
C. Di Giusto and G. Bacci (Eds.): Combined
Workshop on Expressiveness in Concurrency and
Structural Operational Semantics (EXPRESS/SOS 2025)
EPTCS ??, 2025, pp. 1–19, doi:10.4204/EPTCS.??.??

© T. Ribeiro, J. Proença & M. Florido
This work is licensed under the
Creative Commons Attribution License.

CoMPSeT: A Framework for Comparing Multiparty Session
Types

Telmo Ribeiro
telmo.ribeiro@fc.up.pt

Department of Computer Science

Faculty of Sciences, University of Porto
Portugal

José Proença
jose.proenca@fc.up.pt

CISTER & Department of Computer Science

Faculty of Sciences, University of Porto
Portugal

Mário Florido
amflorid@fc.up.pt

LIACC & Department of Computer Science

Faculty of Sciences, University of Porto
Portugal

Concurrent systems are often complex and difficult to design. Choreographic languages, such as Mul-
tiparty Session Types (MPST), allow the description of global protocols of interactions by capturing
valid patterns of interactions between participants. Many variations of MPST exist, each one with its
rather specific features and idiosyncrasies. Here we propose a tool – CoMPSeT– that provides clearer
insights over different features in existing MPST. We select a representative set of MPST examples
and provide mechanisms to combine different features and to animate and compare the semantics of
concrete examples. CoMPSeT is open-source, compiled into JavaScript, and can be directly executed
from any browser, becoming useful both for researchers who want to better understand the landscape
of MPST and for teachers who want to explain global choreographies.

1 Introduction

Communicating systems can be described by a variety of formalisations, often differing in subtle but
significant ways – such as their treatment of concurrency, message ordering, or assumptions about syn-
chrony – which makes their analysis non-trivial. These challenges build upon the inherent difficulties in
the architecture of such systems, where numerous execution flows and behaviours must be understood to
ensure the absence of communication errors [19].

This paper focuses on Multiparty Session Types (MPST), a typing discipline that guarantees commu-
nication safety and liveness in concurrent systems [10], originally formulated by Honda et al. [14]. Ses-
sion Types denote a formalism capable of verifying correctness in concurrent programs, where the well-
behaviour of a protocol can be asserted through the well-typedness of its participants. The Multiparty
aspect generalizes the earlier concept of Binary Session Types [13], which considered communications
between only two parties.

G lobal L ocals Processes
projected into type check

Figure 1: The classical Multiparty Session Types’ framework

https://dx.doi.org/10.4204/EPTCS.??.??
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 CoMPSeT: A Framework for Comparing Multiparty Session Types

The classical MPST framework, illustrated in Fig. 1, begins with the specification of a global type.
The global type describes the expected communication behaviour of a system from a global perspec-
tive, detailing how participants interact and how the session evolves over time, as exemplified in Exam-
ple 1.1. 1

Example 1.1. A possible global type describing a session where a controller assigns a task (Work) to
two workers, workerA and workerB, in this particular order. The workers are then expected to reply with
a completion message (Done) in any order.

controller→ workerA : Work ; controller→ workerB : Work ;

(workerA → controller : Done∥workerB → controller : Done)

From the global specification, local types – also known as session types – may be derived via a
projection operation. Each local type reflects the perspective of a single participant and contains only
the actions in which that participant is involved – either as sender or as receiver – similar to the de-
piction in Example 1.2. Local types can then be used to statically type-check processes implementing
corresponding participants.

Example 1.2. The local types derived from the projection of Example 1.1, where workerAB is used to
reference both workerA and workerB, as they share an identical structure.

Lcontroller = workerA!Work ; workerB!Work ; (workerA?Done∥workerB?Done)

LworkerAB = controller?Work ; controller!Done

Formally, let G be a well-formed global type involving participants p1, . . . ,pn. If, for each 1 ≤ i ≤ n,
there exists a process Pi such that ⊢ Pi : (G⇂pi) – where ⇂ denotes the projection of G onto participant pi
– then the composed concurrent system (P1 | ... | Pn) is guaranteed to be both safe and live [7]. Here, the
projection operation must be a partial function undefined for global types that do not meet the conditions
required to ensure these guarantees.

We developed CoMPSeT, a tool for comparing MPST sessions and semantics through hands-on ex-
perimentation and visualisation. The core contribution of CoMPSeT lies in its ability to support not only
the comparison of distinct sessions under the same semantic but also of semantics employing different
formalisms, such as synchronous versus asynchronous communication models. Furthermore, it enables
users to configure the underlying semantics according to a selected set of features (see Fig. 2) and to
immediately observe the practical effects of varying formalisation choices.

Our tool pivots CAOS [20, 21], a framework that enables programmers to test, define, and animate
both sessions and structural operational semantics (SOSs) by defining widget (builders) – visual and/or
interactive blocks of extendable functionality – called upon as functions. CoMPSeT instantiates these
builders with appropriate parameters to generate the visual and interactive elements configured according
to the user’s choice. Importantly, while CAOS is a general-purpose framework for SOSs and does not
specifically target MPST, CoMPSeT is designed with a modular architecture defining all MPST-specific
components, including projections, operational semantics, and well-formedness conditions. These com-
ponents are then parametrised against the configurations selected by the user and animated through the
CAOS framework.

1We employ → to denote the communication of a data type between two participants, while ; and ∥ represent the sequential
and parallel composition, respectively. Additionally, ! and ? highlight the direction of a communication, marking sending and
receiving actions.

T. Ribeiro, J. Proença & M. Florido 3

Figure 2: CoMPSeT representations for Example 1.1 and Example 1.2, where controller, workerA, and
workerB are abbreviated as c, wA, and wB, respectively

Remarks on the scope

We avoid establishing new lemmas and theorems, as our focus is neither on the development of new formu-
lations nor on a comprehensive survey of existing ones, but rather on the introduction of a system capable of
effectively comparing MPST variation points. Although we often provide formalisms to support our notations,
they are largely grounded in existing contributions.

