Refraction: Low-Cost Management of Reflective Meta-Data
in Pervasive Component-Based Applications

Wilfried Daniels', José Proenca'?, Dave Clarke?, Wouter Joosen', Danny Hughes!

1. iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium.
{firsthname.lasthame}@cs.kuleuven.be

2. HASLab/INESC TEC, Universidade do Minho, Portugal

3. Computing Science Division, Uppsala University, Box 337, SE-751 05, Uppsala, Sweden.
dave.clarke@it.uu.se

ABSTRACT

This paper proposes the concept of refraction, a principled
means to lower the cost of managing reflective meta-data
for pervasive systems. While prior work has demonstrated
the benefits of reflective component-based middleware for
building open and reconfigurable applications, the cost of
using remote reflective operations remains high. Refractive
components address this problem by selectively augment-
ing application data flows with their reflective meta-data,
which travels at low cost to refractive pools, which serve
as loci of inspection and control for the distributed applica-
tion. Additionally reactive policies are introduced, providing
a mechanism to trigger reconfigurations based on incoming
reflective meta-data. We evaluate the performance of refrac-
tion in a case-study of automatic configuration repair for a
real-world pervasive application. We show that refraction
reduces network overhead in comparison to the direct use of
reflective operations while not increasing development over-
head. To enable further experimentation with the concept
of refraction, we provide RxCom, an open-source refractive
component model and supporting runtime environment.

Categories and Subject Descriptors

D.2.9 [Software Engineering]|: Management—Software con-

figuration management; K.6.4 [Management of Comput-
ing and Information Systems]: System Management

Keywords

Component-based systems, low-cost reflection, meta-data
collection, pervasive systems, reactive reconfiguration

1. INTRODUCTION

Building applications for pervasive systems is notoriously
difficult. In addition to the usual complexities of creat-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CBSE’15, May 4-8, 2015, Montréal, QC, Canada.

Copyright © 2015 ACM 978-1-4503-3471-6/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737166.2737168.

ing distributed applications, pervasive systems are resource-
constrained, often deployed at large scale and in inaccessible
locations, such as flood plains [1] or volcanoes [2]. This re-
quires that all configuration and management must be per-
formed remotely.

Reflective component models [3, 4, 5] have a strong track
record of realising adaptable and evolvable applications for
pervasive systems. The complexity of embedded software
development is mitigated by the reuse of generic software
components. Furthermore, customisable middleware [1] con-
serves system resources through the removal of redundant
software functionality. Finally, runtime reconfiguration en-
ables software evolution [6] and adaptation [7] after system
deployment.

A reflective component model provides a per-component
meta-space in which selected elements of the component im-
plementation are reified through a meta-model [8]. This
meta-model externalises elements of the component imple-
mentation, such as its incoming and outgoing connections
and its properties. The meta-model is causally connected
to the component implementation, which allows it to sup-
port both introspection (reading the meta-model) and re-
configuration (modifying the meta-model). The use of a
per-component meta-model ensures that the scope of recon-
figuration actions is bounded. However, when reconfiguring
distributed applications it is frequently necessary to work in
a coordinated fashion with the meta-model of multiple dis-
tributed components. This leads to increased development
complexity and message passing overhead.

This paper proposes the concept of refraction, a princi-
pled means to lower the cost of reflection for pervasive ap-
plications. Refraction minimises the need to inspect and
reconfigure individual components by incorporating an effi-
cient meta-data distribution mechanism in the component
model kernel. Refractive components use this mechanism to
selectively augment the application data that they process
with elements of their own meta-model. When refractive
components are bound together they naturally form refrac-
tive streams along which component meta-data may flow.
These streams terminate at refractive pools, a network loca-
tion, where all components that contributed to the stream
can be inspected and reconfigured. Reconfiguration is facil-
itated by the introduction of reactive policies which can be
deployed on any node in the reactive stream or pool. These
policies offer a mechanism to trigger reconfiguration based
on incoming meta-data. We evaluate the benefits of refrac-

Motion Detector Motion Agg. Motion
(- sampleRate - interval Reporter
- listenPin C, - timeout C, - webservice
1 3
Motion Detector
((@ - sampleRate I _9 » Reflective
q' listenPin 2 Manager operations
2,

Figure 1: Performing reflective operations on a dis-
tributed component composition.

tion in a real-world case-study scenario from the domain of
Wireless Sensor Networks (WSN): configuration monitoring
and repair. Our evaluation shows that refraction signifi-
cantly reduces message transmissions while not increasing
development overhead.

