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Abstract

Choreographic languages describe possible sequences of interactions among
a set of agents. Typical models are based on languages or automata over
sending and receiving actions. Pomsets provide a more compact alternative
by using a partial order to explicitly represent causality and concurrency
between these actions. However, pomsets offer no representation of choices,
thus a set of pomsets is required to represent branching behaviour. For ex-
ample, if an agent Alice can send one of two possible messages to Bob three
times, one would need a set of 2 × 2 × 2 distinct pomsets to represent all
possible branches of Alice’s behaviour. This paper proposes an extension
of pomsets, named branching pomsets, with a branching structure that can
represent Alice’s behaviour using 2+ 2+ 2 ordered actions. We compare the
expressiveness of branching pomsets with that of several forms of event struc-
tures from the literature. We encode choreographies as branching pomsets
and show that the pomset semantics of the encoded choreographies are bisim-
ilar to their operational semantics. Furthermore, we define well-formedness
conditions on branching pomsets, inspired by multiparty session types, and
we prove that the well-formedness of a branching pomset is a sufficient condi-
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tion for the realisability of the represented communication protocol. Finally,
we present a prototype tool that implements our theory of branching pom-
sets, focusing on its applications to choreographies.

Keywords: Choreographies, Pomsets, Realisability, Event structures

1. Introduction

Distributed systems are becoming ever more important. However, design-
ing and implementing them is difficult. The complexity resulting from con-
currency and dependencies among agents makes the process error-prone and
debugging non-trivial. As a consequence, much research has been dedicated
to analysing communication patterns, or protocols, among sets of agents in
distributed systems. Examples of such research goals are to show the pres-
ence or absence of certain safety properties in a given system, to automate
such analysis, and to guarantee the presence of desirable properties by con-
struction. In this work we focus on analysing choreographies as global pro-
tocol specifications for asynchronously communicating agents. Choreograph-
ies have the benefit of guaranteeing certain safety properties by construction.
We propose a new structure to compactly represent their behaviour based
on partially ordered multisets (pomsets), which we call branching pomsets.

The use of choreographic languages is well-established [1, 2, 3, 4, 5, 6].
One of their typical uses is for reasoning statically over interaction properties,
including deadlock freedom or the equivalence between global protocols and
the parallel composition of local protocols for each agent. A more compact
model of choreographies, as presented in this paper, could reduce the com-
plexity of the analysis of protocols featuring both concurrency and choices.
Specifically, in this work, we focus on the realisability property, i.e., whether
a global specification of a protocol can be faithfully implemented in a distrib-
uted fashion in the first place. This problem has been well-studied in the last
two decades in a variety of settings, with both synchronous and asynchronous
communication [7, 2, 8, 9, 10].

A second typical use of choreographic languages is for generating code
that facilitates the implementation of communication protocols. This in-
cludes skeleton code for concurrent code, generated behavioural types that
can be used to type-check agents, and dedicated orchestrators that dictate
how the agents can interact. This is beyond the scope of the present paper.
However, in other recent work, we describe how to generate APIs using an
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approach based on traditional sets of pomsets [11]. We are keen to extend it
to take full advantage of the new model presented in this paper.

1.1. A first example

We use a simple example to further introduce choreographies and motiv-
ate our approach: the review protocol. This protocol governs the com-
munications between three agents: Alice (a), Bob (b), and Carol (c). The
former two agents are reviewers ; the latter agent is the editor of a journal.

Suppose that Carol has received a new manuscript. The review protocol
consists of two stages to determine if the paper can be accepted for publica-
tion. We explain both stages separately.

First stage: first round of reviewing. In the first stage, a request (r) to re-
view the manuscript is communicated from Carol to both Alice and Bob (in
parallel). Subsequently, ‘yes’ (y) or ‘no’ (n) is communicated back from both
Alice and Bob to Carol to indicate whether or not they recommend accept-
ance (still in parallel). This first stage of the protocol can be represented as
a choreography as follows, using the notation of this paper:

cfst = (c�a:r ; (a�c:y + a�c:n)) ∥ (c�b:r ; (b�c:y + b�c:n))

Here ‘c�a:r’ denotes an asynchronous communication from c to a of a message
of type r, ‘;’ denotes sequential composition, ‘∥’ denotes parallel composition
and ‘+’ denotes free (i.e., unguarded) nondeterministic choice.

Second stage: optional second round. After the first stage, Carol may send
Alice and Bob a request for a second review (e.g., after the manuscript has
been revised). Alternatively, Carol may choose not to request a second re-
view, for instance, if both Alice and Bob recommended ‘acceptance with
minor revisions’ in the first round. If Carol sends a second request, she sends
Alice and Bob a message ‘thanks’ (t) after receiving their reviews to thank
them for their work and signal that their part is done. If Carol does not send
a second request, she still sends the message t for the same reasons.

Formally, the second stage of the protocol can be interpreted in at least
two ways: after sending a review request, Carol could either (1) wait for both
replies before sending t to both Alice and Bob, or (2) send t to Alice as soon
as she receives her reply, without waiting for Bob’s, and vice-versa. From
now on we will refer to the first interpretation as ‘strict’ and to the second as
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Table 1: Formal semantics of choreographies and the corresponding number of states
(state-based models) and events (event-based models and this paper)

state-based event-based this
models models paper

typical example LTS pomset branching
pomset

representation of choice (+) linear exponential linear
representation of parallelism (∥) exponential linear linear

‘lenient’. Any mention of the review protocol without additional qualifiers
refers to the lenient interpretation.

The strict interpretation can be represented as a choreography as follows,
where 1 denotes succesful termination:

cstrictsnd = (cfst + 1) ; (c�a:t ∥ c�b:t)

The lenient interpretation requires a more sophisticated replacement for the
outermost sequential composition. It can be represented only by distribut-
ing the communication of the ‘thanks’ messages over + (which duplicates
the communications, resulting in a larger expression) and ∥ (inside cfst), as
follows:

clenientsnd =((c�a:r ; (a�c:y + a�c:n) ; c�a:t) ∥ (c�b:r ; (b�c:y + b�c:n) ; c�b:t))

+ (c�a:t ∥ c�b:t)

1.2. Problem: How to represent both choice and parallelism compactly
There are two major approaches to formalise the semantics of choreo-

graphies in the literature: state-based models and event-based models. Table 1
summarises the trade-off (for as far relevant to this paper).

State-based models. State-based models are good to represent choice (linear),
but bad to represent parallelism (exponential). A typical such model is the
LTS semantics of global types in the multiparty session types literature [12].

For instance, to demonstrate the explosion of states in the presence of
parallel communications, the left of Figure 1 shows part of the LTS for cstrictsnd ,
whose full LTS consists of 44 states; the full LTS for the lenient version
(i.e., more concurrent) consists of 64 states. In these LTSs, ca!r denotes a
sending action from c to a with a message of type r, and ca?r denotes the
dual receiving action.
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Figure 1: Part of a finite state machine (left) for the second stage of the strict review
protocol, and two pomsets (right) representing one case of the second stage of, respectively,
the strict (upper) and lenient (lower) review protocol.

Event-based models. Event-based models are bad to represent choice (expo-
nential), but good to represent parallelism (linear). A typical such model is
the pomset semantics of g-choreographies [13].

For instance, to demonstrate the non-explosion of events in the presence
of parallelism (unlike the LTS semantics), the upper right of Figure 1 shows
a graphical pomset representation of the special case of cstrictsnd where Carol
sends a review request and both Alice and Bob reply y. The pomset contains
12 events (vs. 33 states in the LTS for this special case), whose labels are
shown. The arrows represent the partial order between events: an event
precedes, i.e., must occur before, any other event to which it has an outgoing
arrow, either directly or transitively. In this example, the event with label
ac?y precedes the events with labels ca!t and cb!t directly and the events
with labels ca?t and cb?t transitively. However, it is independent of the
event with label bc?y and those preceding it.1 In general, the pomset grows

1The synchronisation point between the two parallel branches is clearly represented in
the upper pomset by means of the arrows from ac?y and bc?y to respectively cb!t and ca!t.
By removing these arrows, we obtain the analogous case in the lenient review protocol,
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linearly with 6 events for each additional reviewer (i.e., with n reviewers,
there are 6n events vs. 5n + 3n − 1 states for this special case).

In contrast, to explain the explosion of events in the presence of choice, we
note that the pomsets in Figure 1 only represent a single special case of the
review protocol, namely that in which both reviewers recommend acceptance.
Choices need to be represented as sets of pomsets: one for every possible
combination of branches. Because of this, for the second stage of the review
protocol we need 2 × 2 + 1 distinct pomsets: one for each combination of
acceptance and rejection, plus one for the case where no review is requested.
In general, while the size of each pomset only grows linearly with the number
of reviewers, the number of pomsets (hence the total number of events) grows
with roughly a factor 2 for each additional reviewer (i.e., with n reviewers,
there are 2n + 1 pomsets in the set).

The problem. As summarised in Table 1, and explained above, neither state-
based models nor event-based models offer a compact representation of both
choice and parallelism. This is a problem, as many protocols mix these
features (e.g., the review protocol). The aim of this paper is to offer a
solution.

1.3. This paper

Contribution. This paper proposes an extension to pomsets, named branch-
ing pomsets, or BPs for short, with a branching structure that can compactly
represent choices. In a nutshell, a BP initially contains all branches of choices,
and discards non-chosen branches when firing events that require resolving
a choice. For instance, the full behaviour of clenientsnd is depicted as a BP in
Figure 2, where each white box (except for the outermost one) represents one
branch of a choice, while the choice itself is represented by the enclosing blue
box. Each additional reviewer would expand the BP by just eight events and
a single choice. While we initially introduced BPs specifically to model and
study choreographies, we now define them as a generic model for concurrency
and study them as such in the first half, before moving on to the use case of
choreographies in the second half.

The concept of BP and the way we use it are reminiscent of event struc-
tures [14] and their recent usage in the context of multiparty session types [15].
Event structures were introduced in the 80s as a generalisation of posets with

shown in the lower pomset in the same figure.
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Figure 2: A BP for the second stage of the review protocol. We note that in this particular
example, there are no two events with the same label. Thus, this pomset is actually a
poset. However, if we had also represented the first round of the review, then all event
labels except for the last four would have appeared twice in the resulting pomset.

branching, and similarly labelled event structures as a generalisation of pom-
sets. The main difference with BPs is in the added choice mechanism; in event
structures this typically consists of a conflict relation, where two conflicting
events may not occur together in the same execution. We give a thorough
comparison between BPs and several classes of event structures in Section 3.

To aid in the understanding of BPs and their semantics, we provide a
prototype tool to visualise and execute them, available at https://lmf.di.

uminho.pt/b-pomset/. All the examples provided in the paper are predefined
in the tool, such as clenientsnd

 and cstrictsnd
; their definitions in the remainder of

the paper contain hyperlinks that open the tool with the specific example.
We discuss the tool in more detail in Section 6.

Outline. The core contribution of this paper is the extension of pomsets with
a branching structure, named BPs, in Section 2. We then explore this model
in the following ways:

� In Section 3 we compare the expressiveness of BPs with that of several
classes of event structures (ESs). Specifically, we show that BPs
define an interesting new class of behaviour: they are incomparable
with extended bundle ESs and with growing and shrinking causality
ESs. We conjecture that they describe a proper subset of a variant of
dynamic causality ESs and we prove their inclusion in ESs for resolvable
conflict.
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� In Section 4 we provide an encoding from a choreographic lan-
guage into BPs and prove that the operational semantics of a cho-
reography are equivalent (bisimilar) to those of its encoding as BP.
Consequently, any static analysis of properties of a choreography can
also be performed on the corresponding BP. This yields two main ad-
vantages:

– As Guanciale and Tuosto argue in a recent paper [13], pomsets
are syntax-oblivious. So are BPs. As a result, the analysis on
BPs makes no assumptions on syntax and is applicable to a wide
range of languages, as long as they can be encoded as BPs.

– Compared to automata and traditional sets of pomsets, BPs sup-
ply additional structure in respectively concurrency and choices,
yielding a more compact model. This structure makes it easier to
reason over combinations of concurrency and choices, providing
opportunities for more efficient analysis of choreographies featur-
ing both.

� In Section 5 we define structural well-formedness properties on
BPs, inspired by multiparty session types (MPST) [3], and prove that
they ensure realisability of the corresponding protocol. This approach
sacrifices completeness for speed: the properties are easy to verify and
ensure realisability, but there exist many realisable protocols which are
nonetheless not well-formed. By defining these properties on BPs, they
are not bound to the syntax of MPST. Consequently, verifying the con-
ditions is slightly more complex as we can no longer take advantage of
this syntax, but our results are applicable to any choreographic lan-
guage which can be encoded as BPs. Furthermore, as BPs are a more
generic model than global types in MPST, it may be easier to further
generalise properties on BPs than on global types.

� In Section 6 we describe our prototype implementation, both from
a user and a developer’s perspective. The former explains how to use
our tool to encode choreographies into BPs and how to analyse BPs
using the techniques described in this paper. The latter explains how
the well-formedness properties described in Section 5.2 are realised by
our tool, providing insights over its complexity.
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We discuss related work in Section 7. Finally, Section 8 presents our
conclusions and a brief discussion about future work.

This paper is an extended version of the paper with Guillermina Cledou,
presented at ICE 2022 [16]. We have joined it with the later FACS 2022
paper about realisability of BPs [17], which constitutes Section 5 and parts
of Sections 7 and 8. The comparison with event structures (Section 3) and
the description and analysis of the tool (Section 6) are new altogether.

2. Branching pomsets

In this section, we formally define the syntax and semantics of branching
pomsets (BPs).

A partially ordered multiset [18], or pomset for short, consists of a set of
nodes (events) E, a labelling function λmapping events to a set of labels (e.g.,
send and receive actions), and a partial order ≤ defining causal dependencies
between pairs of events (i.e., an event can only fire if all events preceding it
in the partial order have already fired). Its behaviour (or language) is the
set of all traces labelling sequences of its events that abide by ≤.

Example 1. For the lower pomset in Figure 1, E = {e1, . . . , e12}, λ is
such that e1, . . . , e12 map to respectively ca!r, ca?r, ac!y, ac?y, ca!t, ca?t, cb!r,
cb?r, bc!y, bc?y, cb!t, cb?t and ≤ = {(ei, ej) | i ≤ j ∧ (i, j ∈ {1, . . . , 6} ∨ i, j ∈
{7, . . . , 12})}. Its behaviour consists of all the interleavings of ca!r ;ca?r ;ac!y ;
ac?y ; ca!t ; ca?t and cb!r ; cb?r ; bc!y ; bc?y ; cb!t ; cb?t.

As noted in Section 1, however, there is no explicit representation of
choices in pomsets, and they are represented only implicitly as a set of pos-
sible pomsets. We tackle this by extending pomsets with an explicit repres-
entation of choices: a branching structure on events.

2.1. Syntax

The general idea of a branching pomset is that all possible events are
initially part of it, but some are defined as being part of a choice, depicted in
Figure 2 as choice boxes containing branches. The branching structure does
not interrupt the partial order and all events still participate in it, as shown
in the example, where arrows point both into and out of the branches of the
choice. Nested choices are supported as well.

Formally, the branching structure of a BP is a tree whose leaves are events
and whose inner nodes represent a structure of (possibly nested) choices and
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branches. It is defined below with root node B, whose children C are either
a single event e or a binary choice node with children (branches) B1,B2.

B ::= {C1, . . . , Cn}
C ::= e | {B1,B2}

Example 2. For the BP in Figure 2, E = {e1, . . . , e16} and λ is such that
e1, . . . , e16 map to respectively ca!r, ca?r, ac!y, ac?y, ac!n, ac?n, ca!t, ca?t, cb!r,
cb?r, bc!y, bc?y, bc!n, bc?n, cb!t, cb?t. The novelty with respect to pomsets is
the branching structure B = {e7, e8, e15, e16, Cc}, where Cc = {{e1, e2, e9, e10, Ca, Cb}, ∅},
Ca = {{e3, e4}, {e5, e6}} and Cb = {{e11, e12}, {e13, e14}} are the choices re-
spectively by Carol, Alice and Bob.

We write B1 � B2 if B1 is a subtree of B2 and B1 � B2 if B1 is a strict sub-
tree of B2, i.e., if B1 � B2 and B1 ̸= B2

2. We use the same notation for nodes
C, events e (a special case of C) and combinations of all the aforementioned.
Formally, the subtree relation is defined below, where N can be either a B
or a C (and thus also a singleton e).

N � N
N1 ∈ N2

N1 � N2

N1 � N2 N2 � N3

N1 � N3

N1 � N2 N1 ̸= N2

N1 � N2

Branching pomsets themselves are then formally defined below.

Definition 3 (Branching pomset). A branching pomset (BP) is a four-tuple
R = ⟨E,⪯, λ,B⟩, where E is a set of events, ⪯ ⊆ E × E is the causality
relation such that ⪯∗ (the reflexive and transitive closure of ⪯) is a partial
order on events3, λ : E 7→ L is a labelling function assigning to every event
a label in some labelling set L, and B is a branching structure such that the
set of leaves of B is E and no event in E occurs in B more than once.

We note that, in contrast to traditional pomsets, the causality relation ⪯
is not necessarily a partial order. We briefly discuss this in Section 8. We use
R.E, R.⪯, R.λ and R.B to refer to the components of R. We generally omit
the prefix if doing so causes no confusion. We also write e1 ≺ e2 if e1 ⪯ e2
and e1 ̸= e2. We use the following terminology:

2We use a different notation than in the original papers and their technical reports,
where we used ⪯ and ≺ for the subtree relation.