Contributions Our primary contribution is a prototype open-source tool called CoMPSeT, available
to be executed online at https://telmoribeiro.github.io/CoMPSeT. This tool uses a dedicated
input language for specifying global types (see Section 2.1) and supports configurations over how the
language is interpreted, such as choosing between synchronous and asynchronous communication or
selecting what constructs are permissible (see Section 3). Users can configure and compare two different
semantics within the same session, with additional analysis available through branching bisimulation
checkers. Sessions are visually represented using message sequence charts (MSCs) and projections of
the global type, while identifying and reporting errors when projections are undefined. Finally, it provides
semantic animations, either through step-by-step execution or by rendering the entire state space. As a
complementary contribution, we extended the CAOS framework to overcome two identified limitations:
(1) lack of runtime widget variability and (2) absence of user-driven parametrisation. These extensions
were crucial for supporting the configurability and interactivity of CoMPSeT and are made available as
an independent fork at https://github.com/TelmoRibeiro/CAOS.

https://telmoribeiro.github.io/CoMPSeT
https://github.com/TelmoRibeiro/CAOS

4 CoMPSeT: A Framework for Comparing Multiparty Session Types

Organisation of the paper Section 1 introduces the motivation, problem statement, and contributions of
this work. Section 2 provides an overview of the MPST framework, including definitions of global and
local types, projection mechanisms, and semantics for different communication models. Section 3 sur-
veys existing formalisms while describing our notions of feature and base semantics. Section 4 details the
extensions made to the CAOS framework to support dynamic widget behaviour and user-configurability,
enabling the innovative aspects leveraged in CoMPSeT. Section 5 defines CoMPSeT, describing its inter-
face, features, and use cases through illustrative examples while highlighting how it enables interactive
and visual comparisons of different MPST formalisms. Finally, Section 6 summarises the main contri-
butions and findings and outlines directions for future research and development.

2 Multiparty Session Types in a Nutshell

This section serves simultaneously as a gentle introduction to the MPST framework and as the theoretical
foundation for understanding the core principles behind our tool.

2.1 Global Types

Let P be the set of all participants, ranged over by p, q, r; let T be the set of all data types, ranged over
by t; and let G be the set of all global types, ranged over by G. The syntax of a global type G is given by
the following grammar.

G ::= p→ q : {ti ; Gi}1≤i≤n | G1 ; G2 | G1 ∥G2 | µX .G | X | (G)∗ | skip

The syntax and their informal interpretations derive primarily from the descriptions provided by
Cledou et al. [5], as well as Jongmans and Proença [17], while acknowledging that both developments
reference Daniélou and Yoshida [7] as their primary source concerning their own syntax.

• p → q : {ti ; Gi}1≤i≤n specifies the communication of a label ti from the participant p to the
participant q, followed by the global type Gi, for some 1≤ i≤ n. As an additional well-formedness
requirement, we stipulate that (1) p ̸= q (i.e., no self-communications) and (2) the labels in ti must
be pairwise distinct (i.e., deterministic continuations). Moreover, we write p→ q : {ti}1≤i≤n ; G
as a shorthand for p→ q : {ti ; G}1≤i≤n.

• G1 ; G2 specifies the sequential composition of G1 and G2.

• G1 ∥G2 specifies the parallel composition of G1 and G2.

• µX .G and X specify (3) guarded and (4) bounded recursive protocols achieved through fixed point
notation.

• (G)∗ specifies (3) guarded recursive protocols achieved through Kleene star notation.

• skip specifies sequence identity.

Regarding the fixed point notation, we take the equi-recursive viewpoint, not distinguishing between
µX .G and its unfolding G[µX .G/X], as is the usual case within MPST [14].

Furthermore, the constructs adopted are not extensive of the literature, which contains instances
such as the universal quantification in the work of Daniélou and Yoshida [7], and session delegation
established by Bejleri and Yoshida [2].

T. Ribeiro, J. Proença & M. Florido 5

Example 2.1. The global type below captures a session where the controller delegates a task and the
worker responds with a completion note. This communication pattern can then be repeated.

µX .controller→ worker : {
Work ; worker→ controller : Done ; X ,

Quit

}

2.2 Local Types & Projections

Local types are defined by the following grammar.

L ::= pq!{ti ; Li}1≤i≤n | pq?{ti ; Li}1≤i≤n | L1 ; L2 | L1 ∥L2 | µX .L | X | (L)∗ | skip

The informal meaning of the local types is such that:

• pq!{ti ; Li}1≤i≤n specifies a sending of a label ti from the participant p to the participant q,
followed by the local type Li, for some 1 ≤ i ≤ n. Moreover, we write pq!{ti}1≤i≤n ; L as a
shorthand for pq!{ti ; L}1≤i≤n.

• pq?{ti ; Li}1≤i≤n specifies the reception of a label ti expected by the participant q from the par-
ticipant p, followed by the local type Li, for some 1 ≤ i ≤ n. Moreover, we write pq?{ti}1≤i≤n ; L
as a shorthand for pq?{ti ; L}1≤i≤n.

• the remaining constructs – sequencing, parallel composition, recursion, and skip – mirror their
global type counterparts.

The local types are obtained through the projection of the global type through each participant. This
notion is formalised in Fig. 3, which in turn is based upon the definition from Daniélou and Yoshida [7]
as well as Yoshida and Gheri [25].

Remarks on the syntax

We make the assumption that merging a single local type (see Fig. 3) returns the same local type, in which
case, we omit the braces commonly used to denote several branching continuations.
Whenever it is made clear by the context, we omit the subject of the sending (!) and receiving (?) action. This
approach is not followed in the formulations, which adhere to the literature motifs. For instance, we omitted
controller in Lcontroller (see Example 1.2).
When that is not possible, the notation for communication actions can be made explicit between participants,
to avoid ambiguous naming and improve readability. For example, we use controller!worker:Work, instead of
controllerworker!Work.
For the sake of simplicity, this syntax does not discriminate between payload types and message labels, a
characteristic that is not commonly observed in the literature [14, 15, 2, 7, 8, 23, 6, 25]. Rather, following the
main sources for the syntax, it uses data types, which may be used to refer interchangeably to either notion.
All the above decisions are transposed to CoMPSeT.

The function participants returns a set of all participants in a given global type G. On the other hand,
merge is a partial function that combines a set of local types Li into a single one, respecting a strategy
that will depend on a merge criterion, a point of discussion in Section 3.