The core contributions of this paper are two-fold. First,
we the introduce the concept of refraction. Second, we ap-
ply refractive techniques to reduce the cost of automatic
configuration repair. To support experimentation with the
concept of refraction, we also provide an open-source re-
fractive component model: RxCom, which is available on-
line at http://people.cs.kuleuven.be/~wilfried.daniels/
refraction together with all programming artefacts used in
our evaluation.

The remainder of this paper is structured as follows. Sec-
tion 2 provides background on reflection and its shortcom-
ings. Section 3 outlines the principles of refraction. Sec-
tion 4 applies these principles to realize a refractive com-
ponent framework. Section 5 evaluates this framework in a
real-world case-study scenario. Section 6 gives an overview
of related work. Finally Section 7 concludes and discusses
directions for future work.

2. REFLECTION AND ITS SHORTCOMINGS

IN PERVASIVE SYSTEMS

Reflection is the capacity of a software system to inspect
itself (i.e. introspection) and modify its structure, prop-
erties and behaviour at runtime (i.e. reconfiguration) [9].
The benefits of reflection for building open and reconfig-
urable distributed systems have been demonstrated in pre-
vious work [10, 7, 8, 9]. We build our ideas and a proof-of-
concept implementation on top of LooClI, an existing com-
ponent model for pervasive systems [3], although we believe
that they are applicable to any reflective component model.

Figure 1 shows an example LooCI software composition
that is used in a real-world WSN deployment for detect-
ing motion in a room. In this example, two Motion Detec-
tor components —residing on N; and Ne—transmit their
sensed data to a Motion Aggregator component on N3, that
aggregates motion readings and forwards processed data to
a Motion Reporter component. Motion Reporter resides on a
resource rich node N4 and pushes the data to a web platform
for viewing. Gray boxes represent computational platforms,
where components are deployed and executed. Software
components are shown as white boxes with solid black lines,
which publish values via their provided interfaces (—O), and
receive values from via their required interfaces (—(). Com-
ponents also have key-value pairs of properties that can be
used to parameterise their behaviour.

// introspection operations
N; .getProperties(C1)

N .getProperty (C7,sampleRate)

N3 .getWiresFrom(C1)

// reconfiguration operations

N3 .setProperty (C1, timeout=30s)

N4 .activateComponent (C1)

N3 .wireTo(C1, N4, motionEvent)

N4 .wireFrom (N3 ,C1,C7,motionEvent)

Listing 1: Example of reflective operations.

The application is controlled by a Manager entity, which
issues reflective operations to the component model kernel
running on each node in order to introspect the software sys-
tem, perform structural reconfiguration by connecting or dis-
connecting required and provided interfaces and behavioural
reconfiguration by modifying component properties. The
interaction between the Manager and reflective software sys-
tem is depicted with thicker arrows in Figure 1. Examples of
the reflective operations that may be used by the manager
are shown in Listing 1—full details of the reflection API in
LooClI can be found at https://distrinet.cs.kuleuven.be/
software/looci.

Considering the example shown in Figure 1, two short-
comings of reflection quickly become evident. Firstly, reflec-
tion requires the transmission of many messages to query
and reconfigure remote components. This is very problem-
atic, as research [6] has shown that radio transmissions are
the primary source of energy consumption for pervasive de-
vices. Secondly, writing reflective code for distributed man-
agement, as shown in Listing 1 is complex. These prob-
lems could be mitigated by transmitting all meta-data to
the managers, however, the memory and network resources
consumed by storing reflective meta-data must also be min-
imised. This gives rise to three requirements that should be
tackled by refraction:

e Requirement 1: The number of messages that are
required to perform reflection should be minimised.

e Requirement 2: The subset of meta-information
that is distributed should be customisable.

e Requirement 3: Mechanisms are required to spec-
ify in-network reconfiguration behaviour, that operates
close to the point of action.

3. REFRACTION IN PRINCIPLE

As described in Section 2, reflective software processes
are empowered to reflect upon and modify their implemen-
tation. Inspired by the power of this metaphor, we introduce
the complementary metaphor of refraction. In the same way
that characteristics of a material can be inferred from the
light that traverses it, the characteristics of a refractive soft-
ware component can be inferred from application data that
it processes. Refracted meta-data travels together with ap-
plication data across the distributed component graph, al-
lowing the components that receive it to perform reflection
at reduced cost.