3We use a different notation than in the original papers and their technical reports,
where we used ≤ for the causality relation. This is to make clearer that ⪯ is not necessarily
a partial order.
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� Event e is minimal if e′ ̸≺ e for all e′ ∈ R.E (i.e., there exists no other
event e′ that precedes e).

� Event e is active if e ∈ R.B (i.e., e is not part of a choice).

� Event e is enabled if it is both active and minimal; we write en(R) to
denote the set of enabled events.

� Events e1 and e2 are causally ordered if either e1 ⪯ e2 or e2 ⪯ e1.

� Events e1 and e2 aremutually exclusive if there exists some C = {B1,B2} �
R.B such that e1 � B1 and e2 � B2.

2.2. Semantics

Informally, every execution step of a BP R, in which an event e is fired,
is brought about in three steps:

1. First, R is optionally refined to a “sub-BP” R′ by resolving zero (i.e.,
R = R′), one, or more choices. Each resolution is done by replacing
a choice {{B1,B2}} at any level of the branching structure with one
of its branches Bi, thereby discarding the other branch Bj. We note
that this same idea governs the operational semantics of many existing
languages, too. For instance, in process calculi, if P can reduce to P ′,
then also P +Q (i.e., free choice between P and Q) can reduce to P ′,
thus resolving the choice and discarding Q.

2. Second, an enabling is sought. If an event e in R′ is enabled and,
additionally, e is disabled in every refinement R′′ of R that is larger
than R′ (i.e., fewer choices are resolved in R′′ than in R′), then refining
R to R′ is said to be an enabling of e. In other words, R′ is the largest
sub-BP of R in which e is enabled (i.e., the smallest number of choices
are resolved to enable e). If R = R′, then zero choices were resolved
in the first refinement step. In contrast, if R ̸= R′, then one or more
choices were resolved to enable e: either because e was a minimal event
of a branch in R that was chosen in R′ (so e also became active), or
because e was active in R and causally ordered after events in a branch
in R that was discarded in R′ (so e also became minimal).

3. Third, R is reduced by firing e. The resulting BP is R′ (the chosen
refinement of R) without e.
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B ⊒ B
[Refl]

B ⊒ B′ ⊒ B′′

B ⊒ B′′ [Trans]
i ∈ {1, 2} {B1,B2} /∈ B
{{B1,B2}} ∪ B ⊒ Bi ∪ B

[Choice]

B1 ⊒ B′
1 B2 ⊒ B′

2 {B1,B2} /∈ B
{{B1,B2}} ∪ B ⊒ {{B′

1,B′
2}} ∪ B

[Congr]
R.B ⊒ B′

R ⊒ R|B′
[Lift]

(a) Refinement rules.

R ⊒ R′ e ∈ en(R′)

∀R′′ : R ⊒ R′′ ⊐ R′ ⇒ e /∈ en(R′′)

R
✓e−→ R′

[Enable]

R
✓e−→ R′

R
e−→ R′ − e

[Reduce1]
R

e−→ R′

R
λ(e)−−→ R′

[Reduce2]
R.B ⊒ ∅

R↓
[Terminate]

(b) Enabling, reduction, and termination rules.

⟨E,⪯, λ,B⟩|B′ = ⟨E ′,⪯ ∩ (E ′ × E ′), λ ∩ (E ′ × L),B′⟩,
where E ′ = {e | e � B′}

en(R) = {e ∈ R.E | e ∈ R.B ∧ ∄e′ ∈ R.E : e′ ≺ e}
ê− e = ê

{C1, . . . , Cn} − e =

{
{C1, . . . , Ci−1, Ci+1, . . . , Cn} if Ci = e

{C1 − e, . . . , Cn − e} otherwise

{B1,B2} − e = {B1 − e,B2 − e}
R− e = R|R.B−e

(c) Operations on BPs.

Figure 3: Semantics of BPs.

The empty BP cannot perform execution steps; it is said to terminate.
Any BP which can refine to the empty BP is able to terminate.

Formally, execution and termination are defined through relations:

� Refinement: A branching structure B can refine to B′, written B ⊒ B′.
We write B ⊐ B′ to specify that B ̸= B′. The refinement rules are
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Figure 4: Two BPs.

R′
a
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c

d e

R′
b
 =

Choice

a
c

d

g h

R′′
b
 =

Choice

a

b

c

e
g h

Figure 5: Refinements of Ra, Rb from Figure 4. R′
a is obtained by applying Choice to Ra.

R′
b is obtained by applying Choice to the outer choice of Rb. R

′′
b is obtained by applying

Choice to both inner choices and Congr to the outer choice of Rb.

formalised in Figure 3a. To illustrate these, we use BPs Ra, Rb in
Figure 4. As the labels are irrelevant for these examples, we use a, . . . , h
for both the events and their labels. Finally, we assume that the relation
⪯ for each BP consists exactly of the arrows shown in the figures.

The first two rules, Refl and Trans, are straightforward. The third
rule, Choice, resolves choices: it states that we can replace a choice
with one of its branches. This rule serves a dual purpose: by apply-
ing it to the outer choice of Rb we can discard its lower branch, after
which we can fire a, which is then active; alternatively, by applying it
to Ra we can discard the upper branch of the choice, after which we
can fire d, which is then minimal. Recall that ⪯ is not necessarily a
partial order and that, in Ra, a ⪯∗ d but not a ⪯ d. Consequently,
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the transitive dependency from a to d does not carry over to R′
a. The

fourth rule, Congr, allows us to resolve nested choices (with Choice)
without first having to resolve their outer choices. To make g min-
imal in Rb we could resolve the outer choice and one inner choice with
Choice (and Trans). However, we can also apply Choice to resolve
both inner choices and then apply Congr to the outer choice to up-
date it without unnecessarily resolving it. Finally, the fifth rule, Lift,
overloads the refinement notation to also apply to BPs themselves: if
R.B can refine to some B′ then R itself can refine to a derived BP with
branching structure B′, written R|B′4, whose events are restricted to
those occurring in B′ and likewise for ⪯ and λ. The refinements above
then lead to respectively R′

b, R
′
a and R′′

b in Figure 5.

� Enabling, reduction, and termination: Figure 3b defines an en-
abling relation, two reduction relations, and a termination predicate.

– The first rule, Enable, defines the conditions for enabling an
event e, written R

✓e−→ R′: a BP R can enable e by refining to R′ if
e is enabled in R′ (e ∈ en(R′)), and if there is no other refinement
R′′ in between which already enables e.

Example 4. Let Ra, Rb, R
′
a, R

′
b, R

′′
b be as in Figures 4 and 5.

Then:

* Ra
✓d−→ R′

a

* Rb
✓a−→ R′

b

* Rb
✓g−→ R′′

b

As in the informal description, the enabling relation only discards
the absolutely necessary: for example, in the BP Ra in Figure 4,
we may discard the choice’s upper branch to fire d, but not to
fire a. Similarly, in the BP Rb in the same figure, we may discard
the lower branch from both inner choices to fire g, but there is no
need to also resolve the outer choice. In Figure 2, we can discard
the outer choice’s upper branch to fire the event labelled ca!t.

The refinement rules in Figure 3a act as structural rules, which do
not fire any event but may exclude events (by discarding branches),

4We use a different notation than in the original papers and their technical reports,
where this restriction is written R[B′].
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as opposed to the reduction rules in Figure 3b, which fire events
and are therefore computational rules. In fact, refinements could
also be seen as executing silent transitions to resolve choices, as in
process algebras with an internal choice operator, although, tradi-
tionally, in process algebras only top-level choices can be resolved
in this way.

– The second and third rules, Reduce1 and Reduce2, define the
reduction relations. They state that, if R can enable e by refining
to R′ (through Enable), then it can fire e by reducing to R′ − e,
which is the BP obtained by removing e from R′ (Figure 3c). This
reduction is defined both on e’s label (Reduce2) and on the event
itself (Reduce1), the latter for internal use in proofs since λ(e)
is typically not unique but e is.

– The fourth rule, Terminate, defines the termination predicate
and simply states that a BP can terminate if its branching struc-
ture can reduce to the empty set.

3. Comparison with event structures

In this section, we study the expressive power of branching pomsets by
comparing them with various classes of event structures.

Event structures (ESs) are a well-established model for concurrency, which
bears a close relationship with both Petri nets and domain theory. Originally
introduced by Nielsen, Plotkin and Winskel [19, 14], this model represents a
concurrent system as a set of (possibly labelled) events together with some
relations among them, which regulate their occurrence in computations. Typ-
ically, in a prime event structure (PES), the original and simplest form of ES,
there are two relations on events: causality (meaning that one event must
occur before the other), and conflict (meaning that two events cannot occur
in the same computation).5

In their labelled version, PESs may be viewed as pomsets enriched with
a conflict relation. This makes them conceptually very close to branching
pomsets, therefore a comparison is in order.

5To be more precise, the simplest class of ESs is that of elementary ESs, where the
conflict relation is empty [14]. Elementary ESs are obtained from causal nets by retaining
only their events and dropping their conditions. In fact, elementary ESs are just posets of
events, or, in their labelled version, pomsets of event labels.
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Figure 6: Landscape of event structures as extended from [20]. Branching pomsets are
added in bold. Dynamic causality event structures are replaced by a variant with coun-
ters. Flow, stable, dual, and higher order dynamic causality event structures are faded to
indicate that they are not discussed in detail.

Many variants of ESs have been studied in the last decades. We start
by reviewing a number of them, referring for more details to the extensive
overview given in the paper by Arbach et al. [20].

3.1. Event structure landscape

We first introduce the classes of ESs that are relevant to our study, namely
those represented in Figure 6 (except for the faded ones, which are only in-
cluded for completeness). We then uniformly define their semantics using the
notion of proving sequence, from which the classical notion of configuration
(a set of events that may have occurred at some stage of computation) may
be immediately derived.

We start by considering the classes of static ESs, namely prime, bundle,
asymmetric, and extended bundle ESs, where the relations on events are
fixed once and for all. We then move to the classes of dynamic ESs, namely
growing, shrinking and dynamic causality ESs, as well as ESs for resolvable
conflict, where one of the two relations of causality and conflict may vary
along execution.

3.1.1. Static event structures

The simplest class of ESs we consider, which is also the original one, is
that of prime ESs.

Definition 5 (Prime Event Structure (PES) [19]). A prime event structure
is a triple S = ⟨E, #,≤⟩, where E is a set of events, # ⊆ E×E is a symmetric,
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irreflexive relation called the conflict relation, and ≤ ⊆ E × E is a partial
order relation called the causality relation, satisfying the properties:

⌊e⌋ = {e′ | e′ ≤ e} is finite for all e, e′ ∈ E (finite causes)

e # e′ ∧ e′ ≤ e′′ =⇒ e # e′′ (conflict hereditariness)

The condition of conflict hereditariness implies that the relations of con-
flict and causality are disjoint and that events do not have conflicting causes.
Two events which are neither in conflict nor causally related are said to be
concurrent. Two events which are not in conflict are said to be consistent.
The axiom of finite causes forbids events with an infinite set of (consistent)
causes, namely an event e such that en ≤ e for all n ∈ N, thus ruling out also
infinite regression (which could arise if we had also en+1 ≤ en for all n ∈ N).

Event structures were originally conceived as a system model and not as
an algebraic model endowed with a set of constructors. However, since ESs
were introduced roughly at the same time as the first process calculi CSP,
CCS and ACP, they appeared as a natural candidate model6 to give semantics
to process calculi. Because of their inability to represent disjunctive causality
(i.e., events with multiple possible causes, only one of which needs to happen),
PESs turned out to be too restrictive for that purpose. Typically, when two
CCS processes are composed in parallel, some of their events (those carrying
complementary labels) are allowed to synchronise giving rise to a new event,
whose set of successor events should be the union of the sets of successors of
the two original events, which can still occur independently. However, in a
PES the conflict hereditariness condition prevents any sharing of the sets of
successors, thus requiring their duplication after each synchronisation.

To overcome this problem, Winskel devised a more general class of ESs,
called stable event structures [19], which accommodates disjunctive causality
by replacing the causality relation ≤ with an enabling relation between sets
of events and events. Hence, the first ES semantics for CCS [21] was given
in terms of stable ESs. However, since the enabling relation is a second-
order relation on events, stable ESs lose the nice graphical representation
offered by PESs. This observation motivated the subsequent introduction of
two subclasses of stable ESs, respectively bundle ESs [22] and flow ESs [23],

6in their labelled version, where events have labels that represent process actions or
communications.
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which allow for disjunctive causality while retaining a graphical representa-
tion. Both these classes of ESs may be viewed as simple extensions of PESs,
flow ESs being slightly more expressive than bundle ESs [24]. Here we only
consider bundle ESs, which use a simpler enabling relation than stable ESs.

Definition 6 (Bundle Event Structure (BES) [22]). A bundle event structure
is a triple S = ⟨E, #,↣⟩, where E is a set of events, # ⊆ E × E is the
symmetric, irreflexive conflict relation and ↣ ⊆ P(E) × E is the enabling
relation, satisfying the property:

X ↣ e =⇒ ∀e1 ̸= e2 ∈ X : e1 # e2 (stability)

Intuitively, X ↣ e means that at least one of the events in X needs to
happen before e can happen. The condition of stability furthermore implies
that at most one of the events in X needs to happen, as all the events in X
must be pairwise in conflict with each other.

For both PESs and BESs, more general variants where conflict is not
required to be symmetric have been proposed. These are called respectively
asymmetric ESs and extended bundle ES. We recall their definitions below.

Definition 7 (Asymmetric Event Structure (AES) [25]). An asymmetric
event structure is a triple S = ⟨E,;,≤⟩, where E is a set of events, ; ⊆
E × E is the asymmetric conflict relation, and ≤ ⊆ E × E is the partially
ordered causality relation, satisfying the following properties for all e, e′, e′′ ∈
E:

⌊e⌋ = {e′ | e′ ≤ e} is finite (finite causes)

e < e′ =⇒ e; e′ (1)

(e; e′ ∧ e′ < e′′) =⇒ e; e′′ (2)

; is acyclic on ⌊e⌋ (3)

(; cyclic on ⌊e⌋ ∪ ⌊e′⌋) =⇒ e; e′ (4)

In the above definition, Condition 2 expresses hereditariness of asym-
metric conflict, while Condition 3 rules out cycles of asymmetric conflict in
the set of causes of an event. Since cycles can be self-cycles, this implies
in particular that asymmetric conflict is irreflexive. As for Condition 4, it
requires that any semantic conflict between two events which is due to their
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co-occurrence on a cycle of asymmetric conflict be explicitly represented by
an asymmetric conflict in both directions.

As explained in [25], the asymmetric conflict relation has two natural
interpretations: e ; e′ may be understood as (i) e′ disables e, namely the
occurrence of e′ prevents the occurrence of e, or (ii) e (weakly) precedes e′,
namely e occurs before e′ in all executions where they both occur.

A similar disabling relation is used in extended bundle ESs.

Definition 8 (Extended Bundle Event Structure (EBES) [26]). An extended
bundle event structure is a triple S = ⟨E,;,↣⟩, where E is a set of events,
; ⊆ E × E is the irreflexive disabling relation and ↣ ⊆ P(E) × E is the
enabling relation, satisfying the following:

X ↣ e =⇒ ∀e1 ̸= e2 ∈ X : e1 ; e2 (stability condition)

Here again, e; e′ should be read from right to left as e′ disables e.
The construction of an EBES from an AES is similar to that of a BES

from a PES. As such, AESs are included in EBESs.

3.1.2. Dynamic Event Structures

We review now the classes of dynamic ESs, where one of the two relations
of causality and conflict may dynamically change along execution.

In [20], three new classes of ESs have been proposed, where the caus-
ality relation can be modified by effect of the occurrence of some other
event: (1) shrinking causality event structures (SESs), where causal depend-
encies can be removed, (2) growing causality event structures (GESs), where
causal dependencies can be added, and (3) dynamic causality event structures
(DCESs), where causal dependencies can be both added and removed.

Shrinking ESs extend rPESs (relaxed PESs where the conflict relation is
not required to be hereditary7) by allowing the causality relation to decrease
along execution.

Definition 9 (Shrinking Causality Event Structure (SES) [20]). A shrinking
causality event structure is a quadruple S = ⟨E, #,→,�⟩, where E is a set of
events, # ⊆ E×E is the symmetric, irreflexive conflict relation, → ⊆ E×E

7While the name “rPES” has been coined in [20], this PES variant had already been
used to interpret a subset of CCS in [27].
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is the initial causality relation and � ⊆ E×E×E is the shrinking causality
relation satisfying the property:

e� [e1 → e2] =⇒ (e1 → e2 ∧ e /∈ {e1, e2}) (SC)

Note that SESs can model disjunctive causality. Indeed, the shrinking
causality e� [e′ → e′′] represents a situation where initially e′ causes e′′, but
this causality may be cancelled by the occurrence of e. Thus, if e� [e′ → e′′]
and e′ � [e → e′′] and e # e′, then e and e′ are two conflicting causes of e′′.
On the other hand, if e � [e′ → e′′] and e′ � [e → e′′] and ¬(e # e′), then
both e and e′ may occur in the same computation, thus we can reach a state
where all of e, e′, e′′ have occurred: in this state, we do not know which of e
or e′ has caused e′′ (one of them must, since e′′ cannot occur alone). This
means that SESs are not stable. Moreover, SESs cannot model disabling: for
instance the EBES with two events e and e′ where e; e′ and ↣= ∅ cannot
be simulated by a SES.