6 CoMPSeT: A Framework for Comparing Multiparty Session Types

skip⇂r = skip

X⇂r = X

(µX .G)⇂r = µX .(G⇂r) if r ∈ participants{G}
(µX .G)⇂r = skip if r ̸∈ participants{G}
(G)∗⇂r = (G⇂r)

∗ if r ∈ participants{G}
(G)∗⇂r = skip if r ̸∈ participants{G}
p→ q : {ti ; Gi}1≤i≤n⇂r = pq!{ti ; (Gi⇂r)}1≤i≤n if p= r ̸= q

p→ q : {ti ; Gi}1≤i≤n⇂r = pq?{ti ; (Gi⇂r)}1≤i≤n if p ̸= r = q

p→ q : {ti ; G1}1≤i≤n⇂r = merge({Gi⇂r}1≤i≤n) if p ̸= r ̸= q

(G1 ; G2)⇂r = (G1⇂r) ; (G2⇂r)

(G1 ∥G2)⇂r = (G1⇂r)∥ (G2⇂r)

undefined otherwise

Figure 3: Projection G⇂r of a global type G2 to a participant r, using functions participants and merge

Remarks on the Kleene star
Notably, the Kleene star is not disclosed in the papers referenced for our syntax. Instead, the construct was
originally introduced by Castagna et al. [3], although it was not fully integrated into their theoretical frame-
work, as it was reduced to a fixed-point operator during projection. More recently, Jongmans and Proença
incorporated support for the Kleene star in their tool implementation, but without an accompanying formal
definition in their paper. In this work, we formalise the rule applied in their implementation. Importantly,
as shown by Charalambides et al. [4], the Kleene star can be used to define protocols whose projections are
unsafe – meaning they produce local types that are not compliant with the original global specification. For
instance, the authors present the type (a→ b : m ; b→ c : m′)∗ ; c→ d : m′′ and explain that c cannot deter-
mine whether it should wait for m′ from b, or skip directly to sending m′′ to d. In the same work, the authors
propose a Kleene star projectability criterion (KP) to ensure that such ambiguity does not arise. Informally, the
criterion requires that all participants in global types of the form (G1)

∗ ; G2 are able to distinguish between
G1 and G2. As such, we assume well-defined projections of the Kleene star to be, additionally, KP-consistent.

Example 2.2. The two local types below capture the projections of the global type from Example 2.1.
We present this example before any concrete formulation of merge, under the guarantee that all imple-
mentations discussed throughout this paper yield the same result for this instance.

Lcontroller =µX . worker!{
Work ; worker?Done ; X , Quit

}
Lworker = µX .controller?{

Work ; controller!Done ; X , Quit

}

2We assume KP-consistent [4] global types, following the discussion in Remarks on the Kleene star.

T. Ribeiro, J. Proença & M. Florido 7

Figure 4: CoMPSeT representations for Example 2.1 and Example 2.2, where controller and worker are
abbreviated as c and w, respectively

Both Example 2.1 and Example 2.2 are represented in Fig. 4, which illustrates their translation into
visual widgets in CoMPSeT.

2.3 Running Local Types

We define a Multiparty Session, denoted by M, as a concurrent composition of local types, written
(Lp1 | · · · | Lpn), where each Lp is a well-formed local type for some participant p ∈ M. This definition is
based on the following considerations: (1) local types can mimic the evolution of well-typed processes,
and (2) the employment of semantics over local descriptions is common in choreographic languages
beyond MPST. Our semantics deviate from the standard approach, which typically relies on variants or
extensions of π-calculus to establish reduction rules over processes.

The reduction rules are defined over configurations of the form ⟨M, p⟩, consisting of a Multiparty
Session M (or, occasionally, a single local type) and a collection p representing possible pending com-
munications. The realisation of p is established during the definitions of concrete communication rules,
when it is assumed to be shared among the remaining reduction rules. Multisets or first-in first-out
(FIFO) queues would be possible realisations of p.

As with syntax, CoMPSeT supports the full set of reduction rules presented throughout this section,
only with minor deviations such as the employment of env : X → L – where X ranges over recursion
variables and L over local types – as mappings for recursion fixed points, which are omitted from the
formulations for simplicity.

8 CoMPSeT: A Framework for Comparing Multiparty Session Types

We describe the communication rules for three semantics, also omitting structural congruence defi-
nitions and shared reduction rules, which are only disclosed in the extended version [22].

Synchronous Semantics The synchronous communication rule assumes no buffering mechanism, hence
p is always empty and absent in the notation. We assume that tk ∈

⋃mi
i=1 ti∩

⋃m j
j=1 tj.

⟨pq!{ti ; L1i}1≤i≤mi | pq?{tj ; L2 j}1≤ j≤m j | M⟩ p→q:tk−−−−→ ⟨L1k | L2k | M⟩ (communication)

Ordered Asynchronous Semantics Here, each pair of participants represented simply by pq has an
unbounded FIFO queue for messages. A configuration is established by a Multiparty Session M and a
buffer p : (P×P)→ T∗, mapping each pair sender-receiver to a sequence of data types in T. The main
operational rules to evolve a configuration – send and receive – are presented below. Here, ts represents a
queue of data types, where ti · ts is used to highlight the prefix element while conversely, ts ·ti emphasizes
the suffix.

⟨pq!{ti ; Li}1≤i≤m | M , p∪{pq 7→ ts}⟩ pq!tk−−−→ ⟨Lk | M , p∪{pq 7→ ts·tk}⟩ (send)

⟨pq?{ti ; Li}1≤i≤m | M , p∪{pq 7→ tk·ts}⟩
pq?tk−−−→ ⟨Lk |M , p∪{pq 7→ ts}⟩ (receive)

Unordered Asynchronous Semantics Here the configurations are established as pairs of Multiparty
Sessions M and a multiset p ∈ M (P×P×T), where M (X) denotes the set of all finite multisets over
the set X . The main operational rules to evolve a configuration are presented below. We denote by
p∪ (p,q, ti) a new multiset achieved by joining the tuple comprising p,q, and ti to an existing multiset p.

⟨pq!{ti ; Li}1≤i≤m | M , p⟩ pq!tk−−−→ ⟨Lk | M , p∪ (p,q, tk)⟩ (send)

⟨pq?{ti ; Li}1≤i≤m | M , p∪ (p,q, tk)⟩
pq?tk−−−→ ⟨Lk | M , p⟩ (receive)

While unordered asynchronous models are atypical in the MPST literature, we include them to show-
case the flexibility of the proposed tool, a point elaborated further in the following Section 3.

