕,Γ⊖ ⟨s2, α
′

2⟩

∃ e ∈ α2 ⋅ e = s2
a
Ð→ s ′2 ∧ α′2 = (α2 ∪ on(e, α2))/off(e, α2) ∧ α′1 = α1(Γ

⊕,Γ⊖, e)

⟨s1, α1⟩ ∥Γ⊕,Γ⊖ ⟨s2, α2⟩
a
Ð→ ⟨s1, α

′

1⟩ ∥Γ⊕,Γ⊖ ⟨s
′

2, α
′

2⟩

Tool support: https://fm-dcc.github.io/MARGe
José Proença – Dependencies with reconfigurable graphs Composition of models 20 / 30

https://fm-dcc.github.io/MARGe

Dependencies as reconfigurations

Dependencies as reconfigurations

s0

s1

s2 s3

a

c

d

b

⇒ s0

s1

s2 s3

a

c

d

b

s0

s1

s2 s3

a

c

d

b

⇒ s0

s1

s2 s3

a

c

d

b

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 21 / 30

Dependencies as reconfigurations

s0

s1

s2 s3

a

c

d

b

⇒ s0

s1

s2 s3

a

c

d

b

s0

s1

s2 s3

a

c

d

b

⇒ s0

s1

s2 s3

a

c

d

b

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 21 / 30

Too many reconfigurations?

s0

s1 s2

s3 s4

a

d

b

e

c

⇒ s0

s1 s2

s3 s4

a

d

b

e

c

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 22 / 30

Loops and reset?

s0

s1 s2

s3 s4

a

d

b

e

c

f

⇒ s0

s1 s2

s3 s4

a

d

b

e

c

f

?

s0

s1 s2

s3 s4

a

d

b

e

c

f

⇒ s0

s1 s2

s3 s4

a

d

b

e

?

c

f

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 23 / 30

Loops and reset?

s0

s1 s2

s3 s4

a

d

b

e

c

f

⇒ s0

s1 s2

s3 s4

a

d

b

e

c

f

?

s0

s1 s2

s3 s4

a

d

b

e

c

f

⇒ s0

s1 s2

s3 s4

a

d

b

e

?

c

f
José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 23 / 30

Composing with dependencies?

c0

c1

c2

goAround

move

clean

clean

ℓ1

liDet

liOK

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 24 / 30

Composing with dependencies – what should be the interpretation?

c0

c1

c2

goAround

move

clean

clean

ℓ1

liDet

liOK

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 25 / 30

Composing with dependencies (revisiting example)

shared memory

idle1

write1

access save

idle2

write2

access save

#

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 26 / 30

Other possible challenges and directions of work?

� When to reset a dependency/conflict?

� Different dependency notions (e.g., from different event structures)?

� Should dependability/conflict be a primitive in the model?

� How compositional are these operators?

� Semantics for reconfigurable graphs (or variation) with Petri nets?

José Proença – Dependencies with reconfigurable graphs Dependencies as reconfigurations 27 / 30

Wrap up – towards dependable

graphs

Wrap up – towards dependable graphs

Behavioural feature models
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’24, September 2-6, 2024, Luxembourg Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Therefore, we introduce featured event structures. Event structures
describe “a set of event occurrences with relations to express how
events causally depend on others” [60]. Featured event structures
extend event structureswith a labeling function on events, similar to
the labeling of transitions in featured transition systems, and de�ne
ordering and con�ict relations between loosely coupled events. In
this paper, we formally de�ne featured event structures and explain
how they are used to obtain semantics for compositional BFMs.

In summary, the main contributions of this paper are as follows:
• Behavioral Feature Models, a unifying model for structural

and behavioral variability in software product lines;
• featured event structures, enabling compositional semantics

for Behavioral Feature Models; and
• a case study showcasing a Behavioral Feature Model for the

well-known mine pump system.
The remainder of this paper is organized as follows. In Sect. 2, we

introduce our running example, the cleaning robot. In Sect. 3, we
provide the background de�nitions needed for the developments
in the rest of the paper. In Sect. 4, we present the concept of BFMs,
their syntax and semantics. We show how the behavior of products
can be derived from BFMs in Sect. 5. We apply them to specify the
mine pump system in Sect. 6. In Sect. 7, we position our contribution
within the state of the art and review related work. Finally, in Sect. 8,
we conclude the paper and present the directions of our ongoing
research. Appendix B and A contain two illustrative �gures of the
case study, which are not necessary for appreciating the case study.