Dually, growing causality ESs extend rPESs by allowing the causality
relation to increase along execution.

Definition 10 (Growing Causality Event Structure (GES) [20]). A growing
causality event structure is a triple S = ⟨E,→,�⟩, where E is a set of events,
→ ⊆ E×E is the initial causality relation and � ⊆ E×E×E is the growing
causality relation satisfying the property:

e� [e1 → e2] =⇒ (¬(e1 → e2) ∧ e /∈ {e1, e2}) (GC)

Note that conflict does not appear in Theorem 10. This is because conflict
may be simulated by mutual disabling, and disabling may be simulated by
growing causality. The simulation of disabling as given in [20] assumes the
existence of an “impossible” event eimp

8 such that eimp → eimp (exploiting the
fact that → is not required to be irreflexive): then a conflict between e and
e′ may be modelled by setting e� [eimp → e′] and e′ � [eimp → e]. In fact,
since Theorem 10 does not require e1 ̸= e2 in Condition (GC), the conflict
between e and e′ may also be simulated more directly (see [20] again) by
letting e� [e′ → e′] and e′ � [e → e]. Note finally that, unlike SESs, GESs
cannot model disjunctive causality.

8The existence of impossible events, namely events that cannot occur in any computa-
tion, is a common feature of all classes of ESs except PESs. When a particular ES does
not contain such events, it is said to be full.
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Combining the features of shrinking and growing ESs, and adding some
constraints on the interplay between shrinking and growing causality, we
obtain dynamic causality ESs (DCESs). In this paper, we consider a variant
of DCESs, with the same syntax but subtly different semantics. This is
discussed when we formally define the semantics.

Definition 11 (Dynamic Causality Event Structure [20]). A dynamic causal-
ity event structure (DCES) is a quadruple S = ⟨E,→,�,�⟩, where E is a set
of events, → ⊆ E×E is the initial causality relation, and �,� ⊆ E×E×E
are respectively the shrinking and growing causality relations, such that:

∄e′ ∈ E : e′ � [e1 → e2] ∧ e� [e1 → e2] =⇒ e1 → e2 (5)

e� [e1 → e2] =⇒ e /∈ {e1, e2} (6)

∄e′ ∈ E : e′ � [e1 → e2] ∧ e� [e1 → e2] =⇒ ¬(e1 → e2) (7)

e� [e1 → e2] =⇒ e /∈ {e1, e2} (8)

e� [e1 → e2] =⇒ ¬(e� [e1 → e2]) (9)

Again, conflict is omitted because it may be simulated by growing caus-
ality. Conditions 6 and 8 correspond to the second half of Conditions (SC)
and (GC) respectively. Conditions 5 and 7 correspond to the first half of
Conditions (SC) and (GC), accounting for the possibility that the other op-
erator could add or subtract some causal dependencies. Finally, Condition 9
prevents an event from adding and dropping the same causal dependency.

The last class of dynamic ESs we shall consider is the following, where
the conflict relation may be changed dynamically.

Definition 12 (Resolvable Conflict Event Structure (RCES) [28]). An event
structure for resolvable conflict is a pair S = ⟨E,⊢⟩, where E is a set of events
and ⊢ ⊆ P(E)× P(E) is the enabling relation.

We recall from [28] a simple example showing that RCESs can model
resolvable conflicts, namely conflicts that disappear by effect of the occur-
rence of some event. Consider the structure ⟨E,⊢⟩ where E = {a, b, c}, with
{a} ⊢ {b, c} and ∅ ⊢ X iff X ⊆ E and X ̸= {b, c}. This models an ini-
tial conflict between b and c, which can be resolved by the occurrence of a.
We refer the reader to [28] for more examples, showing that RCESs are not
stable. In fact, in [28] RCESs are shown to be able to represent any Petri
net, a very strong expressiveness result.
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3.1.3. Event Structure Semantics

The semantics of ESs is classically defined in terms of configurations. A
configuration is a set of events that may have occurred at some stage of a
computation. For all classes of ESs, we shall uniformly define a configuration
to be a set of events enumerable as a proving sequence [19, 24, 26], namely a
sequence of consistent events such that each event is “secured” - i.e., granted
the possibility to occur - by the preceding ones. We will first introduce
proving sequences for all classes of ESs, and then uniformly derive from
them a notion of configuration and a reduction relation on configurations.

We start by introducing some terminology. A trace is a finite sequence of
distinct events t = e1 . . . en, where n ≥ 0 and by convention t = ε if n = 0.
Given a trace t = e1 . . . en, we denote by ti = e1 . . . ei its prefix of length i
for every i ≤ n, and by t the set {e1, . . . , en} of events occurring in t. In
particular, tn = t, t0 = ε and t0 = ∅. A set of events is consistent if it is
conflict-free.

Proving sequences are traces with two distinguishing properties: consist-
ency of the underlying set of events, and securing for each of their events.
Their formal definitions differ depending on the considered class of ESs.

Definition 13 (PES proving sequence [19]). Let S = ⟨E, #,≤⟩ be a prime
event structure. A proving sequence of S is a trace t = e1 . . . en with t ⊆ E,
satisfying the properties:

∀i, j ∈ [1, n] : ¬(ei # ej) (consistency)

∀i ∈ [1, n] : ∀e ∈ E : ( e < ei =⇒ e ∈ ti−1 ) (left-closure)

Definition 14 (AES proving sequence [25]). Let S = ⟨E,;,≤⟩ be an asym-
metric event structure. A proving sequence of S is a trace t = e1 . . . en with
t ⊆ E, satisfying the properties:

∀i, j ∈ [1, n] : ei ; ej =⇒ i < j (consistency)

∀i ∈ [1, n] : ∀e ∈ E : (e < ei =⇒ e ∈ ti−1 ) (left-closure)

For PESs and asymmetric ESs, which have a global causality relation
≤, securing amounts to left-closure with respect to ≤. For more expressive
ESs such as BESs and EBESs, which allow for disjunctive causality and only
recover a partial order of causality within individual computations, securing
is defined as consistent left-closure, namely left-closure up to conflicts. In
BESs and EBESs, this property is called bundle satisfaction.
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Definition 15 (BES proving sequence [26]). Let S = ⟨E, #,↣⟩ be a bundle
event structure. A proving sequence of S is a trace t = e1 . . . en with t ⊆ E
satisfying the properties:

∀i, j ∈ [1, n] : ¬(ei # ej) (consistency)

∀i ∈ [1, n] : ∀X ⊆ E : (X ↣ ei =⇒ X ∩ ti−1 ̸= ∅) (bundle satisfaction)

Definition 16 (EBES proving sequence [26]). Let S = ⟨E,;,↣⟩ be an
extended bundle event structure. A proving sequence of S is a trace t =
e1 . . . en with t ⊆ E satisfying the properties:

∀i, j ∈ [1, n] : ei ; ej =⇒ i < j (consistency)

∀i ∈ [1, n] : ∀X ⊆ E : (X ↣ ei =⇒ X ∩ ti−1 ̸= ∅) (bundle satisfaction)

For dynamic classes of ESs, the definition of proving sequence is more
subtle, since it needs to account for the fact that the causes of every event in
the sequence may have been modified by some earlier event in the sequence.
The definitions we give below for SESs and GESs are slightly different in
form, but semantically equivalent, to the ones given in [20].

Definition 17 (SES proving sequence [20]). Let S = ⟨E, #,→,�⟩ be a
shrinking causality event structure. A proving sequence of S is a trace
t = e1 . . . en with t ⊆ E satisfying the properties:

∀i, j ∈ [1, n] : ¬(ei # ej) (consistency)

∀i ∈ [1, n] : ∀e ∈ E :

e → ei =⇒ (e ∈ ti−1 ∨ ∃e′ ∈ ti−1 : e
′
� [e → ei]) (securing)

Informally, the securing property for SESs means that if e causes ei ini-
tially (e → ei), then either e has indeed happened before ei (e ∈ ti−1),
or another event e′ has happened that removed the causality (∃e′ ∈ ti−1 :
e′ � [e → ei]).

Definition 18 (GES proving sequence [20]). Let S = ⟨E,→,�⟩ be a growing
causality event structure. A proving sequence of S is a trace t = e1 . . . en
with t ⊆ E satisfying the property:

∀i ∈ [1, n] : ∀e ∈ E : (e → ei ∨ ∃e′ ∈ ti−1 : e
′
� [e → ei]) =⇒ e ∈ ti−1
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Informally, the securing property for GESs means that if either e causes
ei initially (e → ei), or if another event ej has happened that added the
causality (e′ � [e → ei]), then e has indeed happened before ei (e ∈ ti−1).

Recall that DCESs combine the power of SESs and GESs: they are es-
sentially PESs whose causality relations can both shrink and grow as events
happen in a computation. Relative to SESs and GESs, the key complication
to define the semantics of DCESs is that the same causality can be removed,
added, removed again, etc., in the same computation. In contrast, in SESs
(resp. GESs), once a causality is removed (resp. added), it remains absent
(resp. present) forever. Thus, a more advanced bookkeeping mechanism is
needed to account for the additions/removals of causalities to define proving
sequences of DCESs.

In [20] the operations for adding and dropping a cause are idempotent,
in the sense that the executions of two successive additions (resp. removals)
of the same causal dependency have the same effect as that of a single one.
Here, we adopt a finer mechanism, which counts the number of additions and
removals along an execution. Thus, our semantics for DCESs is a variant of
the original one proposed in [20], which we will call dynamic causality event
structures with counters (DCCESs). One advantage of this new semantics is
that it supports a simple definition of the transition relation on configura-
tions, which does not require the pairing of configurations with an ordering
as in [20]. More precisely, the intuition for a trace t = e1 . . . en to be a proving
sequence of a DCCES is that for any event ei in the trace, any cause of ei
which has been added more times than it has been dropped by events occur-
ring in the prefix ti−1 does effectively cause ei at this stage of computation,
and therefore it should occur in the prefix ti−1. The definition relies on some
auxiliary multisets, which are variations (enriched with multiplicities) of the
auxiliary sets used in [20]. Clearly DCCESs extend both SESs and GESs.
The proof for EBESs given in [20] also holds for DCCESs, thus giving the
inclusions shown in Figure 6.

In the following definition we use e(k) ∈ X to indicate that e occurs in
the multiset X with multiplicity k (where in case X is a set we write e ∈ X
instead of e(1) ∈ X), mult(e,X) to denote the multiplicity of e in X, and |X |
to denote the cardinality of the set X.

Definition 19 (Set of initial causes, multisets of added and dropped causes).
Let S = ⟨E,→,�,�⟩ be a dynamic causality event structure with counters.
Let e ∈ E and t = e1 . . . en with t ⊆ E. Then:
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1. The set of initial causes of e is defined by ic(e) = {e′ | (e′, e) ∈ →};

2. The multiset of dropped causes of e after t is defined by
dc(e, t) = {e′(k) | k = |{e′′ ∈ t | e′′ � (e′, e)}|};

3. The multiset of added causes of e after t is defined by
ac(e, t) = {e′(k) | k = |{e′′ ∈ t | e′′ � (e′, e)}|}.

Definition 20 (DCCES proving sequence). Let S = ⟨E,→,�,�⟩ be a dy-
namic causality event structure with counters. A proving sequence of S is a
trace t = e1 . . . en with t ⊆ E satisfying the property: ∀i ∈ [1, n] : ∀e ∈ E :

mult(e, ic(ei)) +mult(e, ac(ei, ti−1))−mult(e, dc(ei, ti−1)) ≥ 1 =⇒ e ∈ ti−1

Finally, we define proving sequences for RCESs directly, in agreement
with the RCES semantics in [28]:

Definition 21 (RCES proving sequence). Let S = ⟨E,⊢⟩ be an event struc-
ture for resolvable conflict. A proving sequence of S is a trace t = e1 . . . en
with t ⊆ E satisfying the property:

∀i ∈ [1, n] : ∀Z ⊆ ti : ∃W ⊆ ti−1 : W ⊢ Z

Informally, the securing property for RCESs means that every subset
of events Z at timestamp i must be enabled by a subset of events W at
timestamp i− 1.

Having introduced the notion of proving sequence for each class of ESs,
we may now uniformly define the notion of configuration and a transition
system on configurations for all kinds of ESs.

Definition 22 (Configuration and transition system). Let S be any ES. A
configuration of S is any setX such thatX = t for some proving sequence t of
S. The set of configurations of S is C(S) = {t | t is a proving sequence of S}.
The multi-step transition relation Z⇒S ⊆ C(S) × C(S) on configurations is
then defined as: X Z⇒S Y if there exist proving sequences t1 and t2 of S such
that t1 = X and t2 = Y and t1 is a prefix of Y . We then derive the single
action transition relation 7→S as: X 7→S Y if X Z⇒S Y and |Y | = |X|+ 1.

We state some simple properties of proving sequences, which will be used
for proving Theorem 25:

Lemma 23. Let S be an ES of any of the aforementioned classes. Then:
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1. If t is a proving sequence of S, then any prefix ti of t is also a proving
sequence of S;

2. Let t and t′ be two proving sequences of S such that t = t′. If te is a
proving sequence of S, then also t′e is a proving sequence of S.9

We define a transition equivalence generically on any type of ES.

Definition 24 (ES transition equivalence [28]). Two ESs S1 and S2 are
called multi-step transition equivalent, written S1 ≃mt S2, if Z⇒S1 = Z⇒S2 .
Analogously, two ESs S1 and S2 are called single action transition equivalent,
written S1 ≃t S2, if 7→S1 = 7→S2 .

We note that, since we have only defined single action semantics for BPs,
we will only use the single action transition relation for ESs in the remainder.
We will thus simply use transition relation and transition relation equival-
ence, without further qualifiers, to refer to the single action ones.

We conclude by showing that, using these semantics, any type of ES
considered in this paper can be encoded as an RCES. In particular, DCCESs
also represent a subset of RCESs, while DCESs and RCESs have been shown
to be incomparable [20].

Theorem 25. Let S be an ES of any of the aforementioned classes, with set
of events E, and let 7→S be the corresponding transition relation as given by
Theorem 22. Then there exists an RCES Ŝ = ⟨E,⊢⟩ such that 7→Ŝ = 7→S.

Proof. First we use the proving sequences of S to define ⊢. For any proving
sequence t = e1 . . . en of S, define

⊢t = {(ti−1, Zi) | Zi ⊆ ti, i ∈ 1, . . . , n}.

Notice that for any t, we have (∅, t1) ∈ ⊢t. Let now

⊢ =
⋃

{⊢t | t is a proving sequence of S}.

We proceed to show that S and Ŝ have the same sets of proving sequences.

9We note that this is true for any class of ESs in which the current configuration (i.e.,
the set of occurred events) wholly determines the current causal state (i.e., which events
are enabled). In particular, this is true for DCCESs but not for DCESs, which is why
Theorem 25 does not hold for the latter.
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� Let t = e1 . . . en be a proving sequence of S. Then, for any 1 ≤ i ≤ n
and for any Zi ⊆ ti, we have ti−1 ⊢t Zi. It follows from Theorem 21
that t is then also a proving sequence of Ŝ.

� We prove now that any proving sequence t = e1 . . . en of Ŝ is also a
proving sequence of S. We proceed by induction on the length n of
t. For n = 0 we have t = t0 = ε, which is a proving sequence of S
by definition. Assume now that the statement holds for all proving
sequences of length k, for 0 ≤ k ≤ n − 1. We want to show that it
holds also for t = e1 . . . en = tn−1en. By induction tn−1 is a proving
sequence of S. Since t is a proving sequence of Ŝ, by Theorem 21 for
all Z ⊆ t there exists some W ⊆ tn−1 such that W ⊢ Z. In particular
this holds for Z = t. Note that, on the one hand, W ⊆ tn−1 implies that
|W | ≤ n− 1. On the other hand, the construction of ⊢ implies that, if
W ⊢ Z, then |Z| < |W |. Since |t| = n, it follows that if W ⊢ t then it
must be |W | = n− 1 and thus W = tn−1. In other words: tn−1 ⊢t′ t for
some proving sequence t′ of S. Then, by definition of ⊢t′ , tn−1 = t′n−1

and t ⊆ t′n. Since t = tn and tn and t′n have the same length, it follows
that t = t′n. This means that t′n = t′n−1en. Now, since t′n and t′n−1 are
prefixes of t′, by Theorem 23(1) they are also proving sequences of S.
Then we may use Theorem 23(2) to conclude that t = tn = tn−1en is a
proving sequence of S.

Since S and Ŝ have the same proving sequences, it directly follows from
Theorem 22 that 7→S = 7→Ŝ.

3.2. Comparing event structures and branching pomsets – Overview

We now compare branching pomsets with the various classes of ESs pre-
viously reviewed. We establish a number of relative expressiveness results,
summarised in Figure 7, where we complete the initial picture of Figure 6
with dashed red lines representing the non-inclusion of one model into an-
other. Non-inclusion results are proved by providing counterexamples. The
inclusion of tree-like BPs into PESs is proved in Theorem 31. The inclusion
of general BPs into RCESs is proved in Theorem 36. The inclusion of general
BPs into DCCESs is work in progress and for now remains a conjecture.

To conduct this comparison, we first need to introduce configurations also
on branching pomsets, as well as a transition relation between them.
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Definition 26 (Configuration). Let R = ⟨E,⪯, λ,B⟩ be a branching pomset.
Then X ⊆ E is a configuration of R if there exists some trace t = e1 . . . en
such that R

t−→∗ R′ and t = X.

Just as for ESs, let C(R) be the set of configurations of R.