3 Variations in Multiparty Session Types Formalisms

This section identifies a set of variation points between similar MPST formalisations, regarding their
semantics and expressiveness, which we categorise as features. More formally, it defines a feature as a
modular aspect in the literature that can vary independently across different semantic implementations.
For example, the realisation of the merge partial function (see Fig. 3), used to reconcile the projection
of branches. This analysis is inspired by the methodology behind the essential features of Bejleri et
al. [1], which compartmentalises structural motifs in MPST. In contrast, our focus lies specifically on the
expressiveness of global and local types while disregarding process-oriented variations. Additionally,
we define base semantics as the operational behaviour of our MPST syntax after selecting an explicit set
of features.

The following variation points are considered.

Merge criteria This feature specifies the merge implementation, which handles the projected behaviour
of a non-participating role observing branching communication between two others. We borrow the

T. Ribeiro, J. Proença & M. Florido 9

nomenclature from Scalas and Yoshida [23], thus contemplating the plain merge and the full merge. In-
formally, plain merge is only defined when all branching communications have the same continuation, in
which case, that continuation is yielded. The intuition is that if the continuations are the same, the pro-
jecting participant does not need to distinguish the branches. Conversely, full merge – as introduced by
Yoshida et al.[24, 8] – extends this notion by allowing distinct yet compatible [23, 25] communications.

Communication models This feature captures the underlying communication system between par-
ticipants. We consider three models: (1) synchronous where senders and receivers communicate in a
lock-step; (2) ordered asynchronous with an unbounded FIFO queue for pending communications; and
(3) unordered asynchronous which offers no guarantees on the ordering of pending messages. The con-
crete implementations referenced in the literature may differ from those introduced in Section 2.3, which
focused on exemplifying how local types could be run natively and introducing a baseline for the com-
parisons observed in CoMPSeT. For instance, Coppo et al. [6] employ a single message queue with
additional structural congruence rules to enable reordering, rather than assigning separate queues to each
pair sender-receiver.

Parallel Composition This feature captures whether local parallel composition is explicitly supported
in the type system, exemplified by Daniélou and Yoshida [7], Cledou et al. [5], and Jongmans and
Proença [17]. Notably, some formalisations allow for parallelism at the global type level but not on
local types, as evidenced by Bejleri and Yoshida [2]. All constructs supported in CoMPSeT are done
so throughout the complete type system, however, operators concerning only the global types could be
established under the new extension discussed in Section 4.

Recursion Scheme This feature describes whether and how recursion is supported – either as a fixed
point construct or via Kleene star notation, representing zero or more repetitions of a term in sequence.
As remarked in Section 2.2, some systems project the Kleene star as fixed points, forfeiting its native sup-
port at the local type level. A detailed discussion on the expressiveness of different recursion constructs
falls outside the scope of this paper. Yet, recursion in MPST, often blurs the line between expressiveness
and syntactic sugar, where we contrast the previous case with the tail-recursive fixed point implementa-
tions that could be reduced to Kleene star. This distinction motivates our decision to implement a local
Kleene star with dedicated reduction rules.

Well-formedness requirements This feature regards additional requirements that are conditionally im-
posed. For instance, as an additional requirement for the parallel composition, Daniélou and Yoshida [7]
require that sub-protocols be well channelled, i.e., that their communications do not overlap: comm(G1)∩
comm(G2) = /0. Here, comm : G→ 2P×P×T maps a global type to the set of its communications, repre-
sented as triples (p, q, t).

Remarks on the selected papers

The reasoning behind the inclusion of [25], [6], [5], and [17] derives partially from their role as major refer-
ences while establishing our own formalisms. The introductory nature of [25] and [6] is shared by the previous
sections and allowed for simpler implementations. Meanwhile, [5] and [17] describe tools with design prin-
ciples shared with CoMPSeT, e.g., being accomplished atop CAOS. In fact, readers familiar with both works
can notice how closely our system emulates their original semantics. In contrast, [11] was included because
of its unordered asynchronous communications. It simultaneously allows for greater variability and stands
as motivation for future extensions, since it describes a communication model found in choreographic lan-
guages [11, 12] outside the MPST scope.

10 CoMPSeT: A Framework for Comparing Multiparty Session Types

Table 1: Features mapping – ✓(present), ×(absent) or N/S (not specified)3

Paper Merge
criteria

Communication
model

Parallel
composition

Recursion
scheme

Well-formedness
requirements

[25] plain
& full

synchronous × fixed point

[6] plain ordered asynchronous × fixed point

[5] plain ordered asynchronous ✓ × well-channelled

[17] plain ordered asynchronous ✓ Kleene star
& fixed point well-channelled

[11] N/S unordered asynchronous N/S N/S N/S

Table 1 illustrates how selected MPST systems combine different features, indicating in the left
column a reference to a paper on multiparty communications – here defined as the conjoined works on
MPST and choreographies – and in the other columns the selection of features used by them. Notably,
in [17] (ST4MP) we reference decisions for both the paper and the accompanying implementation (in
bold), motivated by the previous discussion on recursion.

4 Extending CAOS

CAOS [20, 21] is defined both as a methodology and a programming framework for computer-aided
design of SOSs for formal models. It supports simultaneous development of semantic foundations and
corresponding interactive tools, enabling developers to define reduction rules, use cases structured as ex-
amples, and interface elements to visualise and interact with established sessions and operational seman-
tics. This integration facilitates early detection of incongruences in formalisations, particularly during
the modelling and verification of formal semantics.

We selected CAOS as the foundation for CoMPSeT due to its comprehensive collection of widget
builders and its support for visual, interactive means – a key requirement for the tool. In particular,
we leveraged the following core widgets: lts – to visualise local types or their compositional behaviour
under specific communication models; steps – to allow users to interactively compute traces through
step-by-step evaluations; and compareBranchingBisim – to determine whether two states under different
semantics are branching bisimilar.4

Despite its flexibility, CAOS presented shortcomings for our implementation which other developers
may equally face when extending the framework, concerning how to select a set of analysis without
overwhelming themselves and/or the user. For instance, a subtle limitation lies in the way internal con-
figurability is handled. Although CAOS supports multiple forms of semantical equivalence checking –
such as the aforementioned branching bisimulation, but also strong bisimulation and trace equivalence
– its usage is often limited to small sets of semantics. While it is technically possible to implement
parametrised or configurable semantics and compare them through those tools, each configuration needs

3Notation used for concrete variation points disregarded in our analysis. This decision was motivated by the paper describing
a choreographic language in which our sole interest was the communication model.