Figure 2 shows how refraction distributes component meta-
data across the network. Each node is extended with a re-

http://people.cs.kuleuven.be/~wilfried.daniels/refraction
http://people.cs.kuleuven.be/~wilfried.daniels/refraction
https://distrinet.cs.kuleuven.be/software/looci
https://distrinet.cs.kuleuven.be/software/looci

Motion Detector |
(- sampleRate - interval
- listenPin C, - timeout

1

n Reflective
Motion Detector <> '
((- sampleRate ol operations
- listenPin] Manager |_ _I Refractive
2, —_—— pool
Critical '®) Non-critical
refraction refraction

Figure 2: Replacing reflective by refractive opera-
tions on a distributed system.

fraction engine, which keeps relevant elements of the meta-
model synchronised between nodes. A selected node, in our
case N4, collects all relevant meta-data and acts as a single-
point of introspection for the 3 upstream nodes. This node is
referred to as a refractive pool, depicted with a light blue con-
tour line. Two types of refractive streams are offered: mon-
critical streams, shown in green and critical streams, shown
in red. Non-critical refractive streams transport meta-data
in an opportunistic way by augmenting application data,
while critical refractive streams transport important meta-
data directly to the refractive pool. Critical streams are
offered as an alternative when the rate of application data
is too low or unpredictable and a minimum latency should
be guaranteed. We call this extended version of LooCI with
refraction support RzCom.

RxCom provides mechanisms to selectively aggregate re-
flective meta-data updates that describe component proper-
ties and bindings and transmit them using either critical or
non-critical refractive streams. Refractive policies provide
a mechanism to specify what meta-data should be refracted
using which type of refractive stream and where it should be
stored. Reactive policies provide a mechanism to trigger re-
configurations based on incoming refracted meta-data. This
new architecture minimises message passing through the use
of aggregation, while not increasing development overhead.
The following subsections address three key questions for
RxCom:

What does the basic meta-model describe? The basic meta-
model of a software component allows for the introspection
and reconfiguration of software functionality, structure and
behaviour. RxCom extends the basic LooCI component
model, which is described in Section 3.1.

How should the meta-model be refracted? To minimise mem-
ory footprint, only a subset of the meta-model should be
refracted. Yet it is not possible to know a-priori which
meta-data should be distributed to support introspection
and reconfiguration. We therefore advocate for customis-
able refractive policies, which determine which subset of the
meta-data is distributed, and how it is distributed. This is
described in Section 3.2.

How to react to incoming refracted data? Reconfiguration
behaviour is frequently triggered by changing application
context. To support this behaviour, nodes are equipped with
reactive policies specifying how to store, forward and react
to refracted meta-data. This is described in Section 3.3.

Node ::= address x Comp™ x Binding*

Comp ::= c-id X c-type X Property™ x
Interface™ x Status
Property ::= p-name X p-val X p-type

Interface ::= required X e-type | provided X e-type

Status ::= active | inactive
Binding ::= Local | Remoteln | RemoteOut
Local ::= e-type X c-id X c-id
RemoteOut ::= e-type X c-id X address
Remoteln ::= e-type X address x c-id X c-id

Figure 3: RxCom’s basic meta-model.

3.1 The Refractive Meta-Model of RxCom

The basic LooCI API, which is shown in Figure 3 de-
fines the meta-model of a LooCI node, component and bind-
ing. This meta-model determines what can be inspected and
modified using reflection. RxCom then extends this meta-
model with refractive concepts. While we use the LooCI
meta-model as a running example, the refractive extensions
are themselves generic and could be added to any component
model.

In this paper, reflective operations are written using a
simplified Java-like notation. For example, given a node N
we write N.getProperties(C) to retrieve the set of properties
of the component C' deployed on N, and N.setProperty(C,
property=value)) to modify the value of a property of a com-
ponent C deployed on node N. The API used in this pa-
per is a simplified version of the full RxCom API, which
is available online along with code samples and supporting
middleware at: http://people.cs.kuleuven.be/~wilfried.
daniels/refraction.

The following notation is used in the meta-model specifi-
cations: keywords written in a Sans font are terms defined by
the grammar; italic keywords denote terms defined outside
of the grammar, such as strings and numbers; underlined
keywords denote constant symbols; the star operator - *
denotes a set of a given attribute and the times operator
- X - creates tuples of elements. All elements of the meta-
model can be introspected. Wave-underlined keywords de-
note parts of the meta-model that can also be reconfigured
using reflective operations. The bold blue keywords in the
code listings denote operations over the meta-model.