Definition 27 (Transition system). Let R = ⟨E,⪯, λ,B⟩ be a branching
pomset and let X ⊆ E. Then the transition relation 7→R ⊆ C(R)× C(R) is
defined as follows: X 7→R X ∪ {e} if R

t−→∗ R′ e−→ for some t = e1 . . . en such
that t = X.

We may now proceed to prove the results and discuss the conjectures
corresponding to the solid blue arrows and dashed red arrows in Figure 7.

3.3. Comparing event structures and branching pomsets – Static models

Our first result states that the class of prime ESs is not included in that
of BPs. Since prime ESs are the simplest class of ESs (static and dynamic
alike), extended by all the others, this implies that no class of ESs is included
in that of BPs.

Lemma 28 (PES ̸⊆ BP ). There exists a prime event structure S for which
there does not exist a branching pomset R such that C(S) = C(R).

Proof. Let S = ⟨E, #,≤⟩ be the PES in Figure 8a, where E = {a, b, c, d},
a # b, a # d, c # d and a ≤ a, b ≤ b, c ≤ c, d ≤ d. Assume, for the sake of con-
tradiction, that there exists some BP R = ⟨E,⪯, λ,B⟩ with the same set
of configurations, namely C(R) = {∅, {a}, {b}, {c}, {d}, {a, c}, {b, c}, {b, d}}.
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Figure 8: Counterexamples

Then, a # b implies that there exists some choice C1 = {B1,B2} such that
a � B1 and b � B2. Analogously, c # d implies that there exists C2 = {B3,B4}
such that c � B3 and d � B4.

Now there are four possible ways to relate C1 and C2 in B. We show that
all of them lead to a contradiction.

1. Suppose C1 and C2 are concurrent choices: B = {C1, C2}. Then, if a ⪯ d
it follows that R

ad−→∗ R′ for some R′. Otherwise, R
da−→∗ R′′ for some

R′′. In both cases {a, d} ∈ C(R), which is a contradiction;

2. Suppose C1 and C2 are nested choices. Let C2 � C1 (the symmetric case
is analogous). There are two subcases:

(a) either C2 � B1, in which case b (which is in B2) can never occur
together with c or d (which are then in B1), thus contradicting
{b, c} ∈ C(R);

(b) or C2 � B2, in which case a (which is in B1) can never occur
together with c or d (which are then in B2), thus contradicting
{a, c} ∈ C(R);

3. Suppose C1 and C2 are the same choice, namely {B1,B2} = {B3,B4}.
Then, either B1 = B3, in which case b (which is in B2 = B4) cannot
occur together with c (which is in B1 = B3), thus contradicting {b, c} ∈
C(R); or B1 = B4, in which case a (which is in B1 = B4) cannot occur
together with c (which is in B2 = B3), thus contradicting {a, c} ∈ C(R);

4. Suppose C1 and C2 are mutually exclusive choices. Then, there must be
some choice C = {B5,B6} such that C1 � B5 and C2 � B6. Consequently,
a (which is in B1 � B5) cannot occur together with c (which is in
B3 � B6), thus again contradicting {a, c} ∈ C(R).
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Since all cases are contradictory, we conclude that there does not exist
any BP R such that C(R) = C(S).

The following two lemmas state that the class of BPs is not included in
the class of EBESs. Since EBESs are the most expressive class of static ESs
in Figure 7 (it includes the class of PESs and BESs), this implies that no
class of static ESs in Figure 7 includes that of BPs.

Lemma 29 (BP ̸⊆ EBES). There exists a branching pomset R for which
there does not exist an extended bundle event structure S such that C(R) =
C(S).

Proof. Let R be the BP in Figure 8b. Assume, for the sake of contradiction,
that there exists some EBES S = ⟨E,;,↣⟩ with the same set of con-
figurations, namely C(S) = {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d},
{a, c, d}, {b, c, d}}. Since {a}, {b}, {c}, {d} ∈ C(S), it follows that ↣ = ∅.
Furthermore, since {a, c, d} ∈ C(S), it follows that ¬(c ; d) ∨ ¬(d ; c).
However, it follows from these that {c, d} ∈ C(S), which is a contradic-
tion.

The following theorem follows directly from Theorems 28 and 29.

Theorem 30. Branching pomsets are incomparable with the static event
structures in Figure 7 (prime, bundle, and extended bundle).

In contrast, for the special class of tree-like BPs, we can prove that it is
strictly subsumed by the class of PESs.

Lemma 31. For every tree-like branching pomset R there exists a prime
event structure S such that C(R) = C(S).

Proof. Let R = ⟨E,⪯, λ,B⟩ be a BP. We construct the PES S = ⟨E, #,≤⟩,
where ≤ = ⪯∗, the reflexive and transitive closure of ⪯, and # = {(e1, e2) |
∃{B1,B2} � B : e1 � B1∧ e2 � B2}, i.e., the set of conflicts consists exactly of
all pairs of events which are separated by some choice. Since R is tree-like,
e � B′ ∧ e ⪯ e′ =⇒ e′ � B′, from which it follows that S satisfies conflict
hereditariness. We proceed by showing that R and S have the same traces
and thus the same configurations.
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� Let t = e1 . . . en be a trace of R. Then R
t−→∗ R′ for some R′. Since

two mutually exclusive events can never occur in the same trace of
R, t satisfies the PES consistency condition. Furthermore, for all i ∈
{1, . . . , n}, if there exists some e ≺ ei then, since R is tree-like, e ∈ ti−1.
In other words, t also satisfies the PES left-closure condition, and then
t is also a trace of S.

� Let t = e1 . . . en be a trace of S. Then t must be consistent and left-
closed. Let i ∈ {1, . . . , n} and assume that R

ti−1−−→∗ R′ for some R′

(where t0 = ε, in which case R′ = R). Since t is left-closed, it follows
that, for every e such that e ≤ ei, we have e ∈ ti−1. Consequently,
ei is minimal in R′. Furthermore, since t is consistent, ei cannot be
in conflict with any event in ti−1 and thus also does not belong to a
different branch of any choice than the events in ti−1. Since R is tree-
like, there is no need to resolve choices for any reason other than firing
events in them. It follows that ei � R′, and then R′ ei−→ R′′ for some
R′′. Finally, it then follows by induction that R

t−→∗ R̂ for some R̂ and
then t is a trace of R.

Since R and S have the same set of traces, it follows that C(R) = C(S).

3.4. Comparing event structures and branching pomsets – Dynamic models

Our next two lemmas state that the class of BPs is not included in the
classes of SESs and GESs. Combined with our result in the previous subsec-
tion that the class of PESs (subsumed by those of SESs and GESs) is not
included in the class of BPs, we conclude that BPs and SESs/GESs are in-
comparable: the expressive power to only remove, or to only add, causalities
dynamically is insufficient to cover the expressive power of BPs, and vice
versa.

Lemma 32 (BP ̸⊆ SES). There exists a branching pomset R for which there
does not exist a shrinking causality event structure S such that C(R) = C(S).

Proof. Let R be the BP in Figure 8b. Assume, for the sake of contradic-
tion, that there exists some SES S = ⟨E, #,→,�⟩ with the same set of con-
figurations, namely C(S) = {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d},
{a, c, d}, {b, c, d}}. Since {a}, {b}, {c}, {d} ∈ C(S), it follows that → = ∅.
Furthermore, since {a, c, d} ∈ C(S), it follows that ¬(c # d). However, it
follows from these that {c, d} ∈ C(S), which is a contradiction.
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Lemma 33 (BP ̸⊆ GES). There exists a branching pomset R for which
there does not exist a growing causality event structure S such that C(R) =
C(S).

Proof. Let R be the BP in Figure 8c. Assume, for the sake of contradiction,
that there exists some GES S = ⟨E,→,�⟩ with the same set of configur-
ations, namely C(S) = {∅, {a}, {b}, {a, c}, {b, c}}. Since {c} /∈ C(S) and
{a, c} ∈ C(S), it follows that a → c. However, since GESs cannot model
disjunctive causality, it follows from a → c that {b, c} /∈ C(S), which is a
contradiction.

The following theorem follows directly from Theorems 28, 32 and 33.

Theorem 34. Branching pomsets are incomparable with two dynamic event
structures in Figure 7 (growing and shrinking).

In contrast, we conjecture that DCCESs (which combine the power of
SESs and GESs) have more expressive power than BPs. The idea is that
the power to remove dependencies can be used to encode disjunctive caus-
ality, while the power to add dependencies can be used to encode partial
termination (as asymmetric conflicts).

Conjecture 35. For every branching pomset R there exists a dynamic caus-
ality event structure with counters S such that R≃t S.

Finally, the general enabling relation of RCESs can essentially encode
arbitrary transition graphs, including those induced by BPs. When equating
traces of BPs to proving sequences for ESs, their definitions for configurations
and (single action) transition relations (Theorems 22, 26 and 27) coincide.
Then, occasionally substituting the word ‘trace’ for ‘proving sequence’ in the
proof of Theorem 25 also proves the following theorem.

Theorem 36. For every branching pomset R there exists an event structure
for resolvable conflict S such that R≃t S.

4. Choreographies

We now turn to our study of applications of branching pomsets to cho-
reographies. In this section we define a simple choreographic language. We
then encode choreographic expressions into BPs and show the expressions’
operational semantics to be bisimilar to the encoding’s BP semantics.
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c ::= 1 | a�b:x | ab?x | c ; c | c + c | c ∥ c | c∗

Figure 9: Syntax of choreographies, where a and b are participants (a ̸= b) and x is a
message type.

Let A = {a, b, . . .} be the set of participants (or agents). Let X =
{x, y, . . .} be the set of message types. From now on, let L =

⋃
a,b∈A,x∈X{ab!x,

ab?x} be the set of labels (actions), ranged over by ℓ, where ab!x is a send
action from a to b of a message of type x, and ab?x is the corresponding
receive action by b. The subject of an action ℓ, written subj (ℓ), is its active
agent: subj (ab!x) = a and subj (ab?x) = b.

4.1. Choreography language definition

The syntax of our choreography language is formally defined in Figure 9.
Its components are standard: ‘1’ is the empty choreography; ‘a�b:x’ is the
asynchronous communication from a to b of a message of type x; the boxed
term ‘ab?x’ represents a pending receive on b from a of a message of type x
(it is boxed in Figure 9 to indicate that it is only used internally to form-
alise behaviour but the box is not part of the syntax); ‘c1 ; c2’, ‘c1 + c2’ and
‘c1 ∥ c2’ are respectively the weak sequential composition, nondeterministic
choice and parallel composition of choreographies c1 and c2; finally, ‘c

∗’ is the
finite repetition (or, more informally, loop) of choreography c. The semantics
for choice, parallel composition and loop are standard. We note that our se-
quential composition is weak. With standard sequential composition, when
sequencing c1 and c2, the choreography c1 must fully terminate before pro-
ceeding to c2. With weak sequential composition, however, actions in c2 can
already be executed as long as they do not interfere with c1. For example, in
a�b:x ; c�d:x we can execute the action cd!x as it does not affect the parti-
cipants of a�b:x: there is no dependency and thus no need to wait for a�b:x
to go first. On the other hand, in a�b:x ; a�c:x the action ac!x cannot be
executed first as its subject (a) must first execute ab!x. This is the common
interpretation of sequential composition in the context of message sequence
charts [29], multiparty session types [3] and choreographic programming [5].

The reduction rules of our choreographic language are formally defined in
Figure 10a and its termination rules in Figure 10b. To formalise the reduc-
tion of weak sequential composition, we follow Rensink and Wehrheim [30],
who define a notion of partial termination. Partial termination inspired our
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a�b:x
ab!x−−→ ab?x

[−→1]
ab?x

ab?x−−→ 1
[−→2]

c1
ℓ−→ c′1

c1 ; c2
ℓ−→ c′1 ; c2

[−→3]
c1

✓ℓ−→ c′1 c2
ℓ−→ c′2

c1 ; c2
ℓ−→ c′1 ; c

′
2

[−→4]

c1
ℓ−→ c′1

c1 ∥ c2
ℓ−→ c′1 ∥ c2

[−→5]
c2

ℓ−→ c′2

c1 ∥ c2
ℓ−→ c1 ∥ c′2

[−→6]
c1

ℓ−→ c′1

c1 + c2
ℓ−→ c′1

[−→7]
c2

ℓ−→ c′2

c1 + c2
ℓ−→ c′2

[−→8]

c
ℓ−→ c′

c∗
ℓ−→ c′ ; c∗

[−→9]

(a) Reduction rules.

1↓
[↓1] c∗↓

[↓2]
c1↓ c2↓ † ∈ {;, ∥}

c1 † c2↓
[↓3]

ci↓ i ∈ {1, 2}
c1 + c2↓

[↓4]

(b) Termination rules.

1
✓ℓ−→ 1

[
✓−→1]

c
✓ℓ−→ c

c∗
✓ℓ−→ c∗

[
✓−→2]

c ̸ ✓ℓ−→ c

c∗
✓ℓ−→ 1

[
✓−→3]

c1
✓ℓ−→ c′1 c2

✓ℓ−→ c′2 † ∈ {;, ∥, +}

c1 † c2
✓ℓ−→ c′1 † c′2

[
✓−→4]

c1
✓ℓ−→ c′1 c2 ̸

✓ℓ−→

c1 + c2
✓ℓ−→ c′1

[
✓−→5]

c1 ̸
✓ℓ−→ c2

✓ℓ−→ c′2

c1 + c2
✓ℓ−→ c′2

[
✓−→6]

subj (ℓ) /∈ {a, b}

a�b:x
✓ℓ−→ a�b:x

[
✓−→7]

subj (ℓ) ̸= b

ab?x
✓ℓ−→ ab?x

[
✓−→8]

(c) Partial termination rules.

Figure 10: Operational semantics of choreographies.

refinement and enabling rules for BPs, so both the concepts and notation are
similar.

Partial termination. In a weak sequential composition c1 ; c2, an action ℓ
in c2 can be executed if c1 can partially terminate for ℓ. Conceptually, a
choreography c1 can partially terminate for ℓ by discarding all branches of its
behaviour which would conflict with it, i.e., in which the subject of ℓ occurs.
This is written c1

✓ℓ−→ c′1, where c′1 is the remainder of c1 after discarding all
branches involving the subject of ℓ. For example, if c1 = a�b:x + a�c:x then
c1

✓cd!x−−→ a�b:x, as this branch does not contain c. An exception is when the
subject of ℓ occurs in every branch of c1, in which case c1 cannot partially
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terminate for ℓ, i.e., c1 ̸
✓ℓ−→. In the above example, c1 ̸

✓ad!x−−→.
The rules for partial termination are deterministic and, like our enabling

relation for BPs, only discard the absolutely necessary. In the example above,
c1

✓da!x−−→ c1 since the subject d does not occur in either branch: dropping one
of the branches would be unnecessary and is thus not allowed. The rules for
partial termination are defined in Figure 10c. We highlight the rules for the
different operators:

� Sequential composition c1 ; c2 and parallel composition c1 ∥ c2 can
partially terminate if both c1 and c2 can (rule

✓−→4).

� A choice c1 + c2 can partially terminate if at least one of its branches
can. If both branches can partially terminate then both are kept (rule
✓−→4), otherwise only the partially terminated one is kept (rules

✓−→5 and
✓−→6).

� Following Rensink and Wehrheim, a loop c∗ can partially terminate if
its body (c) can partially terminate without discarding any branches,
i.e., if c

✓ℓ−→ c. In that case also c∗
✓ℓ−→ c∗ (rule

✓−→2). Otherwise we allow
c∗ to be skipped entirely, represented as partial termination to 1, i.e.,
c∗

✓ℓ−→ 1 (rule
✓−→3). This can happen either if c can partially terminate

to c′ but c′ ̸= c, or if c cannot partially terminate at all. We use c ̸ ✓ℓ−→ c
as a shorthand to cover both these cases. Skipping a loop is necessary,
for example, in a protocol such as (a�b:x ; b�a:x)∗ ; a�b:done, in which
Alice and Bob exchange an arbitrary number of messages x until Alice
signals done. In this choreography, the loop has to partially terminate
to 1 to eventually allow for the action ab!done.

Example 37. Let c1  = (a�b:x + a�c:x) ; (d�b:x + d�e:x). Let c2  =
(a�b:x + c�b:x)∗ ∥ (c�a:x + c�b:x).

� c1
✓be!x−−→ a�c:x ; d�e:x. The subject b of be!x occurs in one branch of

each of both choices: a�b:x + a�c:x
✓be!x−−→ a�c:x (rule

✓−→6) and d�b:x +
d�e:x

✓be!x−−→ d�e:x (rule
✓−→6), and then c1

✓be!x−−→ a�c:x ; d�e:x (rule
✓−→4).

While the recipient e also occurs in the second branch of the second
choice, since it is not the actual subject it does not interfere with be!x
because it is not its subject (rule

✓−→7).

� c1 ̸
✓ab!x−−→. While the second choice can partially terminate without drop-

ping any branches (rule
✓−→4), the first choice contains the subject a of
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ab!x in both of its branches and none of rules
✓−→4,

✓−→5 and
✓−→6 apply.

Since one of the choices cannot partially terminate, neither can their
sequential composition: rule

✓−→4 does not apply.

� c2
✓ad!x−−→ 1 ∥ c�b:x. The subject a of ad!x only occurs in one branch of

the loop body, but, since rule
✓−→2 does not apply, the loop can only

partially terminate to 1 through rule
✓−→3. On the right hand side of

the parallel composition, a occurs only in the first branch and so rule
✓−→6 applies. The two sides are then combined through rule

✓−→4.