4Given the possibility of infinite behaviour, CAOS constrains bisimulation checking with a depth bound, set to 100 in
CoMPSeT.

T. Ribeiro, J. Proença & M. Florido 11

to be explicitly accounted for, which can quickly lead to scenarios where the number of semantics is just
too large to feasibly maintain.

This inflexibility is exemplified by the manner widgets are defined, stopping CAOS from dynamically
modifying them.

1 /** Main widgets , on the right hand side of the screen */
2 val widgets: Iterable [(String , WidgetInfo[Stx])]

Figure 5: Signature for widgets in CAOS

As shown in Fig. 5, the selection of widgets is declared as an iterable collection of pairs, each con-
taining the name of a widget and a structure encapsulating its functionality, like the previously discussed
steps. This selection of widgets is immutable, reflected by the keyword val and by the use of an im-
mutable iterable structure, hence it cannot be updated at runtime to adapt to different configurations. As
a consequence, if one wishes to create a widget that interprets steps under synchronous semantics for one
example set and asynchronous semantics for another, two distinct widgets must be declared. Under the
current design, this will clutter the web interface with widgets yielding meaningless results or throwing
exceptions depending on the input.

To address these limitations, we propose a threefold extension where we: (1) refactored core com-
ponents of the current implementation to support runtime widget variability; (2) implemented a new
configurable input widget – Settings – whose structure is defined by the developer through a lightweight
domain-specific language (DSL) and can be interactively modified by users via checkboxes [22]; and (3)
defined an application programming interface (API) over this structure, providing methods for accessing
and updating it, alongside general-purpose filters and auxiliary functions [22].

Those extensions were critical to the innovations observed in CoMPSeT. They enable the program-
mer to establish widgets that are parametrised by user-selected configurations and which dynamically
adapt their behaviour. More concretely, in CoMPSeT, each widget is instantiated by binding its logic
to the current state of Settings, where we then leverage our modular definitions that capture key aspects
of the MPST framework, including global type projection, operational semantics, and well-formedness
verification [22].

5 Comparing Multiparty Session Types With CoMPSeT

This section presents the CoMPSeT tool by describing its applicability, later presenting motivational use
cases. All examples referenced throughout this section – among others – are included in the tool [22].

5.1 Running CoMPSeT

Each setting in the interface (CAOS) corresponds directly to a feature (literature) identified in Table 1.
Users configure these settings through associated checkboxes, observing the effects on the widgets de-
scribed.

Two widgets are kept visible and unchanged regardless of configuration: (1) Message Sequence
Chart, which offers a graphical representation of the session, and (2) Global (type), which displays the
session specification via text.

The configurable settings and their consequent impacts are as follows.

12 CoMPSeT: A Framework for Comparing Multiparty Session Types

Figure 6: Locals and Local FSMs for APIGenInScala3 (base semantics for [5]) – controller-workers
session from Example 1.1

Merge Criteria This setting controls how projection handles branching interactions for non-communicating
participants. CoMPSeT implements the plain merge following Honda et al. [14, 15], and the full merge
according to Dezani-Ciancaglini et al. [9]. These determine whether projection is well-defined, mani-
fested through Locals – a textual description for the local types – and Local FSMs – its graphical coun-
terpart – as exemplified by Fig. 6.

Communication Model Users can select between synchronous, ordered asynchronous, or unordered
asynchronous communication models, following their descriptions in Section 2.3. In turn, Step-by-Step
– an interactive semantic iterator – and Local Compositional FSM – a graphical representation of the
composed behaviour – will be rendered on the interface in accordance with Fig. 7.

Parallel Composition and Recursion These settings control whether constructs like parallel composi-
tion and the supported forms of recursion are allowed. When disabled, sessions containing these opera-
tors will raise errors via Check – a widget that runs pre-defined conditions over the system while staying
invisible if they do not hold – as exemplified by Fig. 8. Enabling the corresponding setting suppresses
the error.

T. Ribeiro, J. Proença & M. Florido 13

Figure 7: Step-by-Step evaluation (top) and Local Compositional FSM (bottom) for GentleIn-
troMPAsyncST (base semantics for [6]) – recursive controller-worker session from Example 2.1

Figure 8: Check yielding an error describing the presence of Kleene star recursion for VeryGentleIn-
troMPST (base semantics for [25]), using a session described by (c→ w : Work ; w→ c : Done)∗

Extra Requirements This setting enables additional well-formedness checks, such as well-channelled
(see Section 3). Additionally, CoMPSeT also enjoys a relaxed form of branching, expressed as LA +LB

for local types and GA+GB for global types. To ensure compatibility with classical MPST, we introduce
a well-formedness condition named well-branched, verifying whether the relaxed form can be rewritten
in the canonical syntax. This decision advances future support for general choreographic languages.
These checks do not suppress errors like the previous settings but add extra syntactic validations.

14 CoMPSeT: A Framework for Comparing Multiparty Session Types

5.2 Comparing Semantics

As a motivational use case, we compare the semantics for APIGenInScala3 and ST4MP (base semantics
for [17])5 which differ only in their recursion treatment, otherwise aligning closely for sessions not
foreseeing this construct. This is evidenced in Fig. 9 (left), where Bisimulation is a widget describing
their behavioural equivalence.