As shown in Figure 3, a node consists of an address, a set
of components, and a set of bindings. Each component has
a local instance identifier c-id, an identifying type c-type, a
set of properties, a set of required (—() and provided (—O)
interfaces, and a status indicating whether it is active or
not. Each property associates a name p-name to a value
p-val of a given type p-type. A binding connects one or
more provided interfaces to required interfaces, and has a
type e-type corresponding to the type of the events sent and
received by both interfaces. This binding is said to be local
when it connects two components running on the same node,
and remote if it connects a components hosted on different
nodes. Outgoing bindings specify the local component and
the address of the remote node, while incoming bindings
specify the originating node address, source component and
the destination component.

http://people.cs.kuleuven.be/~wilfried.daniels/refraction
http://people.cs.kuleuven.be/~wilfried.daniels/refraction

Node ::= address x Comp™ x Binding” x RefPolicy”
RefPolicy ::= SComp x SelectElem™ x Frequency x Target
SComp ::= allComps | c-id | c-type

SelectElem ::= SProps | SBindings | SStatus
SProps ::= allProps | p-name | p-type
SStatus ::= status

SBindings ::= allBindings | localBindings
| inBindings | outBindings

Frequency ::= on-change | always | never

Target ::= non-critical | address

Figure 4: Extension of RxCom’s meta-model with
refractive policies.

refract the properties of every component on Ny
N1 .refract (allComps,allProps,on-change,non-critical)
'/ continuously refract status of Cy1 on Nj
Nj3.refract(Cq,status,always,non-critical)

/ critical refraction of C1 on No to node Ny

Ny .refract (C,status,on-change, Ny)

Listing 2: Updating a refractive policy by modifying
the meta-model.

3.2 Specifying Refractive Policies

A refractive policy determines what subset of the reflec-
tive meta-model is refracted (i.e. transmitted with appli-
cation data) and when. Refractive policies are specified by
RefPolicy in Figure 4, which extends the basic meta-model
of RxCom (Figure 3). A refractive policy consists of:

e SComp — specifies which component instance’s meta-
model to refract

e SelectElem — a query used to identify a collection of
elements from the component’s meta-model, such as
the properties or bindings.

e Frequency — specifies when the selected meta-data el-
ements should be refracted. The options are: always,
which appends the selected refracted data to every out-
going message, on-change, which appends the selected
refracted data only when it differs to the previously
sent refracted data, and never, which causes the meta-
data of the selected element not to be refracted.

e Target — specifies which mechanism should be used for
transmitting the meta-data. The options are: non-cri-
tical, which augments outgoing events with meta-data,
or address, which dispatches meta-data directly to the
refractive pool located at the node with the given ad-
dress.

Refractive policies are set on a per node basis and do
not change the underlying component meta-model, rather
they specify a systematic and customisable way to distribute
that model. The API for refractive policies is exemplified

Node ::= address x Comp™ x Bin'din\g'A‘X

Ref

icy” x RetPolicy”

RctPolicy ::= SComp x Mark

| Reconf
Mark ::= forward | store | discard
Reconf ::= guard X reconfiguration

Figure 5: Extension of RxCom’s meta-model with
reactive policies.

Ny .store(C1)
N3.store(Cq)
N3 .forward (Cl)

Ny .addReconfiguration("sync.pol")

// contents of the "sync.pol” file

if (N1.C1(sampleRate) != Ni.Cip(sampleRate)’) {
N5 .Cq(sampleRate) = Njp.C (sampleRate);

}

Listing 3: Example specification of a reactive policy.

in Listing 2, which shows how it is applied to the running
example of Figure 2.

It should be noted that multiple policies may refer to the
same element of the component meta-model with different
frequency values. For example, there may be a general policy
for allComps and a more specific one for a given component
ID. In this case the most specific policy takes precedence.

3.3 Specifying reconfiguration policies

A node in RxCom can react in four different ways upon
receiving refracted meta-data, it can: (i.) discard it; (ii.)
forward it through a specific interface; (iii.) store it to the
local meta-data registry; or (iv.) trigger reconfigurations
based on the received meta-data update. The extension to
the RxCom meta-model to accommodate these changes is
presented in Figure 5, and exemplified in Listing 3.

Reactive policies can either be component marks or condi-
tional reconfigurations. The former mark local components
as being forward or store, and the latter associate a trig-
gering condition to reconfiguration instructions. Upon re-
ceiving a remote message over the interface of a component
C, RxCom searches for refracted data aggregated to it. If
refracted data is found, its mark is checked. If C' is marked
as discard, it the data is thrown away, otherwise, it is pro-
cessed as follows:

1. If C is marked as forward then the refracted data is
queued to be aggregated to the next outgoing message
from each provided interface of C' and of all local com-
ponents that are connected to C'.

2. If C is marked as store then the refracted data is
added to a refraction table, which is indexed by the
component IDs and network addresses that provided
the refracted data. If the data overrides a previous en-
try, then the old value is temporarily saved until the

next step completes. All nodes which store data be-
come refractive pools.

3. Each reconfiguration R with a guard G that evaluates
to true is executed. G is a boolean expression over the
local meta-model and the refraction table, both before
and after the store operations. R describes modifica-
tions to the meta-model of local or remote components
using the standard reflection API.