� c2 ̸
✓cd!x−−→. While the loop can again partially terminate to 1 through rule

✓−→3, the subject c of cd!x occurs in both branches of the right hand side
of the parallel composition and none of rules

✓−→4,
✓−→5 and

✓−→6 apply.
Since its right hand side cannot partially terminate, neither can it as a
whole: rule

✓−→4 does not apply.

As already discovered by Rensink and Wehrheim [30], an unwanted con-
sequence of these rules for partial termination is that unfolding iterations of
loops no longer preserves behaviour. We would like c∗ and (c;c∗)+1 to behave
the same, but this is not the case. For example, if c = a�b:x + c�d:x, then
c∗

✓ab!x−−→ 1 (rule
✓−→3) but (c ;c

∗)+1
✓ab!x−−→ (c�d:x ;1)+1 (rules

✓−→6,
✓−→3 and

✓−→4).
Then c∗ ;c

ab!x−−→ 1 ;ab?x by skipping the loop (rule −→4); however, ((c ;c
∗)+1);c

has no way to match this as it can skip the loop but it can only partially
terminate the already unfolded iteration c to c�d:x — it cannot discard it
entirely. We borrow the solution that Rensink and Wehrheim offer, which is
the concept dependent guardedness.

Dependent guardedness. A loop c∗ is dependently guarded if, for all actions
ℓ, the loop body c can only partially terminate for ℓ if it does not occur in
c at all. In other words: any participant that occurs in some branch of c
must also occur in every other branch of c. It then follows that c can either
partially terminate for ℓ without having to discard any branches, or it cannot
partially terminate at all. Formally: if c

✓ℓ−→ c′ then c′ = c. A choreography
ĉ is then dependently guarded if all of its loops are.

As a consequence, we avoid the problem above: if c∗
✓ℓ−→ 1 then c ̸ ✓ℓ−→

and c ; c∗ ̸ ✓ℓ−→ since rule
✓−→4 does not apply and, consequently, (c ; c∗) + 1 is

forced to partially terminate to the second branch of the choice (rule
✓−→6),

which is 1. More precisely, let c∗ be some dependently guarded expression.
If c

✓ℓ−→ c′ for some ℓ, c′, then c′ = c. It follows that c∗
✓ℓ−→ c∗ (rule

✓−→2) and
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a�b:x ; (b�c:x + b�d:x) ; c�d:x

Rc
 =

Choice

ab!x ab?x

bc!x bc?x

bd!x bd?x

cd!x cd?x

((a�b:x ; (b�a:x + b�d:x)) + (a�c:x ; (c�a:x + c�d:x))) ; d�a:x

Rd
 =

Choice

Choice

Choice

ab!x ab?x

ac!x ac?x

ba!x ba?x

bd!x bd?x

ca!x ca?x

cd!x cd?x

da!x da?x

Figure 11: Two BPs with the corresponding choreographies.

(c ; c∗) + 1
✓ℓ−→ (c ; c∗) + 1 (rule

✓−→4). Similarly, if c ̸ ✓ℓ−→ then c∗
✓ℓ−→ 1 (rule

✓−→3)
and (c ; c∗) + 1

✓ℓ−→ 1 (rule
✓−→6).

Example 38. Let c1 = a�b:x + a�c:x. Let c2 = a�b:x + b�a:x.

� c∗1
 is not dependently guarded as c1

✓cd!x−−→ a�b:x ̸= c1 (rule
✓−→5).

However, c1 itself is dependently guarded as it does not contain any
loop.

� c∗2
 is dependently guarded since both a and b occur in both branches

of c2. However, (c
∗
2)

∗ is not dependently guarded, since c∗2
✓ab!x−−→ 1 (rule

✓−→3).

4.2. BP encoding

Figure 11 shows two choreographies and corresponding BPs similar to
those in Figure 4. Formally, the rules for the construction of a BP for a
choreography c, written JcK, are defined in Figure 12. Most rules are as
expected. We highlight the rules for operators.
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J1K = ⟨∅, ∅, ∅, ∅⟩
Ja�b:xK = ⟨{e1, e2}, {e1 ⪯ e1, e1 ⪯ e2, e2 ⪯ e2}, {e1 7→ ab!x, e2 7→ ab?x}, {e1, e2}⟩
Jab?xK = ⟨{e}, {e ⪯ e}, {e 7→ ab?x}, {e}⟩

Jc1 † c2K = Jc1K † Jc2K for † ∈ {;, +, ∥}
Jc∗K = J(c ; c∗) + 1K

In the following, let Ri = ⟨Ei,≤i, λi,Bi⟩ for i ∈ {1, 2} and let Ea
i be the

subset of events in Ei with subject a.

R1 ∥ R2 = ⟨E1 ∪ E2,⪯1 ∪ ⪯2, λ1 ∪ λ2,B1 ∪ B2⟩
R1 ;R2 = ⟨E1 ∪ E2,⪯1 ∪ ⪯2 ∪

⋃
a∈A Ea

1 × Ea
2 , λ1 ∪ λ2,B1 ∪ B2⟩

R1 +R2 = ⟨E1 ∪ E2,⪯1 ∪ ⪯2, λ1 ∪ λ2, {{B1,B2}}⟩

Figure 12: BP interpretation of choreographies.

� The rule for parallel composition (Jc1 ∥ c2K) takes the pairwise union
of all components.

� The rule for sequential composition (Jc1 ; c2K) also adds dependencies
to ensure that, for every a, all events with subject a in Jc1K (denoted
Ea

1) must precede all events with subject a in Jc2K (Ea
2). This matches

the reduction rule for weak sequential composition of choreographies
(Figure 10a), as events in Jc2K are only required to wait for events in
Jc1K whose subject is the same.

� The rule for choice (Jc1 + c2K) adds a single top-level choice in the
branching structure to choose between the BPs for c1 and c2.

� The rule for loops (Jc∗K) encodes a loop as a choice between terminating
(1) and unfolding one iteration of the loop (c ; c∗). This results in a
BP of infinite size. We note that our theoretical results still hold even
on infinite BPs, but that any analysis of an infinite BP will have to
be symbolic. However, since the focus of this paper is on supporting
choices, we do not discuss this further and leave symbolic analyses for
loops for future work.
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Example 39. As an example, we construct part of the BP in Figure 2:
J(c�a:r ; (a�c:y + a�c:n)) ∥ (c�b:r ; (b�c:y +b�c:n))+1K (thus omitting c�a:t
and c�b:t). Let Jc�a:rK = ⟨{e1, e2},⪯1, λ1,B1⟩, Ja�c:yK = . . ., Ja�c:nK = . . .,
Jc�b:rK = . . ., Jb�c:yK = . . . and Jb�c:nK = ⟨{e11, e12},⪯6, λ6,B6⟩ as in Fig-
ure 12. First Ja�c:y + a�c:nK = ⟨{e3, . . . , e6},⪯2 ∪ ⪯3, λ2 ∪ λ3, {{B2,B3}}⟩;
this is the pairwise union of the first three components, with the branching
structure adding a choice between the two branches. Then Jc�a:r ; (a�c:y +
a�c:n)K = ⟨{e1, . . . , e6},⪯1 ∪ ⪯2 ∪ ⪯3 ∪ {e1 ⪯ e4, e1 ⪯ e6, e2 ⪯ e3, e2 ⪯
e5}, λ1 ∪ λ2 ∪ λ3,B1 ∪ {{B2,B3}}⟩; again, this is the pairwise union of all
components, with the addition of four dependencies: e2 ⪯ e3 and e2 ⪯ e5
represent the arrows in Figure 2 from ca?r to respectively ac!y and ac!n as
they both have subject a, while e1 ⪯ e4 and e1 ⪯ e6 adds direct dependen-
cies between ca!r and respectively ac?y and ac?n as they both have subject
c. The parallel branch involving Bob is analogous, and their parallel com-
position simply consists of the pairwise union of their components. Finally,
adding the choice with 1 retains the first three components and yields the
branching structure {{Bp, ∅}}, where Bp is the branching structure yielded
by the parallel composition.

Remark (expressiveness). There is no way to obtain the precise BP from
Figure 2, as parallel composition of the BP constructed in Theorem 39 with
Jc�a:t ∥ c�b:tK yields too few dependencies and sequential composition yields
too many: amongst others, sequential composition would also add arrows
from ac?y and ac?n to cb!t, as they have the same subject c. The behaviour
can be expressed by duplicating events, resulting in the choreography clenientsnd

in Section 1. Expressing it without duplication would require more sophist-
icated compositional operators than the ones in our choreographic language.
As a second example, there is also no way to obtain the BP from Figure 13.
In this BP, Alice (a) and Bob (b) both send the other a vote (v), but they
must send their own vote before receiving the other’s. From our choreo-
graphic language we can obtain BPs for a�b:v and b�a:v, but we have no
compositional operator to compose them in the desired way: parallel com-
position adds no dependencies at all, and sequential composition will also
enforce an ordering on the send and receive events.

4.3. Equivalence of BP encoding

For any given choreography c we can now derive two labelled transition
systems: one from the operational semantics in Figure 10 over c, and one
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Re
 =

ab!v ab?v

ba!v ba?v

Figure 13: A BP representing a distributed vote with two voters.

from the pomset semantics in Figure 3 over the BP JcK produced by the rules
in Figure 12. In the remainder of this section we show that the two transition
systems are bisimilar.

Two systems are language equivalent (or trace equivalent) if their lan-
guages are the same, i.e., if they accept the same set of words (or traces),
regardless of the way these words are obtained. On the other hand, two
systems are bisimilar if their internal branching behaviour is also the same.
This is a stronger notion of equivalence than language equivalence: if two
systems are bisimilar then they are also language equivalent, but the inverse
is not necessarily true.

Example 40.

� a�b:x;(b�a:x+b�a:y) is language equivalent but not bisimilar to (a�b:x;
b�a:x) + (a�b:x ; b�a:y). In the former the choice between b�a:x and
b�a:y is made only after a�b:x, while in the latter the choice is made up
front. As a result, it is possible in the latter system to fire ab!x;ab?x and
then end up in a state where ba!x cannot be fired because the branch
with b�a:y was chosen — or the other way around; in the former system
it is always possible to fire both ba!x and ba!y.

� a�b:x is bisimilar to a�b:x + a�b:x. While the latter contains a choice,
the two systems cannot be distinguished by their behaviour. In both
cases, the only allowed action is ab!x and then ab?x.

Formally, two transition systems A1, A2 are bisimilar, written A1 ∼ A2, if
there exists a bisimulation relation R between the states of A1 and A2 which
relates their initial states [31]. The relation R is a bisimulation relation if,
for every pair of states ⟨p, q⟩ ∈ R:

� If p
ℓ−→ p′ then q

ℓ−→ q′ and ⟨p′, q′⟩ ∈ R for some q′, and vice-versa.

� p↓ iff q↓.
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In other words: if one of the two can perform a step, then the other can
perform a matching step such that the resulting states are again in the bisim-
ulation relation.

This is also the approach we follow when proving that c ∼ JcK for all
(dependently guarded) choreographies c: we define a relation R = {⟨c, JcK⟩ |
c is a dependently guarded choreography} relating all dependently guarded
choreographies with their interpretation as BP by the rules in Figure 12. We
then show that:

� If c
ℓ−→ c′ then JcK ℓ−→ Jc′K (Theorem 42).

� If JcK ℓ−→ R′ then c
ℓ−→ c′ such that R′ = Jc′K (Theorem 43).

� If c↓ then JcK↓ (Theorem 44).

� If JcK↓ then c↓ (Theorem 45).

Together these lemmas prove that c ∼ JcK for all dependently guarded c
(Theorem 46). Most of the proofs are straightforward by structural induction
on c. Of particular interest, however, are the two reduction lemmas in the
case of weak sequential composition, i.e., if c1 ;c2

ℓ−→ c′1 ;c
′
2 in Theorem 42 and

if Jc1 ; c2K
e−→ R′ where e is an event in Jc2K in Theorem 43. To prove these

specific cases we need to show a correspondence between partial termination
and enabling events. We do this with Theorem 41, in which we show two dir-
ections simultaneously. If the choreography c1 can partially terminate for an
action ℓ in c2 then the BP Jc1 ; c2K can enable the corresponding event. Con-
versely, if Jc1 ;c2K can enable some event in Jc2K then the choreography c1 can
partially terminate for its label. When proving these cases in Theorems 42
and 43, we then only have to show that the preconditions of Theorem 41
hold.

In the following, a number of technical lemmas and most of the proofs
are omitted in favour of informal proof sketches or highlights. The omitted
proofs and technical lemmas for this section can be found in the technical
report of our ICE 2022 paper [32].

Lemma 41. Let c1 and c2 be dependently guarded choreographies. Let c2
ℓ−→

c′2 and Jc2K
✓e−→ R′

2 such that λ(e) = ℓ and Jc′2K = R′
2 − e.

(a) If c1
✓ℓ−→ c′1 then Jc1 ; c2K

✓e−→ Jc′1K ;R′
2.

(b) If Jc1 ; c2K
✓e−→ R′

1 ;R
′
2 then c1

✓λ(e)−−→ c′1 and Jc′1K = R′
1.
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Proof sketch. This proof is by structural induction on c1. Although the de-
tails require careful consideration, it is conceptually straightforward: every
case in (a) consists of showing that e is minimal and active in Jc′1K ; R′

2 and
that Jc′1K ; R′

2 is the first refinement for which this is true, and then apply-
ing the second rule in Figure 3b; every case in (b) consists of showing that
Jc3 ; c2K

✓e−→ Jc′3K ;R′
2 for some subexpression c3 of c1 and similarly for c4 (e.g.,

when c1 = c3 + c4), then applying the induction hypothesis (b) to obtain
c3

✓ℓ−→ c′3 and c4
✓ℓ−→ c′4, and finally applying the partial termination rules in

Figure 10c.

Lemma 42. Let c be a dependently guarded choreography. If c
ℓ−→ c′ then

JcK ℓ−→ Jc′K.

Proof sketch. This proof is by structural induction on c. We note that, if
c = c1 ; c2 and c′ = c′1 ; c

′
2, i.e., when partial termination is applied, then

the premises of Theorem 41 hold by the induction hypothesis and the result
swiftly follows. All other cases are straightforward.

Lemma 43. Let c be a dependently guarded choreography. If JcK ℓ−→ R′ for
some R′ then c

ℓ−→ c′ such that R′ = Jc′K.

Proof sketch. This proof is by structural induction on c. We highlight two
cases:

� If c = c∗1 then we use a technical lemma to show that R′ = R′
1 ; Jc∗1K

such that Jc1K
ℓ−→ R′

1. It then follows from the induction hypothesis
that c1

ℓ−→ c′1 such that Jc′1K = R′
1. The remainder is straightforward.

� If c = c1 ;c2 then JcK = Jc1K;Jc2K. If e is an event in Jc2K then we proceed
to show that Jc2K

ℓ−→ R′
2, at which point we can apply the induction

hypothesis. We have then satisfied the premises of Theorem 41. The
remainder is straightforward.

All other cases are straightforward.

Lemma 44. Let c be a dependently guarded choreography. If c↓ then JcK↓.

Proof sketch. This proof is by structural induction on c. All cases are straight-
forward.

Lemma 45. Let c be a dependently guarded choreography. If JcK↓ then c↓.
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Proof sketch. This proof is by structural induction on c. All cases are straight-
forward.

Theorem 46. Let c be a dependently guarded choreography. Then c ∼ JcK.

Proof. Recall the relationR = {⟨c, JcK⟩ | c is a dependently guarded choreography}.
Let ⟨c, R⟩ ∈ R.

� If c
ℓ−→ c′ then R

ℓ−→ R′ and ⟨c′, R′⟩ ∈ R (Theorem 42).

� If R
ℓ−→ R′ then c

ℓ−→ c′ and ⟨c′, R′⟩ ∈ R (Theorem 43).

� If c↓ then R↓ (Theorem 44).

� If R↓ then c↓ (Theorem 45).

Then R is a bisimulation relation and c ∼ JcK ([31]).

5. Realisability

In this section we formally define the realisability property for BPs rep-
resenting choreographies. For our analysis, we draw inspiration from multi-
party session types (MPST) [3]. Through its syntax and projection operator,
MPST defines a number of well-formedness conditions on global types which
ensure realisability. We define similar well-formedness conditions on BPs
and prove that they ensure realisability as well. These conditions are suf-
ficient but not necessary, i.e., a protocol may be realisable without being
well-formed. We discuss some possible relaxations of the conditions at the
end of the paper.

As in the previous section, we omit a number of technical lemmas and
most of the proofs in favour of informal proof sketches or highlights. The
omitted proofs and lemmas for this section can be found in the technical
report of our FACS 2022 paper [33].

5.1. Realisability of BPs

We model distributed implementations as compositions of a collection of
local BPs R⃗ and ordered buffers (FIFO queues) b⃗ containing the messages
in transit (sent but not yet received) between directed pairs of agents (or
channels), similar to communicating finite-state machines [34]. The local
BPs only contain actions for a single agent; there should be one local BP for
each agent and one buffer for each channel.
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Composition is formally defined below. We use three auxiliary functions:
add(ab!x, b⃗) returns b⃗ with x added to bab, remove(ab!x, b⃗) returns b⃗ with x

removed from bab and has(ab!x, b⃗) returns whether x is pending in bab. Since
we consider ordered buffers, add appends message types to the end of the
corresponding queue, remove removes message types from the front, and has
only checks whether the first message matches.