Session

Settings

simple task delegation compared for bothsimple task delegation compared for both
APIGenInScala3 and ST4MPAPIGenInScala3 and ST4MP

Examples

controller-workers - v1 controller-workers - v0

recursive controller-worker - v1

recursive controller-worker - v2

simple branching - v1 simple branching - v2

simple task delegation

controller-workers - v1 (APIGenInScala3)

recursive controller-worker - v1 (ST4MP)

simple branching - v1 (GentleIntroMPAsyncST)

simple branching - v2 (VeryGentleIntroMPST)

recursive controller-worker - v2
(GentleIntroMPAsyncST)

simple branching - v2 (VeryGentleIntroMPST vs
GentleIntroMPAsyncST)

simple task delegation (APIGenInScala3 vs
ST4MP)

simple task delegation (APIGenInScala3 vs Non-
Causal Asynchronous)

Message Sequence Chart

Global

Bisimulation

Semantics A: Locals

Semantics A: Local FSMs

Semantics A: Local Compositional FSM

Semantics A: Step-by-Step

Semantics B: Locals

Semantics B: Local FSMs

Semantics B: Local Compositional FSM

Semantics B: Step-by-Step

Found bisimulation:
- pA: (pA!pB:TaskA || pA!pB:TaskB)
pB: (pB?pA:TaskA || pB?pA:TaskB) <-> pA: (pA!pB:TaskA || pA!pB:TaskB)
pB: (pB?pA:TaskA || pB?pA:TaskB) @ init
- pA: pA!pB:TaskA
pB: (pB?pA:TaskA || pB?pA:TaskB) <-> pA: pA!pB:TaskA
pB: (pB?pA:TaskA || pB?pA:TaskB) @ pA!pB:TaskB
- pA: pA!pB:TaskB
pB: (pB?pA:TaskA || pB?pA:TaskB) <-> pA: pA!pB:TaskB
pB: (pB?pA:TaskA || pB?pA:TaskB) @ pA!pB:TaskA
- pA: pA!pB:TaskA
pB: pB?pA:TaskA <-> pA: pA!pB:TaskA
pB: pB?pA:TaskA @ pB?pA:TaskB,pA!pB:TaskB
- pA: pA!pB:TaskB
pB: pB?pA:TaskB <-> pA: pA!pB:TaskB
pB: pB?pA:TaskB @ pB?pA:TaskA,pA!pB:TaskA
- pA: skip
pB: (pB?pA:TaskA || pB?pA:TaskB) <-> pA: skip
pB: (pB?pA:TaskA || pB?pA:TaskB) @ pA!pB:TaskA,pA!pB:TaskB
- pA: skip
pB: (pB?pA:TaskA || pB?pA:TaskB) <-> pA: skip
pB: (pB?pA:TaskA || pB?pA:TaskB) @ pA!pB:TaskB,pA!pB:TaskA
- pA: skip
pB: pB?pA:TaskA <-> pA: skip
pB: pB?pA:TaskA @ pB?pA:TaskB,pA!pB:TaskA,pA!pB:TaskB
- pA: skip
pB: pB?pA:TaskB <-> pA: skip
pB: pB?pA:TaskB @ pB?pA:TaskA,pA!pB:TaskB,pA!pB:TaskA
- pA: skip
pB: skip <-> pA: skip
pB: skip @ pB?pA:TaskA,pB?pA:TaskB,pA!pB:TaskA,pA!pB:TaskB

CoMPSeT - Comparison of Multiparty Session TypesCoMPSeT - Comparison of Multiparty Session Types









pA->pB:TaskA || pA->pB:TaskB1

Session

Settings

simple task delegation compared for both APIGenInScala3 andsimple task delegation compared for both APIGenInScala3 and
Non-Causal AsynchronousNon-Causal Asynchronous

Examples

controller-workers - v1 controller-workers - v0

recursive controller-worker - v1 recursive controller-worker - v2

simple branching - v1 simple branching - v2

simple task delegation

controller-workers - v1 (APIGenInScala3)

recursive controller-worker - v1 (ST4MP)

simple branching - v1 (GentleIntroMPAsyncST)

simple branching - v2 (VeryGentleIntroMPST)

recursive controller-worker - v2 (GentleIntroMPAsyncST)

simple branching - v2 (VeryGentleIntroMPST vs
GentleIntroMPAsyncST)

simple task delegation (APIGenInScala3 vs ST4MP)

simple task delegation (APIGenInScala3 vs Non-Causal
Asynchronous)

Message Sequence Chart

Global

Bisimulation

Not bisimilar:
 - after pA!pB:TaskB,pA!pB:TaskA
 + pA: skip
pB: (pB?pA:TaskA || pB?pA:TaskB) can do pB?pA:TaskA
 + pA: skip
pB: (pB?pA:TaskA || pB?pA:TaskB) cannot do τ*,pB?pA:TaskA

Semantics A: Locals

Semantics A: Local FSMs

Semantics A: Local Compositional FSM

Semantics A: Step-by-Step

Semantics B: Locals

Semantics B: Local FSMs

Semantics B: Local Compositional FSM

Semantics B: Step-by-Step

CoMPSeT - Comparison of Multiparty Session TypesCoMPSeT - Comparison of Multiparty Session Types









pA->pB:TaskA || pA->pB:TaskB1

Figure 9: Bisimulations comparing the APIGenInScala3 semantics either against the ST4MP semantics
(left – only the first seven lines) or against an unordered asynchronous system (right), using a session
described by pA→ pB : TaskA∥pA→ pB : TaskB

However, the previous behavioural equivalence was partially rooted in both semantics sharing the
same communication model. For the same session, a semantic similar with ST4MP yet over an unordered
asynchronous model would no longer be bisimilar to APIGenInScala3, as the new communication model
does not enforce rules over message delivery. This nuance is also captured by CoMPSeT as illustrated
on the right of Fig. 9. Additionally, the graphical representation for the compositional behaviour (see
Fig. 10) further evidences their distinction.

As an additional motivational case, we note how the session defined as (pA→ pB : TaskA ; pB→
pC : TaskA)+(pA→ pB : TaskB ; pB→ pC : TaskB) is well defined under the full merge, but not under
the plain merge, as pC would require the same communication action in both branches. This distinction is
captured in CoMPSeT– exemplified in Fig. 11 – as VeryGentleIntroMPST, which adopts the full merge,
successfully produces the corresponding local type, whereas GentleIntroMPAsyncST, which relies on
the plain merge, fails to do so.

Readers are encouraged to engage with the examples made accessible online and to configure their
own sessions and semantic setups using the presently defined settings.

6 Conclusion and Future Work

This paper introduced CoMPSeT, a novel tool designed to compare Multiparty Session Types (MPST)
formalisms through dynamic, user-configurable settings, available at https://telmoribeiro.github.
io/CoMPSeT.