The example in Listing 3 showcases how reactive policies
apply to the composition of the running example depicted
in Figure 2. The Motion Reporter component on N4 and the
Motion Aggregator on N3 are set to store all refractive data,
while Motion Aggregator is also set to forward. A reconfig-
uration is then added to N4, which sets the rate parameter
of the Motion Detector component on N; to the Motion De-
tector component on N2 whenever it is updated. The recon-
figuration and its associated guard are written in a domain
specific language, which includes traditional arithmetic and
logical operators. This language supports reading and the
modification of meta-data, and uses the prime (') as a suffix
to represent the value prior to the store operations.

A refractive pool can be queried by a remote manager for
the meta-model of both the node itself as well as for the
refracted meta-data from all upstream nodes. Hence the
API of refracted pools is extended to satisfy queries over a
group of nodes, rather than over a single node. Examples of
such queries are listed in Listing 4.

// get matching components from Ni

nlCompnts = Nj.getComponents("Motion Detector")
// get matching components from all refracted nodes
moreCompnts = Ny4.getRefComponents("Motion Detector")

// update component properties
N; .setProperty (n1Compnts.head, sampleRate, 120s)
forall (c € moreCompnts) {

c.getNode() .setProperty(c, sampleRate, 120s)
}

// add policy to all nodes known by N3
forall (n € N3.getRefNodes()) {

n.refract (allComps,allProps,on-change)
}

Listing 4: Example queries on the refractive pool.

4. REFRACTION IN PRACTICE

We realise the principles of refraction in RxCom by ex-
tending the Loosely-coupled Component Infrastructure
(LooCT) [3] with support for refractive policies and reactive
policies. Section 4.1 describes the implementation of LooCI,
while Section 4.2 describes the implementation of refractive
extensions.

4.1 The Standard LooCI Component Model

The Loosely-coupled Component Infrastructure (LooCI) [3]
is a platform-independent component model and supporting
middleware for networked embedded systems. The LooCI
middleware is open-source and ports are available for em-
bedded operating systems such as Contiki [11], Squawk [12]

Manager

get/set
policy

get/set
property

Reconf.
Manager

T

Refraction
Engine

Reconf.
Manager

N Refraction
I Engine

Aggregator
|
Event
Manager

Aggregator
L]
——— Event
————— Manager

Logical — Non-critical
O} Event Flow refraction Reconfig./
Physical Critical Introspect.

Event Flow refraction

Figure 6: The LooClI architecture (boxes with black
lines) extended with RxCom modules (boxes with
red lines).

and Android. The remainder of this subsection provides a
basic overview of the relevant features of LooCI. For brevity,
we focus upon the Java version of LooCI on which we have
built our prototype.

Components LooCI components are individually deploy-
able units of functionality. They are managed by creating
an instance of the basic LooCIl meta-model described in
Figure 3, using a simple component declaration and com-
munication API consisting of required and provided inter-
faces. LooClI is language-agnostic and components may be
implemented in C or Java, allowing developers to exploit
language-specific features while providing standardised en-
capsulation, discovery and lifecycle management.

All LooCI components are connected to the LooCI run-
time. Each component declares its human-readable name,
its required interfaces (i.e. services) and provided interfaces
(i.e. dependencies). All messages that travel across compo-
nent interfaces are hierarchically typed as described in [13].
Components may also declare properties that allow for cus-
tomisation of component behaviour.

Architecture The standard architecture of LooCI nodes
is illustrated in Figure 6, excluding the components high-
lighted in red, which are the refraction extensions later ex-
plained in Section 4.2. In the figure we show several in-
teractions: (i.) the logical event flow between components
in green, (ii.) physical event flow between components in
blue and (iii.) reconfiguration and introspection operations
between an external Manager and a node. In the next sec-
tions the architectural components will be explained more
in depth.

Manager Pervasive LooCI applications are deployed, in-
spected, and configured by Manager nodes. In principle any
LooCI node may serve as a manager and a network may
have multiple managers. The manager interacts with the
nodes by using the reflection API to inspect and reconfigure
LooCI’s meta-model, as depicted in Figure 6.

Reconfiguration Manager The Reconfiguration Manager
module exposes and maintains the component meta-model.
As the meta-model is causally connected to the underlying
software implementation, it may be manipulated in order
to enact reconfiguration. Introspection allows for the dis-
covery of component characteristics such as: type, status,
properties, provided interfaces, required interfaces, current
bindings and the associated code-base file. Reconfiguration
manipulates the meta-model to control: the component life-
cycle, configuration of properties and the binding of compo-
nent interfaces.