2 MOTIVATING EXAMPLE
We illustrate the concepts presented in this paper by considering the
features of a software product line for a cleaning robot. Its behavior
can be summarized as follows: the robot starts by optionally map-
ping the cleaning area, followed by a cleaning procedure consisting
of moving to the next position and cleaning there. In case the robot
detects an obstacle, using either a lidar or a camera, it cannot move
to the next position. Instead, the robot has to bypass the obstacle
and then continue cleaning. After the cleaning procedure, the robot
goes to charge. The software needed for the cleaning robot can be
described in an FM, depicted in Fig. 1.

A Behavioral Feature Model (BFM) can be used to describe the
features of the cleaning robot together with their associated behav-
ior. By associating events to each feature, we capture the behavior
of the robot in a compositional way. The feature robot has the event
charge, the optional sub-feature mapping, and the mandatory sub-
features cleaning and obstacle detection. The mapping feature has
the event map. The cleaning feature has the events move, goAround
and clean, where either of the �rst two events enables the last.
Furthermore, all of these events enable the event charge of the fea-
ture robot. The feature obstacleDetection has the sub-features lidar
and camera, which are related via an xor relation. The former has
an event liDet for detecting obstacles with the lidar, the latter an
event caDet for detecting obstacles with the camera. Both events
disable the eventmove and enable the event goAround of the feature
cleaning. If the feature mapping is included in a con�guration, then
it enables the events of the sub-BFMs of cleaning and obstacleDe-
tection, including the events of the lidar and camera features. A
graphical representation of the resulting BFM (de�ned in Sect. 4)

cleaning

camera

obstacleDetection

lidar

robot
mandatory feature

mapping

xor

optional feature

Figure 1: An FM of the cleaning robot.

is given in Fig. 2 where the behavioral part is highlighted with
gray backgrounds and gray arrows.
If we consider a con�guration of the cleaning robot with all the

features present apart from camera, then the events of the BFM
and their associated constraints describe the possible behavior of
the robot in terms of traces of events. For example, the possible
behavior of this con�guration of the cleaning robot is captured by
(pre�xes of) the following two traces:

hmap ·move · clean · chargei,
hmap · liDet · goAround · clean · chargei.

In a con�guration of the cleaning robot without the mapping and
camera features, these traces would not be possible. Instead, the
possible behavior of such a con�guration is captured by traces
without the map event, such as:

hmove · clean · chargei, hliDet · goAround · clean · chargei.
Observe that the events in these traces are scattered across the
di�erent features of the BFM. However, the behavior described in
these traces must respect a certain order, e.g., goAround happens
before clean. Additionally, the presence of some events disables the
presence of others, e.g., liDet disables move.

The behavior of any feature in the BFM can be described similarly
in terms of traces of events that respect the speci�ed ordering re-
strictions. For example, the possible behavior of the feature cleaning
includes the following two traces:

hmove · cleani, hgoAround · cleani.
In this paper, we propose BFMs to capture such behavioral con-
straints compositionally, describing the possible behavior of prod-
ucts in a software product line starting from the behavior of the
features.

3 BACKGROUND
We brie�y introduce feature models in Sect. 3.1, which we extend to
Behavioral Feature Models in Sect. 4, and bundle event structures in
Sect. 3.2, which are extended to featured event structures in Sect. 4.2
to provide the semantics of Behavioral Feature Models.

3.1 Feature Models
We follow the common approach, e.g., taken by Apel et al. [3], for
de�ning the syntax and semantics of feature models. In the sequel,
let �= denote a �nite index set � with minimal cardinality = (so �2
denotes an index set � such that |� | � 2).