Built atop the CAOS framework, CoMPSeT leverages its modular widget architecture to define, test,
and animate structural operational semantics (SOSs) while exploiting pre-defined notions established by
this framework, such as branching bisimulation checkers. Recognising current limitations in the original
CAOS framework – specifically the lack of support for dynamic widget behaviour and runtime configura-
bility – we extended it to: (1) support runtime variability in widgets; (2) structure configurations through

5Notably, in ST4MP we adopt the implementation semantics from [17] – with the Kleene star – instead of the original for-
mulation, following the discussion of Section 3 and envisioning greater variability. The formalised version can be experimented
upon by selecting instead the Fixed Point setting.

https://telmoribeiro.github.io/CoMPSeT
https://telmoribeiro.github.io/CoMPSeT

T. Ribeiro, J. Proença & M. Florido 15

Figure 10: Local Compositional FSM for APIGenInScala3 (top) and an unordered asynchronous model
(bottom) – simple task delegation session from Fig. 9

16 CoMPSeT: A Framework for Comparing Multiparty Session Types

Figure 11: Locals for VeryGentleIntroMPST (Semantics A) and GentleIntroMPAsyncST (Semantics B),
using the branching session previously described

T. Ribeiro, J. Proença & M. Florido 17

a dedicated domain specific language (DSL); and (3) establish a concise application programming in-
terface (API) that abstracts the definition of compound widget behaviour and facilitates parametrisation.
These extensions are also available as open-source at https://github.com/TelmoRibeiro/CAOS.

Building on these extensions, CoMPSeT benefits from the new Settings widget, enabling users to
configure the semantics supporting a session and observe, in practice, how different formalism imple-
mentations affect system behaviour. Moreover, it supports side-by-side comparisons of two distinct
semantics, providing immediate visual and interactive feedback on their differences. CoMPSeT thus
enables researchers and educators to visualise, animate, and compare MPST formalisations, helping to
clarify subtle semantic variations within aspects such as communication models, recursion schemes, and
merge strategies.

By offering detailed automata visualisation, interactive trace exploration, and bisimulation check-
ing, CoMPSeT serves both as an exploratory research platform and as a pedagogical tool for teaching
concurrent communication sessions.

7 Future Work

Although our tool already supports a range of MPST features, several extensions could broaden its ap-
plicability.

• Additional features – Further feature assimilation would widen the range of reproducible systems.
Following the already included form of relaxed branching and unordered asynchronous commu-
nications, supplementary adoption of choreographic features would extend the scope of the tool
allowing for comparisons between different concurrent communication systems;

• API generation – MPST tooling often focuses on application programming interface (API) gener-
ation [16, 18, 5, 17, 10], allowing for endpoints implementing different participants to benefit from
the guarantees ensured by this typing discipline. CoMPSeT could be made a foundational layer in
a broader pipeline or incorporate this aspect natively, enabling both semantical comparisons and
yielding session compliant APIs.

By continuing to develop CoMPSeT, we aim to lower the barriers to understanding MPST theory
and make the impact of different semantic choices more transparent and accessible.

References

[1] Andi Bejleri, Elton Domnori, Malte Viering, Patrick Eugster & Mira Mezini (2019): Comprehen-
sive Multiparty Session Types. Art Sci. Eng. Program. 3(3), p. 6, doi:10.22152/PROGRAMMING-
JOURNAL.ORG/2019/3/6.

[2] Andi Bejleri & Nobuko Yoshida (2008): Synchronous Multiparty Session Types. In Vasco T. Vas-
concelos & Nobuko Yoshida, editors: Proceedings of the First Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software, PLACES@DisCoTec 2008, Oslo,
Norway, June 7, 2008, Electronic Notes in Theoretical Computer Science 241, Elsevier, pp. 3–33,
doi:10.1016/J.ENTCS.2009.06.002.

[3] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini & Luca Padovani (2012): On Global Types and Multi-
Party Session. Log. Methods Comput. Sci. 8(1), doi:10.2168/LMCS-8(1:24)2012.

https://github.com/TelmoRibeiro/CAOS
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2019/3/6
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2019/3/6
https://doi.org/10.1016/J.ENTCS.2009.06.002
https://doi.org/10.2168/LMCS-8(1:24)2012

18 CoMPSeT: A Framework for Comparing Multiparty Session Types

[4] Minas Charalambides, Peter Dinges & Gul Agha (2012): Parameterized Concurrent Multi-Party Session
Types. In Natallia Kokash & António Ravara, editors: Proceedings 11th International Workshop on Foun-
dations of Coordination Languages and Self Adaptation, FOCLASA 2012, Newcastle, U.K., September 8,
2012, EPTCS 91, pp. 16–30, doi:https://doi.org/10.4204/EPTCS.91.2.

[5] Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans & José Proença (2022): API Generation for Mul-
tiparty Session Types, Revisited and Revised Using Scala 3. In Karim Ali & Jan Vitek, editors: 36th European
Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany, LIPIcs 222,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 27:1–27:28, doi:10.4230/LIPICS.ECOOP.2022.27.

[6] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani & Nobuko Yoshida (2015): A Gentle Intro-
duction to Multiparty Asynchronous Session Types. In Marco Bernardo & Einar Broch Johnsen, editors:
Formal Methods for Multicore Programming - 15th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems, SFM 2015, Bertinoro, Italy, June 15-19, 2015,
Advanced Lectures, Lecture Notes in Computer Science 9104, Springer, pp. 146–178, doi:10.1007/978-3-
319-18941-3_4.

[7] Pierre-Malo Deniélou & Nobuko Yoshida (2011): Dynamic multirole session types. In Thomas Ball
& Mooly Sagiv, editors: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, ACM, pp. 435–446,
doi:10.1145/1926385.1926435.

[8] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri & Raymond Hu (2012): Parameterised Multiparty
Session Types. Log. Methods Comput. Sci. 8(4), doi:10.2168/LMCS-8(4:6)2012.

[9] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic & Nobuko Yoshida
(2015): Precise subtyping for synchronous multiparty sessions. In Simon Gay & Jade Alglave, editors:
Proceedings Eighth International Workshop on Programming Language Approaches to Concurrency- and
Communication-cEntric Software, PLACES 2015, London, UK, 18th April 2015, EPTCS 203, pp. 29–43,
doi:https://doi.org/10.4204/EPTCS.203.3.