We note that our termination condition does not require the buffers to
be empty. In practice asynchronous communication channels will typically
have some latency, and requiring empty buffers would require processes (the
local BPs) to be aware of messages in transit. Instead, in our model the
presence or absence of orphan messages (messages unreceived on termination)
is a separate property from realisability, to be verified in isolation. It does,
however, follow from our well-formedness conditions in Section 5.2 that a
well-formed and realisable protocol is also free of orphan messages.

Definition 47 (Composition). Let R⃗ be an agent-indexed vector of local

BPs. Let b⃗ be a channel-indexed vector of ordered buffers. Their composition
is the tuple ⟨R⃗, b⃗⟩, whose semantics is defined as the labeled transition system
defined by the rules below.

Ra
ab!x−−→ R′

a

b⃗′ = add(ab!x, b⃗)

⟨R⃗, b⃗⟩ ab!x−−→ ⟨R⃗[R′
a/Ra], b⃗′⟩

[Send]

Rb
ab?x−−→ R′

b

has(ab!x, b⃗) b⃗′ = remove(ab!x, b⃗)

⟨R⃗, b⃗⟩ ab?x−−→ ⟨R⃗[R′
b/Rb], b⃗′⟩

[Receive]

∀a : Ra↓
⟨R⃗, b⃗⟩↓

[Terminate]

A protocol is realisable if there exists a faithful distributed implement-
ation of it, i.e., one defining the same behaviour. We formally define real-
isability below. We note that it is typically defined in terms of language
(trace) equivalence [13]. However, as the exact branching of choices plays an
important part in BPs, we use a more strict notion of equivalence and re-
quire the global BP and the composition to be bisimilar [31], as in Section 4.
We note that our well-formedness conditions enforce a deterministic setting,
in which bisimilarity agrees with language equivalence. We then choose to
prove bisimilarity rather than language equivalence because the proofs are
typically more straightforward.
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Recall from Section 4 that two BPs R1, R2 are bisimilar, written R1 ∼ R2,
if, for every reduction R1

ℓ−→ R′
1 there exists a reduction R2

ℓ−→ R′
2 such that

R′
1 and R′

2 are again bisimilar, and vice-versa. Additionally, we require that
two bisimilar BPs R1, R2 can terminate iff the other can do so as well.

Definition 48 (Realisability). Let R be a BP. The protocol it represents is

realisable if there exists a composition ⟨R⃗, b⃗⟩ such that bab is empty for all ab

and R ∼ ⟨R⃗, b⃗⟩.

Example 49. Consider the BPs in Figure 14:

� Rf is unrealisable. Alice and Bob both have to send a yes or a no
to the other but the two messages must be the same. It is impossible
without further synchronisation or communication to prevent a scenario
in which one will send a different message than the other.

� Rg is realisable. Alice first sends an int and then a bool to Bob. After
receiving the int, Bob returns either a yes or a no.

� Rh is unrealisable. Alice sends an int and a bool to Bob, but while they
agree that Alice first sends the int and then the bool, the order in which
Bob receives the message is unspecified. As we assume ordered buffers,
Bob will first receive the int, but the global BP allows an execution in
which Bob first receives the bool.

� Ri is realisable. Alice sends a yes or a no to Bob, followed by an int.

The second stage of the review protocol in Figure 2 is realisable as well.
Each choice is resolved by a single agent, and there is no way for the other
(relevant) agents to confuse the different branches, nor is there an ordering
issue such as for Rh.

We note that it is easy to go from a global BP R to a local BP for some
agent a by projecting it on a, written R⇂a. We will use projections in our
well-formedness conditions and realisability proof, and we formally define
them below. The projection R⇂a restricts R to the events whose subject is
a, and restricts ⪯ and λ accordingly. The branching structure is pruned
by removing all discarded events (leaves), but no inner nodes of the tree are
removed, even if they are left without any children. This is done to safeguard
the symmetry with the branching structure of R to ease our proofs.

Definition 50 (Projection). ⟨E,⪯, λ,B⟩⇂a = ⟨Ea,⪯a, λa,Ba⟩ where:
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Rf
 =

Choice

ab!yes ab?yes

ba!yes ba?yes

ab!no ab?no

ba!no ba?no

Rg
 =

Choice

ab!int ab?int

ab!bool ab?bool

ba!yes ba?yes

ba!no ba?no

Rh
 =

ab!int ab?int

ab!bool ab?bool

Ri
 =

Choice

ab!yes ab?yes

ab!no ab?no

ab!int ab?int

Figure 14: A collection of realisable and unrealisable BPs.

� Ea = {e ∈ E | subj (e) = a}

� ⪯a = ⪯ ∩ (Ea × Ea)

� λa = λ ∩ (Ea × L)

� Ba = B⇂a as defined below.

e⇂a = e if e ∈ Ea

{C1, . . . , Cn}⇂a = {Ci⇂a | 1 ≤ i ≤ n ∧ Ci⇂a is defined}
{B1,B2}⇂a = {B1⇂a,B2⇂a}

As an example, Figure 15 shows the projections of the BP for the second
stage of the review protocol in Figure 2 on Carol and Alice. The projection
on Bob is analogous to that on Alice. The events with different subjects are
removed, as are dependencies involving them. We note that, as the graphical
representation of a BP shows the transitive reduction of the causality rela-
tion and not the full relation, it is unclear from just Figure 2 whether, for
example, the projection on Carol should contain dependencies between ca!r
and respectively ac?y and ac?n. This is unambiguous in the formal textual
definition of this example, which we omitted but which also relates these
events.
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Choice

Choice

Choice

ca!r

cb!r

ac?y

ac?n

bc?y

bc?n

ca!t

cb!t

Choice

Choice

ca?r
ac!y

ac!n
ca?t

Figure 15: The projection of the BP in Figure 2 on c (left) and a (right).

Finally, we prove that R and its projections can mirror each other’s re-
finements. Both proofs are straightforward by induction on the structure of
the premise’s derivation tree.

Lemma 51. If R ⊒ R′ then R⇂a ⊒ R′⇂a.

Lemma 52. If R⇂a ⊒ R′
a then R ⊒ R′ for some R′ such that R′

a = R′⇂a.

5.2. Well-formedness

We define four well-formedness conditions (Theorem 58): to be well-
formed, a BP must be well-branched, well-channeled, tree-like and choreo-
graphic. Well-branchedness, well-channeledness and tree-likeness are inspired
by MPST [3] and ensure some safety properties. Choreographicness ensures
that the BP represents some sort of meaningful protocol.

� Well-branched (Theorem 54): every choice is made only on the label
of a send-receive pair, i.e., the first events in every branch must be a
send and receive between some agents a and b, with the message type
being different in every branch. Additionally, the projection on every
agent uninvolved in the choice must be the same in every branch. Then
a and b are both aware of the chosen branch and all other agents are
unaffected by the choice.

Although the BP model only contains binary choices, an n-ary choice
C can be encoded as a nested binary one, where the n children of C
become the leaves of a binary tree. We call such a leaf B an option
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of C, written B opt C, which is formally defined below. This allows us
to properly interpret C as an n-ary choice again and reason about it
accordingly.

� Well-channeled (Theorem 55): pairs of sends and pairs of receives
on the same channel that can occur in the same execution should be
ordered, and the pairs of sends should have the same order as the
pairs of their corresponding receives. A BP which is not well-channeled
could, for example, yield a trace ab!x ; ab!y ; ab?y ; ab?x, which cannot
be reproduced by a composition using ordered buffers.

� Tree-like (Theorem 56): events inside of choices can only affect future
events in the same branch. Graphically speaking, arrows can only
enter boxes, not leave them. As a consequence, the causality relation
⪯ follows the branching structure B and has a tree-like shape — hence
the name.

� Choreographic (Theorem 57): the BP represents a choreography of
some sort, i.e., a communication protocol in which the send and re-
ceive events are properly paired and all dependencies can be logically
derived. Specifically, all dependencies are between send-receive pairs or
between same-subject events, or they can be transitively derived from
those. Additionally, there is the following correspondence between the
send and receive events: every send can be matched to exactly one
corresponding receive, and every non-top-level receive has some cor-
responding send at the same level of the branching structure B. This
definition is similar to the definition of well-formedness by Guanciale
and Tuosto [13].

Definition 53 (Option). Let C � R.B. B is an option of C, written B opt C,
if B ∈ {B† | B† opt† C ∧ ∄B‡ : (B‡ opt† C ∧ B‡ � B†)}, where opt† is defined
as follows:

B ∈ C
B opt† C

B ∈ C ′ {C ′}opt† C
B opt† C

Definition 54 (Well-branched). A BP R is well-branched if, for every C �
R.B there exist participants a, b such that for every Bi ̸= Bj opt C there exist
events ei1, ei2 ∈ Bi and ej1, ej2 ∈ Bj such that:

� λ(ei1) = ab!x, λ(ei2) = ab?x, λ(ej1) = ab!y and λ(ej2) = ab?y for some
x ̸= y;
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� ei1 ⪯ ei for all ei � Bi and ej1 ⪯ ej for all ej � Bj;

� ei2 ⪯ ei for all ei � Bi for which subj (ei) = b and ej2 ⪯ ej for all ej � Bj

for which subj (ej) = b; and

� R|Bi
⇂c = R|Bj

⇂c for all c ̸= a, b10.

Definition 55 (Well-channeled). A BP R is well-channeled if, for all events
e1, e2, e3, e4 ∈ R.E:

� If e1 and e2 are either both sends or both receive events, and if they
share the same channel, then they are either causally ordered or mutu-
ally exclusive.

� If e1, e3 and e2, e4 are two pairs of matching send-receive events sharing
the same channel, and if there exists no e5 ∈ R.E such that e1 ≺ e5 ≺ e3
or e2 ≺ e5 ≺ e4, then e1 ⪯ e2 =⇒ e3 ⪯ e4.

Definition 56 (Tree-like). A BP R is tree-like if:
∀C = {B1,B2} � R.B : (e1 ⪯ e2 ∧ e1 � Bi) =⇒ e2 � Bi, where i ∈ {1, 2}.

Definition 57 (Choreographic). A BP R is choreographic if, for every e ∈
R.E:

� If there exists e′ ∈ R.E such that e′ ≺ e then there exists some event
e′′ (not necessarily distinct from e′) such that e′ ⪯ e′′ ≺ e and either
subj (λ(e′′)) = subj (λ(e)) or [λ(e′′) = ab!x and λ(e) = ab?x for some
a, b, x].

� If λ(e) = ab?x and e ∈ B for some B � R.B then there exists some e′

such that e′ ∈ B and λ(e′) = ab!x and e′ ≺ e.

� If λ(e) = ab!x then there exists exactly one e′ such that e ⪯ e′ and that
λ(e′) = ab?x and that ∀e† : (λ(e†) = ab!x ∧ e† ⪯ e′) ⇒ e† ⪯ e.

Definition 58 (Well-formed). A BP R is well-formed if it is well-branched,
well-channeled, tree-like and choreographic.

10Technically R|Bi⇂c and R|Bj ⇂c have different events and should thus be isomorphic
rather than precisely equal. We choose to write it as an equality to not unnecessarily
complicate the definition and proofs.
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Example 59. Recall the BPs in Figure 14:

� Rf
 is not well-formed since it is not well-branched: for example,

the branches of the choice have multiple minimal events. It is indeed
unrealisable.

� Rg
 is both well-formed and realisable.

� Rh
 is not well-formed since it is not well-channeled: the two receive

events are on the same channel but are unordered. It is indeed unreal-
isable.

� Ri
 is not well-formed since it is not tree-like: there are arrows from

events inside branches of a choice to ab!int and ab?int, even though the
latter are not part of the same branch. It is, however, realisable: by
duplicating the events ab!int and ab?int and moving one copy inside
each branch, we obtain an equivalent BP which is well-formed. This il-
lustrates that, while we later prove that our well-formedness conditions
are sufficient, they are not necessary.

The BP for the second stage of the review protocol in Figure 2 is not
well-formed either. Specifically, it is not tree-like and it is not well-branched.
An equivalent tree-like BP can be obtained by duplicating events as for Ri.
However, it is not possible to obtain an equivalent well-branched BP with
our current definition.

Finally, we show that well-formedness is retained after a reduction.

Lemma 60. Let R be a BP and let R
ℓ−→ R′. If R is well-formed then so

is R′.

Proof sketch. We use that the components of R′ are subsets of, or derived
from (in the case of the branching structure), the components of R. It then
follows that a violation of one of the properties in R′ would also invariably
lead to a violation of one of the properties in R.

5.3. Realisability proof

To prove that R’s protocol is realisable, we have to show the existence of
a bisimilar composition of local BPs and buffers. To do this, we define a ca-
nonical decomposition of R by combining our previously defined projections
with a buffer construction, and we prove that this canonical decomposition
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is bisimilar to R. The (re)construction of the buffer contents of channel ab
based on R, written buffab(R), and the canonical decomposition of R, written
cd(R), are defined below.

The buffer construction buffab(R) gathers the receive events in R that
have no preceding matching send event. We infer that, since the send has
already been fired and the receive has not, the message must be in transit.

Definition 61 (Buffer construction). Let R be a BP. Let a and b be agents
in R. Let ε be the empty word.

Then buffab(R) =


x · buffab(R

′) if R′ = R− e and λ(e) = ab?x

and ∀e′: if e′ ≺ e then λ(e′) ̸= ab!x

and ∀e′, y: if e′ ≺ e then λ(e′) ̸= ab?y

ε otherwise

The corresponding message types are nondeterministically put in some
order that respects the order of the gathered receive events — if e1 ≺ e2
then e1’s message type must precede that of e2 in the constructed buffer. We
note that all unmatched receive events are top-level if R is choreographic,
and that the same-channel top-level receive events are totally ordered if R
is well-channeled. It follows that, although it may add duplicate messages
and is nondeterministic in the general case, buffab(R) does not add duplicate
messages and is deterministic if R is well-formed.

Definition 62 (Canonical decomposition). Let R be a BP. Let R⃗ be such

that Ra = R⇂a for all a. Let b⃗ be such that bab = buffab(R) for all ab. Then

cd(R) = ⟨R⃗, b⃗⟩ is the canonical decomposition of R.

To prove that a well-formed R is bisimilar to cd(R), we define the relation

R = {⟨R, ⟨R⃗†, b⃗⟩⟩ | ⟨R⃗†, b⃗⟩ ∼ ⟨R⃗, b⃗⟩ = cd(R)} and we prove that R is a bisim-

ulation relation (Theorem 70). Note that the vector of buffers b⃗ is the same
across the definition; we only allow leeway in the vector of local BPs. The
proof consists of the two parts mentioned at the start of this section. Given
that ⟨R, ⟨R⃗†, b⃗⟩⟩ ∈ R, if one can make some reduction then the other must
be able to make the same reduction such that the resulting configurations
are again related by R (Theorem 66, Theorem 67). Additionally, if one can
terminate then so should the other (Theorem 68, Theorem 69).

The reason that R is not simply the set of all ⟨R, cd(R)⟩ is that a reduc-
tion from cd(R) may not always result in cd(R′) for some R′. This is because

51



choices are only resolved in the BP of the agent causing the reduction. For
example, consider BP Ri in Figure 14. Upon Alice sending yes the global
BP would resolve the choice for both agents simultaneously. However, upon
Alice sending yes in the canonical decomposition the projection on Bob re-
mains unchanged and still contains receive events for both yes and no. Since
yes has been added to the buffer from Alice to Bob, we know that Bob will
eventually have to pick the branch containing yes — after all, there is no no
to receive. In other words: this configuration is bisimilar to the canonical
decomposition of the resulting global BP, in which the choice has also been
resolved for Bob. If there were also some additional no being sent from Alice
to Bob, e.g., if we replace the messages int in Ri with no, then Ri being well-
channeled and the buffers being ordered would still ensure that we can safely
resolve Bob’s choice. This crucial insight is formally proven in Theorem 63.

Lemma 63. Let R be a well-formed BP. Let ⟨R⃗, b⃗⟩ = cd(R). Let ℓ be some

label and let a = subj (ℓ). If R
ℓ−→ R′ and if ⟨R⃗, b⃗⟩ ℓ−→ ⟨R⃗[R′

a/R⇂a], b⃗†⟩ and if

R′
a = R′⇂a, then ⟨R⃗[R′

a/R⇂a], b⃗†⟩ ∼ ⟨R⃗′, b⃗′⟩ = cd(R′).

Proof sketch. If ℓ = ba?x for some b, x then it follows from the well-formedness
of R that R′ = R− e and the remainder is straightforward. The same is true
if ℓ = ab!x and e is top-level, i.e., e ∈ R.B.

Otherwise it follows from the well-formedness of R that e is a minimal
send event in one of the options of a top-level choice, i.e., e ∈ B opt C ∈ R.B
for some B, C, and R′ = R|(R.B\C)∪(B−e). We proceed to show that the set
of unmatched receive events in R′ is exactly that of R with the addition of
the one corresponding to e, and then b⃗′ = add(ab!x, b⃗) = b⃗†. It follows that

⟨R⃗[R′
a/R⇂a], b⃗†⟩ = ⟨R⃗[R′

a/R⇂a], b⃗′⟩. For the projections, we proceed in two
steps:

� First we observe that, since R is well-branched, B′⇂c = B⇂c for all
B′ opt C and for all c ̸= a, b. It follows that R⇂c ∼ R′⇂c, and then
⟨R⃗[R′

a/R⇂a], b⃗′⟩ ∼ ⟨R⃗′[R⇂b/R′⇂b], b⃗′⟩. Note that the projection on a is
R′⇂a and the projection on b is R⇂b on both sides, and the projection
on every other c is bisimilar.