Distributed Event Bus The distributed event bus is
an asynchronous event-based communication medium that
follows a decentralised topic-based publish-subscribe model.
These topics are the event types mentioned in the previ-
ous section. Local and remote bindings are established by
creating new subscription relationships, supporting one-to-
one, many-to-one, and one-to-many bindings (as specified
in Figure 3). The binding of components occurs at run-
time and after component deployment. All bindings and
event routing between nodes are handled by the Event Man-
ager module, rather than by components, providing a strong
separation between local component functionality and the
management of distributed relationships. The difference be-
tween this physical event flow and the logical event flow is
visualized in Figure 6.

4.2 The extended RxCom component model

RxCom extends LooCI’s component model and support-
ing middleware with refractive mechanisms. Currently we
have developed a version of RxCom for Java LooCI running
on OSGI [14]. A version of RxCom is also under develop-
ment for the C/Contiki [11] port of LooCI. This subsection
emphasises the modifications that RxCom makes to the core
LooCI model.

Components A component definition in RxCom preserves
the same information as a component in the original LooCI
meta-model. However, the refraction engine stores a map-
ping between refractive or reactive policies and their asso-
ciated components. The former maps components to a list
of pairs ({e}, f,t) with the elements {e} being refracted,
f the frequency of refraction and ¢ the target. The latter
maps components to the flag forward or store. References
to refracted meta-data and to the reconfigurations that are
triggered by refracted data are maintained in separate ta-
bles. Reactive policies are evaluated and executed whenever
matching meta-data is received via refraction.

Architecture The architecture illustrated in Figure 6 in-
cludes two refractions extensions: the Refraction Engine and
Aggregator modules. These additional modules are isolated
from existing functionality and use hooks available through-
out LooClI to modify behaviour.

Refraction Engine The Refraction Engine module main-
tains the refractive policy table and the reactive reconfigura-
tion policy table as described above, which specify how data
should be refracted and used in reconfiguration respectively.
The Refraction Engine module receives new policies and pol-
icy modifications from manager nodes; receives updates to
the refractive meta-model from the Reconfiguration module;
executes local reconfiguration instructions when triggered by
refracted data and exchanges meta-data either through non-

critical or critical refraction. Non-critical refractive meta-
data is relayed to the Aggregator module, while critical re-
fractive meta-data is sent directly as a single event over the
distributed event bus.

Aggregator The Aggregator operates on the level of the
distributed event bus and intercepts incoming and outgoing
application events, and is responsible for aggregating and
deaggregating the refracted data to and from the main ap-
plication traffic. It uses a queue of outgoing refracted data
for each output interfaces, to cache the data to be aggre-
gated in the next outgoing message.

Manager The standard LooCI network manager is ex-
tended with refraction-related calls. This extended API al-
lows, for example, to query the refraction tables (stored re-
fracted data in the node), to update or add refraction and
reactive policies, as illustrated in listings 3 and 4.

In addition to adding refraction-related calls, the manager
was extended to parse and recognize the reactive policies
shown in Listing 3. These policies are first parsed locally
by the manager, and then serialized for transmission over
the network. The target node will deserialize the policy
and enforce it when relevant meta-data is received via a
refractive stream.

S. EVALUATION

We begin our evaluation with an analysis of the perfor-
mance overhead associated with evaluating policies and ag-
gregating meta-data. We then present a configuration re-
pair scenario that showcases the benefits of using refrac-
tion to inspect and reconfigure pervasive applications. This
scenario is based on a real-world pervasive application. In
the original approach, application configuration is periodi-
cally introspected and, when faults are discovered, repaired
using remote reflective operations. In the case study we
compare this reflection based approach to a refraction based
approach. These results are presented in Section 5.2.

All the results presented in this section are benchmarked
on an extended version of the Java/OSGi port of LooCI. All
tests were conducted on a standard desktop machine, with
an Intel Core 15-2400 CPU and 8GB of RAM.

5.1 Performance and overhead analysis

Refraction introduces some performance overhead when
sending and receiving application data due to (i.) the ag-
gregation of refractive meta-data with outgoing application
traffic and (ii.) the deaggregation of refractive meta-data
from incoming application traffic and the evaluation of re-
active reconfiguration policies pertaining to the new meta-
data. Table 1 shows minimum, maximum and average per-
formance timings for all case study policies described in the
following two sections. The mechanisms that underlie re-
fraction perform well in terms of both the time required

Table 1: Performance overhead of aggregation and
policy evaluation.

Min. Max. Avg.