[10] Francisco Ferreira & Sung-Shik Jongmans (2023): Oven: Safe and Live Communication Protocols in Scala,
using Synthetic Behavioural Type Analysis. In René Just & Gordon Fraser, editors: Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2023, Seattle, WA,
USA, July 17-21, 2023, ACM, pp. 1511–1514, doi:10.1145/3597926.3604926.

[11] Roberto Guanciale & Emilio Tuosto (2018): Realisability of Pomsets via Communicating Automata. In
Massimo Bartoletti & Sophia Knight, editors: Proceedings 11th Interaction and Concurrency Experience,
ICE 2018, Madrid, Spain, June 20-21, 2018, EPTCS 279, pp. 37–51, doi:10.4204/EPTCS.279.6.

[12] Roberto Guanciale & Emilio Tuosto (2019): Realisability of pomsets. J. Log. Algebraic Methods Program.
108, pp. 69–89, doi:10.1016/J.JLAMP.2019.06.003.

[13] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. In Chris Hankin, editor: Programming Languages
and Systems - ESOP’98, 7th European Symposium on Programming, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings, Lecture Notes in Computer Science 1381, Springer, pp. 122–138, doi:10.1007/BFB0053567.

[14] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session types. In
George C. Necula & Philip Wadler, editors: Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12,
2008, ACM, pp. 273–284, doi:10.1145/1328438.1328472.

[15] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. J. ACM
63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[16] Raymond Hu & Nobuko Yoshida (2016): Hybrid Session Verification Through Endpoint API Generation.
In Perdita Stevens & Andrzej Wasowski, editors: Fundamental Approaches to Software Engineering - 19th
International Conference, FASE 2016, Held as Part of the European Joint Conferences on Theory and Practice

https://doi.org/https://doi.org/10.4204/EPTCS.91.2
https://doi.org/10.4230/LIPICS.ECOOP.2022.27
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.1145/3597926.3604926
https://doi.org/10.4204/EPTCS.279.6
https://doi.org/10.1016/J.JLAMP.2019.06.003
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695

T. Ribeiro, J. Proença & M. Florido 19

of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, Lecture Notes in
Computer Science 9633, Springer, pp. 401–418, doi:10.1007/978-3-662-49665-7_24.

[17] Sung-Shik Jongmans & José Proença (2022): ST4MP: A Blueprint of Multiparty Session Typing for Mul-
tilingual Programming. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging Applications of For-
mal Methods, Verification and Validation. Verification Principles - 11th International Symposium, ISoLA
2022, Rhodes, Greece, October 22-30, 2022, Proceedings, Part I, Lecture Notes in Computer Science 13701,
Springer, pp. 460–478, doi:10.1007/978-3-031-19849-6_26.

[18] Nicolas Lagaillardie, Rumyana Neykova & Nobuko Yoshida (2020): Implementing Multiparty Session Types
in Rust. In Simon Bliudze & Laura Bocchi, editors: Coordination Models and Languages - 22nd IFIP WG 6.1
International Conference, COORDINATION 2020, Held as Part of the 15th International Federated Confer-
ence on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings,
Lecture Notes in Computer Science 12134, Springer, pp. 127–136, doi:10.1007/978-3-030-50029-0_8.

[19] Simone Orlando, Vairo Di Pasquale, Franco Barbanera, Ivan Lanese & Emilio Tuosto (2021): Corinne, a
Tool for Choreography Automata. In Gwen Salaün & Anton Wijs, editors: Formal Aspects of Component
Software - 17th International Conference, FACS 2021, Virtual Event, October 28-29, 2021, Proceedings,
Lecture Notes in Computer Science 13077, Springer, pp. 82–92, doi:10.1007/978-3-030-90636-8_5.

[20] José Proença & Luc Edixhoven (2023): Caos: A Reusable Scala Web Animator of Operational Semantics. In
Sung-Shik Jongmans & Antónia Lopes, editors: Coordination Models and Languages - 25th IFIP WG 6.1 In-
ternational Conference, COORDINATION 2023, Held as Part of the 18th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceedings,
Lecture Notes in Computer Science 13908, Springer, pp. 163–171, doi:10.1007/978-3-031-35361-1_9.

[21] José Proença & Luc Edixhoven (2025): The CAOS framework for Scala: Computer-aided design of SOS.
Sci. Comput. Program. 240, p. 103222, doi:10.1016/J.SCICO.2024.103222.

[22] Telmo Ribeiro, José Proença & Mário Florido (2025): CoMPSeT: A Framework for Comparing Multiparty
Session Types (Extended Version), doi:https://doi.org/10.5281/zenodo.17188157.

[23] Alceste Scalas & Nobuko Yoshida (2019): Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), pp. 30:1–30:29, doi:10.1145/3290343.

[24] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri & Raymond Hu (2010): Parameterised Multiparty
Session Types. In C.-H. Luke Ong, editor: Foundations of Software Science and Computational Structures,
13th International Conference, FOSSACS 2010, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, Lecture Notes in
Computer Science 6014, Springer, pp. 128–145, doi:10.1007/978-3-642-12032-9_10.

[25] Nobuko Yoshida & Lorenzo Gheri (2020): A Very Gentle Introduction to Multiparty Session Types. In
Dang Van Hung & Meenakshi D’Souza, editors: Distributed Computing and Internet Technology - 16th
International Conference, ICDCIT 2020, Bhubaneswar, India, January 9-12, 2020, Proceedings, Lecture
Notes in Computer Science 11969, Springer, pp. 73–93, doi:10.1007/978-3-030-36987-3_5.

https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1007/978-3-030-90636-8_5
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1016/J.SCICO.2024.103222
https://doi.org/https://doi.org/10.5281/zenodo.17188157
https://doi.org/10.1145/3290343
https://doi.org/10.1007/978-3-642-12032-9_10
https://doi.org/10.1007/978-3-030-36987-3_5

	Introduction
	Multiparty Session Types in a Nutshell
	Global Types
	Local Types & Projections
	Running Local Types

	Variations in Multiparty Session Types Formalisms
	Extending CAOS
	Comparing Multiparty Session Types With CoMPSeT
	Running CoMPSeT
	Comparing Semantics

	Conclusion and Future Work
	Future Work