� Next we show that, with the new message added to the buffer, no event
can ever fire in R⇂b in any other option of C than B. It follows that we
can discard all other options, and then ⟨R⃗′[R⇂b/R′⇂b], b⃗′⟩ ∼ ⟨R⃗′, b⃗′⟩ =
cd(R′).
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To satisfy the preconditions of Theorem 63, we additionally prove that R’s
reductions can be mirrored by its projection on the reduction label’s subject
(Theorem 64) and dually that the reductions of R’s canonical decomposition
can be mirrored by R (Theorem 65). Their proofs rely on the observations
that the corresponding event e must be minimal both in R and in R⇂a, and
that the branching structures of the two are the same (modulo discarded
leaves). It then follows that the same refinement enables e in both R and
R⇂a.

Lemma 64. Let R be a tree-like BP. If R
ℓ−→ R′ and a = subj (ℓ) then

R⇂a
ℓ−→ R′⇂a.

Lemma 65. Let R be a well-channeled, tree-like and choreographic BP. Let
⟨R⃗, b⃗⟩ = cd(R). If ⟨R⃗, b⃗⟩ ℓ−→ ⟨R⃗[R′

a/R⇂a], b⃗′⟩ then R
ℓ−→ R′ for some R′ such

that R′
a = R′⇂a.

Finally, we bring everything together and prove the four necessary steps
for bisimulation in the lemmas below, culminating in Theorem 70. The proof
for Theorem 66 uses Theorem 64 to show the preconditions of Theorem 63
and then applies the latter. This gives us cd(R)

ℓ−→ cd(R)′ ∼ cd(R′), and

since ⟨R⃗†, b⃗†⟩ ∼ cd(R) the result is then straightforward. The proof for
Theorem 67 is analogous but uses Theorem 65. The proofs for Theorem 68
and Theorem 69 respectively use Theorem 51 and Theorem 52 to show that,
if one can terminate by refining to the empty set, then so must the other.

Lemma 66. Let ⟨R, ⟨R⃗†, b⃗⟩⟩ ∈ R. If R is well-formed and R
ℓ−→ R′ then

there exist R⃗‡ and b⃗‡ such that ⟨R⃗†, b⃗⟩ ℓ−→ ⟨R⃗‡, b⃗‡⟩ and ⟨R′, ⟨R⃗‡, b⃗‡⟩⟩ ∈ R.

Lemma 67. Let ⟨R, ⟨R⃗†, b⃗⟩⟩ ∈ R. If R is well-formed and ⟨R⃗†, b⃗⟩ ℓ−→ ⟨R⃗‡, b⃗‡⟩
then there exists R′ such that R

ℓ−→ R′ and ⟨R′, ⟨R⃗‡, b⃗‡⟩⟩ ∈ R.

Lemma 68. Let ⟨R, ⟨R⃗†, b⃗⟩⟩ ∈ R. If R is well-formed and R↓ then ⟨R⃗†, b⃗⟩↓.

Lemma 69. Let ⟨R, ⟨R⃗†, b⃗⟩⟩ ∈ R. If R is well-formed and ⟨R⃗†, b⃗⟩↓ then R↓.

Theorem 70. Let R be a BP. If R is well-formed and buffab(R) = ε for all
ab then the protocol represented by R is realisable.

Proof. It follows from Theorem 66, Theorem 67, Theorem 68 and Theorem 69
that R is a bisimulation relation [31]. Specifically, it then follows that R ∼
cd(R). Then, since buffab(R) = ε for all ab, by Theorem 48 the protocol
represented by R is realisable.
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Choice

b1s!string b1s?string

sb1!int sb1?int

sb2!int sb2?int

b1b2!int b1b2?int

b2s!ok b2s?ok

b2s!string b2s?string sb2!date sb2?date

b2s!quit b2s?quit

dr!bool dr?bool

kr!bool kr?bool

rc!bool rc?bool

dr!bool dr?bool

kr!bool kr?bool

rc!bool rc?bool

Figure 16: BPs representing the two-buyers-protocol (top) and two iterations of the
simple streaming protocol (bottom) [3].

5.4. Examples

Finally, we briefly look at two example protocols used by Honda et al. [3].
Both are depicted as BPs in Figure 16.

The two-buyers-protocol (top) features Buyer 1 and Buyer 2 (b1, b2)
who wish to jointly buy a book from Seller (s). Buyer 1 first sends the title
of the book (string) to Seller, Seller sends its quote (int) to both Buyer 1
and Buyer 2, and Buyer 1 sends Buyer 2 the amount they can contribute
(int). Buyer 2 then notifies Seller whether they accept (ok) or reject (quit)
the quote. If they accept, they also send their address (string), and Seller
returns a delivery date (date).

The simple streaming protocol (bottom) features Data Producer
(d) and Key Producer (k), who continuously respectively send data and keys
(both bool) to Kernel (r). Kernel performs some computation and sends the
result (bool) to Consumer (c). The protocol in Figure 16 shows two iterations
of this process.

Both BPs are well-formed, and hence the protocols are realisable. We note
that, as in the paper by Honda et al., further communication between Buyers
1 and 2 has been omitted in the two-buyers-protocol. Since this is bound to
be different in the case of acceptance and rejection, the resulting BP would
not be well-branched and thus not well-formed — though still realisable. We
discuss relaxed well-branchedness conditions in Section 7. Also note that the
ok and address (string) messages are sent sequentially; sending these in par-
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allel would violate well-channeledness and make the protocol unrealisable
with ordered buffers. The same is true for the streaming protocol: the two
iterations are composed sequentially and doing so concurrently would vi-
olate well-channeledness and result in unrealisability. The size of the BP for
the streaming protocol scales linearly with the number of depicted iterations;
showing all (infinitely many) iterations would require an infinitely large BP.
We briefly touch upon infinity in Section 8.

6. Tool: B-Pomset Encoder

We developed a companion tool to simulate BPs and analyse their ap-
plications to choreographies. The tool is open-source (https://github.com/
arcalab/choreo/tree/b-pomset), developed in Scala and compiled into Java-
Script (JS). A snapshot of a compiled JS can be executed from an internet
browser at http://lmf.di.uminho.pt/b-pomset/.

The tool fulfils 3 main objectives: (1) internal validation, providing the
authors early insights over alternative notions of well-formedness, (2) dis-
semination, to better explain the propose analysis using an interactive envir-
onment, and (3) algorithmic insights of well-formedness (cf. Section 5.2), by
transforming the declarative definitions into concrete algorithms and identi-
fying possible bottlenecks. This section focuses on the last two objectives,
i.e., on how to use the online tool, and on how to calculate well-formedness.

6.1. Using the B-Pomset Encoder

A screenshot of our analyser of BPs can be found in Figure 17. The tool
displays a collection of widgets, including the “Choreography” widget with
an editor where the user describes the BP to be analysed. Each widget
can be expanded or collapsed by clicking on the widget title; e.g., in the
screenshot the widget “Choreography” is expanded and the widget “Global LTS”
is collapsed. Clicking the refresh button at the top-right of the “Choreography”
widget (or pressing shift-enter) updates all expanded widgets.

BPs are described using choreographies (Section 4), and are visualised
in widget “Global B-Pomset” after being encoded. Since some BPs cannot
be described by choreographies, one can also write actions explicitly (e.g.,
“a!b:x” represents the action ab!x) and can extend the causality relation
(e.g., “[1->3]” denotes that the 1st event must precede the 3rd event), where 1
and 3 are the event identifiers depicted in the BP diagram. The BP Ri in Fig-
ure 14 can be written both as “(a->b:yes + a->b:no) ; a->b:int” and as
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Figure 17: Screenshot of the B-Pomset Encoder tool.

“((a!b:yes||a?b:yes)+(a!b:no||a?b:no))||a!b:int||a?b:int[1->2,1->5,
2->6,3->4,3->5,4->6,5->6]” A list of different examples can be found in
the “Examples” widget; clicking any of them will load this example to the
“Choreography” widget.

The remaining widgets provide different analyses, including the following:

� “Global B-Pomset” draws the encoded BP from “Choreography”;

� “B-Pomset Semantics” allows a step-by-step exploration of the reduction
semantics of an encoded BP (Figure 3), drawing the intermediate BPs;

� “Choreo Semantics (...)” allows a step-by-step exploration of the reduc-
tion semantics of the provided choreography (Figure 10);
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� “Well-formed” checks if the BP is well-formed; it states for each well-
formedness property whether it holds and gives a counterexample when
it does not;

� “Realisability via bisimulation” searches for a bisimulation between the
global LTS and the composition of all local LTSs (Theorem 47); this
acts as our ground truth for realisability (Theorem 48), but it is often
infeasible due to state explosion;

� “Local B-Pomset” draws the projections of the BP to each agent;

� “Global LTS” and “Local LTS” draw state machines using the semantics
of BPs (Figure 3) applied to the global and to the projected BPs,
respectively (bounding the number of states to a maximum value);

� “Sequence Diagram (...)” draws a sequence diagram representing the
choreography (ignoring the extended causality arrows used to produce
non-choreographic BPs).

Remark (loops). Our implementation targets only finite BPs. Hence cho-
reographies with loops are not covered by our analysis. However, the current
version includes experiments with loops. I.e., some analyses will produce
some results for BPs with special branches marked as loops. The theory for
this extension is still under investigation and not documented in this paper.

6.2. Realising well-formedness

The (open) source code of our implementation of well-formedness can be
found on GitHub.11 This implementation realises the declarative definitions
of each of the four sub-properties of well-formedness (Theorem 58).

Our implementation provides some insights regarding the complexity of
verifying these four sub-properties. Recall that analysing realisability, as
defined in Theorem 48, requires traversing the full state-space of our se-
mantics, which explodes exponentially in the presence of concurrent events.
Our implementation avoids expanding the full state-space by combining mul-
tiple traversals over the BP graph structure. Below we sketch the implement-
ation of each of these four sub-properties, providing evidences that it is less
complex than traversing all states.

11https://github.com/arcalab/choreo/blob/b-pomset/src/main/scala/choreo/realisability/

WellFormedness.scala
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� Well-branched. (Theorem 54) Our tool finds every choice with branches
B1 and B2. It proceeds by: (1) recursively checking if both branches are
well-branched, (2) finding all leaders in each branch, i.e., events with
no predecessor in the same branch (3) collecting sending and receiving
agents involved, and (4) verifying that only 1 leading sender and re-
ceiver is found (i.e., agents involved in events with no predecessors in
the branch), that they are the same in both branches, and that they
have different messages. Furthermore, (5) each of these branches is
projected to all remaining agents, and (6) corresponding projections
from both branches are compared using graph isomorphism.12

The causality relation is modelled as hash-map from events to their
predecessors (not being minimal nor transitive closed). Most opera-
tions are linear on the number of events, whereas the most complex
operations are projecting both branches to all agents that are not in
the leading events (5), and check if each projection is isomorphic to its
neighbour branch (6).

� Well-channelled (Theorem 55) Our tool starts by collecting, for each
pair of agents a and b, the sets of channels EM !

ab and EM ?
ab, each

consisting of events and messages (e,m) sent by a and received by b,
respectively. It then proceeds in two parts.

Firstly, for every distinct pair (e1,m1), (e2,m2) ∈ EM !
ab, it checks if

e1 and e2 are either related (e1 ⪯ e2 or e2 ⪯ e1) or are exclusive
(in opposing branches of a choice). It also performs the same check
for EM ?

ab.

Secondly, for each set EM ?
ab, it collects every event e paired with a

direct predecessor e′, and for every distinct pair (e′1, e1) and (e′2, e2)
from this set it checks if e1 ⪯ e2 ⇒ e′1 ⪯ e′2.

In these calculations, checking e ⪯ e′ requires traversing the prede-
cessor graph from e′ until it finds e, and the direct predecessor relation
is computed once by discarding redundant arcs in the predecessor rela-
tion. A worst case scenario is when the same channel appears in many
places, leading to large EM !

ab and EM ?
ab sets. In turn, this would be a

12We used an existing algorithm for finding isomorphisms of acyclic graphs [35] applied
to the predecessor relation.
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best case scenario to check well-branchedness, where fewer projections
and graph isomorphisms checks would be needed.

� Tree-like (Theorem 56) Our tool starts by computing the successor
relation by inverting the predecessor relation. It then checks, for every
branch B of every choice if the set of all successors of its events includes
elements outside that branch.

� Choreographic (Theorem 57) Our tool pre-computes the successor
relation (inverting the predecessor one), and for every event e proceeds
in three parts.

Firstly, it traverses the predecessor until it finds, in every branch of this
traversal, either (1) an event labelled by a sending action that matches
the action of e, or (2) an event with the same subject.

Secondly, when e is labelled by some ab?m and is inside a branch of a
choice, it checks if any of the neighbour events in the same branch (not
further nested) is also a predecessor and labelled by a matching ab!m.

Thirdly, when e is labelled by some ab!m, it uses the successor relation
to traverse all its successors. When finding an event with a matching
ab?m our tool collects it paired with the set of events ab!m passed by
during the traversal. It then checks if exactly one of these pairs has
exactly e as its only predecessor.

This informal explanation provides an overview of the set of traversals
over the BP graph required to verify the four conditions that guarantee well-
formedness. It also highlights the compactness of the formal definitions with
respect to their realisation. Intuitively, we expect our implementation to
have polynomial (time) complexity, corresponding to situations where, for
every event, we need to reason over its neighbours in a branch or its pre-
decessors (as in the choreographic check). Furthermore, checking if a BP is
well-channelled, when all its N events are labelled by sending actions ab!mi

over the same agents and different messages mi, would require comparing
all pairs of messages (complexity O(N2)). Each of these comparisons could
further require traversing the predecessor relation, which in the worst case
could mean traversing the N events. In any of these scenarios, the complex-
ity is well below the exponential complexity required to analyse realisability
via bisimilarity, and can be validated by experimenting with the online tool.
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Table 2: Time (µs) to infer well-formedness and realisability via bisimulation of the ex-
amples in this paper; values with filled backgrounds represent tests that reject the BP.

pg. BP
Well-formed

Realisable Ratio
WC WB TL CH Total

3 cfst  364 277 53 413 1109±222 61013±73838 1.81%
4 cstrictsnd

 554 353 154 614 1677±936 105189±34176 1.59%
10 clenientsnd

 536 417 73 572 1602±370 114348±9500 1.4%
35 c1  47 77 30 115 272±237 6012±2814 4.52%
37 Rc

 39 81 39 116 277±113 2308±865 12.0%
37 Rd

 50 161 57 260 530±174 7000±565 7.57%
40 Re

 1 52 1 46 102±128 1262±325 8.08%
46 Rf

 41 111 32 89 276±277 2360±193 11.69%
46 Rg

 69 112 23 114 321±165 6132±765 5.23%
46 Rh

 1 30 1 38 73±142 743±542 9.82%
46 Ri

 54 96 43 70 266±165 2359±425 11.27%
50 Ri tree-like 82 165 42 121 413±344 2508±487 16.46%
54 2-buyers 183 294 55 606 1141±364 26746±1963 4.26%
54 streaming 2 147 1 202 356±577 54058±6714 0.65%
54 2-buyers ill 187 46 46 450 732±114 25099±973 2.91%
55 streaming ill 1 20 1 45 70±81 8638681±605334 0.0%

6.3. Performance evaluation

We executed most examples mentioned in this paper with our tool and
measured the time to compute well-formedness and realisability (via bisimu-
lations). We used the same source code, but compiled to and executed from
a Java Virtual Machine, instead of using JavaScript. The results are presen-
ted in Table 2, using the abbreviations WC (well-channeled), WB (well-
branched), TL (tree-like), and CH (choreographic). Each measurement was
repeated ten times — we write a± δ to capture both the average a and the
greatest deviation δ. The ratio in the last column divides the time to check
well-formedness by the time to check realisability.

The experiments presented here do not aim at exploring corner cases
regarding best- and worst-scenarios for well-formedness. Instead, the goal
is to illustrate that checking well-formedness does not suffer the same state
explosion problem as a search for a bisimulation over the state-space.

Based on the results in Table 2, we draw three main conclusions.

1. The ratios in the rightmost column indicate that, in all examples, check-

60

http://lmf.di.uminho.pt/b-pomset/?(c-%3Ea:r ; (a-%3Ec:y + a-%3Ec:n))%7C%7C(c-%3Eb:r ; (b-%3Ec:y + b-%3Ec:n))
http://lmf.di.uminho.pt/b-pomset/?Review%20%28strict%29
http://lmf.di.uminho.pt/b-pomset/?Review
http://lmf.di.uminho.pt/b-pomset/?%28a-%3Eb:x+a-%3Ec:x%29;%28d-%3Eb:x+d-%3Ee:x%29
http://lmf.di.uminho.pt/b-pomset/?Rc
http://lmf.di.uminho.pt/b-pomset/?Rd
http://lmf.di.uminho.pt/b-pomset/?Re
http://lmf.di.uminho.pt/b-pomset/?Rf
http://lmf.di.uminho.pt/b-pomset/?Rg
http://lmf.di.uminho.pt/b-pomset/?Rh
http://lmf.di.uminho.pt/b-pomset/?Ri
http://lmf.di.uminho.pt/b-pomset/?Ri%20%28tree-like%29
http://lmf.di.uminho.pt/b-pomset/?Buyer-seller
http://lmf.di.uminho.pt/b-pomset/?Streaming
http://lmf.di.uminho.pt/b-pomset/?BS-ill-chan
http://lmf.di.uminho.pt/b-pomset/?SS-ill-chan


ing well-formedness is one order of magnitude faster than checking
bisimulation-based realisability (ratio between 10%-100%), two orders
(1%-10%), or even three orders (0.1%-1%). Furthermore, we note that
the speedup of checking well-formedness tends to be larger in cases
where checking realisability is relatively expensive (i.e., relatively high
values in the “Realisable” column). This suggests that checking well-
formedness scales better than checking realisability.