Data Aggregation 0.29ms 0.51ms 0.36 ms
Deaggregation +
Policy Evaluation

0.35ms 0.48ms 0.42ms

|

Coffee Control
- interval
- actuatorPin C,

Coffee Manager
- webservice
- timeout

RFID Checker
- webservice
-ACL

RFID Reader
C

Screen Control |
- interval
- actuatorPin C,

Screen Manager
- webservice
- timeLock Cz

O— 00

Button Sensor
- listenPin C

2

Motion Reporter
- webservice C
s

RFID
READER

Motion Agg.
- interval
- timeout

Motion Det.
- sampleRate
- listenPin

Motion Det.
- sampleRate
- listenPin

Figure 7: Configuration repair scenario.

to aggregate reflective meta-data and to deaggregate it and
evaluate policies.

5.2 Configuration repair case-study

This case-study looks at a common problem with per-
vasive systems [15]: repairing faulty system configurations
that arise due to faults, damage or power-loss. For example,
configuration elements may be lost due to memory corrup-
tion after a node reboots. A classical solution to this is
a monitoring service running on a reliable back-end. The
monitor periodically queries the nodes for their configura-
tion and checks if it matches with a desired state. If not,
reconfiguration is carried out.

Refraction offers a more efficient alternative. First re-
fractive policies are used to specify which configuration pa-
rameters from the meta-model should be refracted. Next, a
refractive pool is created on the reliable back-end. Finally,
reactive policies are installed on the back-end to check the
current configuration against the desired configuration, and
where necessary carry out repair operations.

Scenario Both approaches are benchmarked by imple-
menting a common scenario, depicted in Figure 7, which
is a subset of a real world ‘smart lab’ deployment in our
research facility. More specifically, 3 services are offered
by this composition: (i.) a Motion detection service using
data from 6 embedded nodes equipped with motion sensors
spread around the lab, (ii.) a Screen control service, which
allows to either remotely or locally with a switch turn on or
off screens used for presentations, and (iii.) a Coffee control
service, which authorizes access to a coffee machine through
RFID authorization.

N is a reliable always-on back-end, and runs components
with more complex functionality. Furthermore, this node is
connected to a database for logging purposes, and all back-
end components have configurable webservice interfaces to
allow integration with a web platform. All other nodes in
the network are embedded nodes with volatile configuration
parameters. The result of this deployment is accessible on-

line at http://smartlab.looci.org/.

While it is possible with both approaches to monitor a
subset of the configuration parameters, in this scenario we
consider a complete monitoring approach. We monitor the
configuration of 15 components spread over 10 nodes. This
amounts to 71 configuration parameters that have to be con-
sistent for this deployment to successfully work.

Development effort A first point of comparison is the
amount of development effort spent implementing a purely
reflective solution versus using one that leverages refraction.

In case of a reflective monitoring solution, introspection
commands are scripted in the backend to query all the pa-
rameters of the component composition spanning the net-
work. When a specific parameter is deviating from the de-
sired value, a reconfiguration command is sent to rectify the
problem. An example of reflective code used for monitoring
is shown in Listing 5. In this example, the parameters of
one of the Motion Detector components are monitored.

Listing 6 on the other hand shows the reactive policies
that can be used when using refraction for monitoring the
same configuration parameters. It can be seen that the re-
active policies closely match reflective operations from the
point of view of the developer. The primary difference is
that the execution of reflective code is statically scheduled,
while reflective policies pertaining to a parameter are au-
tomatically evaluated when an updated parameter value is
available.

We quantified general development effort in the form of
LoC (Lines of Code) for both approaches. When imple-
menting configuration repair for Figure 7, 142 lines of reac-
tive policies are required versus 146 lines of reflective code.
In conclusion, reflection imposes no development overhead
when implementing a configuration repair system. On the
contrary we expect that the absence of scheduling code will
lead to development savings in more complex reconfigura-
tion scenarios.

http://smartlab.looci.org/

while(True) {
// Component has to be active
if (N5 .getStatus(C1) == deactivated)
N5 .activateComponent (C1)

// Guarantee a sampleRate >= 60
if (N5 .getProperty(C7, sampleRate) < 60)
N5 .setProperty (C;, sampleRate, 60)

/ Motion detector is connected to pin 2 on Ci
if (N5.getProperty(Cy, listenPin) != 2)
N5 .setProperty (Cy, listenPin, 2)

// Wire motion events to aggregator on Ny
if (N5.hasWireTo(C1, N4, motionEvent))
N5 .wireTo(C1, N4, motionEvent)

// Monitoring rate: hourly
sleep(lh);

Listing 5: Example of reflective code for monitoring
the Motion Detector’s parameters on Ns.

if (N5.C1.Status == deactivated)
N5 .Status = activated

if (N5.C1(sampleRate) < 60)
N5 .Cq(sampleRate) = 60

if (N5.Cq(listenPin) != 2)
N5 .Cq(listenPin) 2

if (! hasWireTo(N5.C1, N4 ,motionEvent)
wireTo(N5.C1, N4, motionEvent)

Listing 6: Example of refractive code for monitoring.