2

||

||Beh Beh

Beh Beh

Pässler, Fortz, ter Beek,

Damiani, Mousavi, Johnsen,

Tapia Tarifa [unpublished]

(Bundle) Event structures
a

b

c

d

e

f

g

h

#

by Nielsen, Plotkin, and

Winskel [TCS’81] and

Langerak [FORTE’92]

Reconfigurable graphs

s0 s1

s2

s3

a
b

c

Tinoco, Madeira, Martins,

Proença [FACS’24]

Experiments:
Modelling dependencies & conflicts

using (Networks of) Reconfigurable graphs

José Proença – Dependencies with reconfigurable graphs Wrap up – towards dependable graphs 28 / 30

Feature

Models

Event

Structures

Reconfig.

Graphs

Beh.

Feat.

Models II

Dependable

Graphs

Beh.

Feat.

Models

“...I was told that every good presentation must have a Venn diagram” [Einar, Lima, ICTAC 2023]

Advertisement of other work – on hybrid programs

Lince (prototype tool –

http://arcatools.org/lince)

� Simple while-language

with differential equations

� Precise simulation using a

symbolic solver

(SageMath)

Hybrid Program

Examples

Basic composition Numerical derivative

Numerical integral Cruise control

Cruise control (2D)

Adaptive cruise control AEB

AEBOM (2D) AD: fixed

AD: constant velocity

AD: constant acceleration

AD: with uncertainties Missile vs. Target

Missile vs. Target (2D)

Pursuit Games (3D)

Project motion without air effect

Damped Harmonic Oscillator

RLC circuits (simpler) RLC circuits

Water tanks Traffic lights

all jumpsresample

all jumpsresample

Trajectories (symbolic)

Trajectories (approximated)

Symbolic Evaluation

More information on the project: https://github.com/arcalab/lince

 

0 1 2 3 4 5 6

0

10

20

30

40

50

60
x

v

t
x/
v

boundary of x(2, 14)
x(t) = (-(t^2))+15t+(75/2)
v(t) = ((-2)*t)+15
true? true
v<=10? false





// Cruise control
x:=0; v:=2;
while true do {
 if v<=10
 then x'=v,v'=5 for 1;
 else x'=v,v'=-2 for 1;
}

1
2
3
4
5
6
7

DevelopmentDevelopment PublicationsPublications Back to ArcaToolsBack to ArcaTools

Copyright 2017-2020 – ARCA.di.uminho.pt

Hybrid Program

Examples

Basic composition Numerical derivative

Numerical integral Cruise control

Cruise control (2D)

Adaptive cruise control AEB

AEBOM (2D) AD: fixed

AD: constant velocity

AD: constant acceleration

AD: with uncertainties Missile vs. Target

Missile vs. Target (2D)

Pursuit Games (3D)

Project motion without air effect

Damped Harmonic Oscillator

RLC circuits (simpler) RLC circuits

Water tanks Traffic lights

all jumpsresample

all jumpsresample

Trajectories (symbolic)

Trajectories (approximated)

Symbolic Evaluation

More information on the project: https://github.com/arcalab/lince

 

0 1 2 3 4 5 6

0

10

20

30

40

50

60
x

v

t

x/
v

boundary of x(2, 14)
x(t) = (-(t^2))+15t+(75/2)
v(t) = ((-2)*t)+15
true? true
v<=10? false





// Cruise control
x:=0; v:=2;
while true do {
 if v<=10
 then x'=v,v'=5 for 1;
 else x'=v,v'=-2 for 1;
}

1
2
3
4
5
6
7

DevelopmentDevelopment PublicationsPublications Back to ArcaToolsBack to ArcaTools

Copyright 2017-2020 – ARCA.di.uminho.pt

Improved Lince accepted at FMAS @ iFM’24

� More operators outside differential equations

� Complex examples (following a target, overtake an object, oscillation, etc.)

� Custom visualisations (2D/3D path, etc.)

� New approximated simulator

José Proença – Dependencies with reconfigurable graphs Wrap up – towards dependable graphs 30 / 30

	Behavioural Feature Models
	Event structures
	Reconfigurable Graphs
	Composition of models
	Dependencies as reconfigurations
	Wrap up – towards dependable graphs