2. In three examples, the check for well-formedness was negative, while
the check for realisability was positive (cstrictsnd , clenientsnd , and Ri). This
demonstrates that well-formedness is a sound, but incomplete, condi-
tion that conservatively approximates realisability. An important piece
of future work is to make well-formedness more liberal.

3. Regarding the sub-conditions of well-formedness, checking tree-likeness
tends to be the cheapest among the four. Neither one of the three
other sub-conditions clearly stands out as being the most expensive
one; it tends to depend on the structure of the branching pomset under
consideration.

We note that we consider these experimental results preliminary; a more
extensive practical evaluation is needed to better understand, e.g., the per-
formance of our approach in corner cases. However, we do believe that Table 2
already gives an encouraging general impression.

7. Related work

Pomsets. Pomsets were initially introduced by Pratt [18] for concurrent mod-
els and have been widely used, e.g., in the context of message sequence
charts by Katoen and Lambert [29]. Recently Guanciale and Tuosto pro-
posed two semantic frameworks for choreographies, one of which uses sets
of pomsets [36]. They also note that the pomset framework exhibits expo-
nential growth in the number of choices in a choreography, and they propose
an alternative semantic framework using hypergraphs, which can compactly
represent choices. While the hypergraph framework is more compact, their
pomset framework is simpler and, they believe, more elegant. We agree with
this analysis, and we aim to preserve the simplicity and elegance of the pom-
set framework by proposing a framework that avoids exponential growth in
the number of choices while still being based on pomsets.
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Event structures. Section 3 gives a detailed formal comparison of the ex-
pressive power of BPs and several classes of ESs from the literature. Event
structures (ESs) (resp. labelled ESs) were introduced as a generalisation of
posets (resp. pomsets). The main difference is in the added choice mechan-
ism: ESs use a conflict relation to forbid certain pairs of actions of occurring
in the same execution, while BPs use an explicit branching structure. Gen-
erally speaking, the choice mechanisms of ESs are more expressive than BPs’
branching structure, but the latter’s refinement semantics raise its express-
iveness in orthogonal ways. As a result, BPs are incomparable with the most
common classes of ESs and are only properly contained in some of the more
expressive classes of dynamic event structures.

Choreographies. Choreographies are typically used in a top-down workflow:
the developer writes a global view C and decomposes it into its projections,
such that the behaviour of C is behaviourally equivalent to the parallel com-
position of its projections. Examples of this approach include workflows
based on message sequence charts [1, 2], multiparty session types [3, 4], and
choreographic programs [5, 6]. The choreographic language used in this paper
assumes asynchronous communication between agents and includes a finite
loop operator, borrowing from this literature the same notion of interactions
as syntactic atoms and their (parallel, sequential, and choice) composition.

Realisability. Realisability has been well-studied in the last two decades in a
variety of settings. For example, Alur et al. study the realisability of message
sequence charts [37]. They define the notions of weak and safe realisability of
languages, the latter also ensuring deadlock-freedom, and they define closure
conditions on languages which they show to precisely capture weakly and
safely realisable languages. Lohmann and Wolf define the notion of distrib-
uted realisability, where a protocol is distributedly realisable if there exists a
set of compositions such that every composition covers a subset of the pro-
tocol and the entire protocol is covered by their union [8]. Fu et al. [7], Basu
et al. [9], Finkel and Lozes [38] and Schewe et al. [10] all study the realisab-
ility of protocols on different network configurations when considering only
the sending behaviour — receive events are omitted — showing necessary
and/or sufficient conditions and decidability results.

Realisability of pomsets. One major source of inspiration for our work has
been the recent work by Guanciale and Tuosto, in which they presented a

62



realisability analysis based on sets of pomsets [13]. They show how to cap-
ture the language closure conditions of Alur et al. [37] directly on pomsets,
without having to explicitly compute their language. Typically choreography
languages are limited in their expressiveness and any analysis on their real-
isability is then language-dependent. Both Alur et al. and Guanciale and
Tuosto perform a syntax-oblivious analysis, which has the benefit of being
applicable to any specification which can be encoded as a set of pomsets, re-
gardless of the specification language. The analysis by Guanciale and Tuosto
is at a higher level of abstraction than sets of traces. This allows both for a
more efficient analysis and for easier identification of design errors, as these
can be identified in a more abstract model.

Our approach is similarly syntax-oblivious, though the analysis itself is
based on multiparty session types. A major technical difference is that Guan-
ciale and Tuosto use unordered buffers (e.g., non-FIFO queues) while ours
are ordered. For example, the parallel composition of a�b:x and a�b:y is
realisable in the unordered setting and not in the ordered one. The two set-
tings agree on realisability when the two message types are the same (e.g.,
two concurrent copies of a�b:x); while Guanciale and Tuosto explicitly note
that they support concurrently repeated actions, however, our current well-
channeledness condition does not make an exception for these. This is an
obvious target for relaxation of our conditions.

Further inspiration for relaxation of well-formedness conditions can be
found in an earlier paper by the same authors [36]. In particular their defin-
ition of well-branchedness, using ‘active’ and ‘passive’ agents, could serve as
a basis for a relaxed version of our own.

A meaningful in-depth comparison between the pomset-based approach
by Guanciale and Tuosto [13] and ours, both in terms of expressiveness and
efficiency, would first require further development (relaxation) of our condi-
tions and is therefore left for future work. In the meantime, one takeaway
from their paper is the performance gain they obtain by lifting the analysis
from languages (sets of traces) to a higher level of abstraction, i.e., sets of
pomsets. Our hope is that a further performance gain can be obtained by
lifting the analysis from sets of pomsets to an even higher level of abstraction
(e.g., branching pomsets).

Multiparty session types. The other major source of inspiration for our work
is multiparty session types (MPST), introduced by Honda et al. [3]. Specific-
ally:
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� Our well-branchedness condition corresponds to the branching syntax
of global types in MPST and its definition of projection. Branching in
MPST is done on the label of a single message, and the projection on
agents uninvolved in the choice is only defined if it is the same in every
branch.

� Our well-channeledness condition corresponds to the principle that
same-channeled actions should be ordered. We note that our condi-
tion is more liberal: we prohibit concurrent sends or receives on the
same channel, while in MPST the projection of a parallel composition
on an agent is undefined if the agent occurs in both parallel branches
(even if those branches’ channels are disjoint).

� Our tree-likeness condition follows from the syntax of global types in
MPST, which uses a prefix operator rather than a more general se-
quential composition. As a consequence all global types are tree-like.
The same is true for other languages that use a prefix operator and not
sequential composition, such as CCS [39] and π-calculus [40].

Since its introduction, various papers have addressed the conservativeness of
the well-branchedness condition in MPST. One line of research relaxes the
condition by using a merge operation to allow all agents to have different
behaviour in different branches, as long as they are timely informed of the
choice [41, 42, 43]. Another line relaxes the condition by allowing different
branches to start with different receivers, rather than enforcing the same
receiver in every branch [12, 44, 45, 46, 47]. These results may also serve as
inspiration for relaxations of the well-branchedness condition on branching
pomsets.

While our current conditions broadly correspond with well-formedness
in MPST, we believe that our approach offers three advantages. First, as
discussed before, it is syntax-oblivious, meaning it is not only applicable
to MPST but to any specification which can be encoded as a branching
pomset. Second, we believe that branching pomsets have the potential
to be more expressive than global types in MPST. As mentioned above,
our well-channeledness condition is already more liberal than the one in
MPST. We have described various sources of possible relaxations for our
well-branchedness condition, both in the MPST and in the pomset liter-
ature. Lastly, we conjecture that our tree-likeness condition is needed to
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simplify our proofs, and that it is possible — though more complex — to
prove realisability without it (or at least with a relaxed version of it).

8. Conclusion

In this section we briefly summarise the paper and discuss (1) possible
improvements on BPs in general, (2) ideas for future work on event structures,
(3) relaxations of our well-formedness conditions on BPs for choreographies,
(4) and ideas for future work on the tool.

8.1. Summary

� In Section 2 we have defined a new model for communication protocols,
branching pomsets (Theorem 3), which can compactly represent both
concurrency and choices, and have defined its semantics (Figure 3).

� In Section 3 we have compared the expressive power of BPs with several
classes of event structures from the literature. Figure 7 summarises our
findings: we have shown that BPs are incomparable with prime ESs,
with extended bundle ESs and with growing and shrinking causality
ESs; we conjecture that BPs describe proper subsets of a variant of
dynamic causality ESs; we prove their inclusion in ESs for resolvable
conflict.

� In Section 4 we have defined a choreographic language and its opera-
tional semantics (Figures 9 and 10) using the weak sequential compos-
ition and partial termination of Rensink and Wehrheim [30], which is
novel in the context of choreographies. We have shown that we can
use BPs to model choreographies (Figure 12) and that this model is
behaviourally equivalent (bisimilar) to the operational semantics (The-
orem 46).

� In Section 5 we have defined well-formedness conditions on BPs for
choreographies (Theorem 58) and have proven that a well-formed BP
represents a realisable protocol (Theorem 70). Since these conditions
are defined on BPs, they are generic: we can use them to reason about
choreographies in the language defined in Section 4 and any other lan-
guage that can be encoded in BPs, without having to develop a specific
analysis for the language in question. Our conditions are sufficient but
not necessary, we discuss possible relaxations later in this section.

65



� In Section 6 we have presented our prototype tool and described the
algorithms used to implement well-formedness. Our tool is compiled
to JavaScript that can be executed by any recent internet browser; a
screenshot can be found in Figure 17. For any given BP, our tool can
verify well-formedness, apply the reduction rules, and verify realisabil-
ity using bisimulation, among other analysis.

8.2. Discussion regarding branching pomsets

n-ary choices. Our branching structures only supports n-ary choices as a
derived concept, through nested binary choices. This matches the structure
of choreographies, but it would be more natural to represent c1 + (c2 + c3) as a
single choice between the pomsets Jc1K, Jc2K and Jc3K instead of as two nested
binary choices. However, supporting arbitrary n-ary choices also requires
some thought about how to change the rules for refinement (Figure 3a), in
particular Choice. A naive change would be to simply have this rule use
i ∈ {1, . . . , n} and {{B1, . . . ,Bn}} instead of its current binary rules, but
this is not sufficient as this naive n-ary choice would not be equivalent to the
same branches composed as nested binary choices. For example, c1 + (c2 + c3)
can partially terminate to c1 + c2 and its interpretation as a BP can refine
to Jc1 + c2K, but a BP whose branching structure consists of a single ternary
choice {{B1,B2,B3}} would not be able to refine to {{B1,B2}} as the rules
would only allow it to either refine all of its branches or discard all but
one of them. Properly supporting n-ary choices would thus also require a
new rule that allows {{B1, . . . ,Bn}} to refine a choice between an arbitrary
(non-empty) subset of its branches.

Partial order. In Theorem 3, ⪯ is defined as a relation on events such that
its transitive closure is a partial order, rather than ⪯ being a partial order
itself as ≤ is in traditional pomsets. This is necessary because two events
may be either related or unrelated depending on the resolution of certain
choices. For example, consider the BP Rc in Figure 11. The events labelled
ab!x and cd!x are related if the choice’s upper branch is taken and unrelated
otherwise. It should thus be possible to enable cd!x by discarding the choice’s
upper branch. In our current rules cd!x only has a direct dependency on bc?x
and therefore discarding bc?x will make cd!x minimal. However, if ⪯ were
a partial order, then cd!x would also have direct dependencies on ab!x, ab?x
and bc!x and, since the first two events are not part of the choice, there would
be no refinement that enables cd!x.
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In general, if R1 ⊒ R′
1 and R2 ⊒ R′

2 then if ⪯ would be a partial order
it would not necessarily be true that R1 ;R2 ⊒ R′

1 ;R
′
2: R1 ;R2 may contain

dependencies obtained by transitivity which would still be present in the
refinement but which cannot be derived in R′

1 ; R
′
2. Castellani and Zhang

note the same property in the context of flow event structures [48].

Loops. In Figure 12 a loop c∗ is encoded by infinitely unfolding it. As such,
BPs do not currently provide a finite representation of infinite choreograph-
ies. We envision three possible directions. One possibility would be to add
an explicit repetition construct to the branching structure (e.g., change the
second grammatical rule to C = e | {B1,B2} | B∗) and expand the semantics
and proofs accordingly. Alternatively, a solution might be found in the ex-
tension from message sequence charts (MSCs) to MSC-graphs [1]. A similar
extension could be developed for branching pomsets, where they are sequen-
tially composed in a (possibly cyclic) graph. Finally, it may be possible to
leverage the recently introduced pomset automata [49].

8.3. Discussion regarding event structures

Relation between BPs and ESs. Figure 7 shows the established inclusions
and non-inclusions between BPs and ESs. Naturally, formally proving or
disproving the inclusion of BPs in our variant of dynamic causality ESs
(Theorem 35) would complete the picture. Another logical comparison to
make would be with the original semantics of dynamic causality ESs, which
are not covered in this paper. Additionally, it may be interesting to further
study the difference in expressiveness between BPs and the classes of ESs.
As demonstrated by Theorem 28, (prime) ESs can describe more complex
choices than BPs. A way to close or overcome the gap would be to lift the
requirement on a BP’s branching structure that all events must occur in it
exactly once, thus allowing overlapping boxes in the graphical representation.
This would also require changes to the refinement rules. As the branching
structure could then encode a (symmetric) conflict relation, this would in-
validate Theorem 28. It is unclear precisely how it would affect the other
relations.

Well-formedness for event structures. Because of the close relation between
BPs and ESs, it is tempting to try to adapt our well-formedness condi-
tions to the latter. We believe, however, that this is not straightforward.
Our well-branchedness condition in particular reasons over choices and their
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branches, which poses a problem in two ways: (1) ‘choices’ in the sense of
well-branchedness are only represented implicitly in ESs, which would re-
quire extracting them first, and (2) as stated before, ESs can describe more
complex choices than BPs, which would require a different way of reasoning
about them. A more promising approach might be to in some way apply
the notion of ‘active’ and ‘passive’ agents in the well-formedness conditions
for pomsets by Guanciale and Tuosto [36] to ESs. Well-formedness of ESs is
also discussed by Castellani et al. in a recent paper on ES semantics for mul-
tiparty sessions [15], where they also reference the conditions by Guanciale
and Tuosto.

8.4. Discussion regarding well-formedness conditions

We have discussed several possible relaxations of well-branchedness in
Section 7. We now discuss the other three conditions.

Well-channeledness. The BP Rh in Figure 14 is not well-channeled since the
events labelled with ab?int and ab?bool are unordered. It is unrealisable
because a local system will force the int to be received before the bool while
the global BP allows a different order. However, in this case one may take
the view that the problem is not the local system being too strict, but rather
the global BP being too liberal in an environment with ordered buffers: it
should then in some way allow a user to specify just the two acceptable
orderings without having to resort to adding a choice between the two and
duplicating all events in the BP. Therefore, instead of changing the well-
channeledness condition, another avenue would be to change the reduction
rules in for branching pomsets themselves (Figure 3) and specifically adapt
them to ordered buffers. This could be done in such a way that reducing Rh

by firing ab!int then automatically adds a dependency from ab?int to ab?bool.
This might allow the well-channeledness condition to be significantly relaxed
or to possibly be removed altogether.

Tree-likeness. Having the assumption of tree-likeness simplifies our proofs. It
is our aim to eventually relax or even remove it and still prove realisability,
but this will require a significantly more complex proof. We have noted
in Section 7 that global types in MPST and expressions in, e.g., CCS and
the π-calculus, are tree-like by default. Conceptually a non-tree-like BP
could potentially be turned into an equivalent (i.e., bisimilar) tree-like one
by distributing the offending events over the branches of the involved choice.
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For example, consider the BP Ri in Figure 14. By duplicating ab!int and
ab?int and adding a copy of each with the relevant dependencies to each of
the two branches of the choice, we obtain a bisimilar but now tree-like (and
well-formed) BP. A more general scheme may be developed based on versions
of the CCS expansion theorem [50, 51]. However, regaining expressiveness
at the cost of duplicating events effectively negates the benefits of using BPs
in the first place.

Choreographicness. The choreographicness condition works well for BPs de-
rived from choreographies, but could eventually be relaxed to also allow more
general BPs. Choreographicness forces the two events in a send-receive pair
to be siblings in the branching structure. For example, in BP Ri in Figure 14
it would be disallowed to distribute ab!int over the choice while leaving ab?int
outside, even though the resulting BP would be bisimilar to Ri.

8.5. Future work regarding the tool

BP variations. Choreographies with loops generate BPs with infinite events.
Our current implementation includes some experimental support to represent
loops symbolically, which we plan to further investigate. Other variations of
BPs, e.g., with n-ary choices mentioned above, could also be added to the
implementation.

Event Structures. Our future work includes possible encoding of BPs as dy-
namic causality ESs (Theorem 35) and as ESs for resolvable conflict (The-
orem 36). These encodings can be also implemented and included in our
prototype tool.

API generation. We have investigated how to generate APIs in Scala 3, which
can verify compliance at compile time of an implementation with respect to
a projected pomset [11]. We believe that this can be further explored in the
context of BPs.
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