Average Latency A second point of comparison is the
average latency of configuration repair. This metric indi-
cates how long it takes before a fault is repaired. Figure 8
breaks this down for each component in the compositions
and every monitoring method.

As can be seen from Figure 8, repair latency based on
non-critical refraction varies for each component. This is
caused by delays imposed by application data. RFID Reader
and Button Sensor are very ill-suited for non-critical refrac-
tion, because their application data is sent unpredictably.
Only when somebody pushes the button or swipes an RFID
card is application data generated. In the data shown in
Figure 8, it is assumed that on average every 30 minutes
an event is sent. However, in reality application events are
unpredictable and there are no hard guarantees in terms of
average repair latency.

Both critical refraction and classic monitoring at two dif-
ferent rates give the same average repair latency for ev-
ery single parameter in the network. When comparing all

CNon-critical Critical
refraction refraction

Scheduled
Monitoring (10 min)

@mm=Scheduled
Monitoring (1 h)

1800
1600

)

N
B
o
s}

1200
1000
800
600
400

200 AR EEmIE

Repair Latency (s

Figure 8: Average latency of configuration repair.

40
35
£ 30
w
&
£ 25
Q
©
$ 20
=
o
S 15
H
[
Z 10
5] 1 r
0
Non-critical Critical Scheduled Scheduled
refraction refraction Monitoring Monitoring
(10 min) (1h)

Figure 9: Explicit messages sent per hour network
wide for 1 configuration repair.

approaches, we can conclude that both critical and non-
critical refraction give significant latency advantages when
compared to classic monitoring with reflective operations.
When dealing with stochastic application data, critical re-
fraction performs best.

Network overhead Lastly, we compare the amount of
explicit network messages per hour required for repairing one
remote configuration fault in the same timespan. Figure 8
shows the results.

We can determine that a classic monitoring approach al-
most always causes more explicit network traffic than ei-
ther critical or non-critical refraction when using reasonable
checking intervals. The message overhead for monitoring
shown in Figure 9 is still fairly conservative, because the
assumption is made that all configuration parameters of a
single node can be packed in one explicit messages. Fur-
thermore, explicit messaging overhead of monitoring will in-
crease linearly with the scale of the network, while critical
and non-critcal refraction will scale gracefully.

6. RELATED WORK

There are two key streams of related work: (i.) reflective
component models and (ii.) reconfiguration frameworks.
These are reviewed in Sections 6.1 and 6.2 respectively.

6.1 Reflective Component Models

The application of reflective programming techniques to
distributed middleware was pioneered by Blair et al. [4],
who advocated for a systematic approach to reflection based
upon a per-component meta-space wherein select elements
of software implementation are systematically externalised
and reified through a meta-model. This stream of research
has culminated in a number of reflective component models
for pervasive systems.

OpenCOM [4] is a generic reflective component model that
has been applied to build pervasive sensing applications [7].
OpenCOM is platform and language independent and sup-
ports runtime reconfiguration and introspection of the meta-
model. The local OpenCOM component model may be ex-
tended with binding model plug-ins to support distributed
application composition. RUNES [16] is a specialized branch
OpenCOM that provide dedicated support for reflection in
resource constrained systems.

OSGi [14] is a reflective Java-based component model that
targets gateway-class pervasive devices. In addition to sup-
port for introspection and reconfiguration, OSGi also pro-
vides a secure execution environment. R-OSGi [17] extends
OSGi with support for creating distributed bindings.

REMORA [5] provides a C-like programming language to
specify component interfaces and application compositions.
At compile time, the REMORA component implementation
language is compiled to byte-code that is executed on the
REMORA platform abstraction layer. REMORA supports
introspection and reconfiguration.

LooClI [3], as described in detail in Sections 3.1 and 4.1,
is a language and platform independent component model
designed to support pervasive applications. LooCI supports
both introspection and reconfiguration at runtime. In con-
trast to the models discussed above, which extension to sup-
port distribution, the LooCI runtime inherently supports the
creation of distributed component bindings.

All of the prior models discussed above use a local meta-
space and offer no inherent support for distributing com-
ponent meta-data in order to support distributed reconfig-
uration. This results in high development complexity and
message passing overhead when introspecting and reconfig-
uring components. While there are various small differences
in the component meta-models described above, refraction
offers a systematic approach to distributing meta-data that
is independent of a specific component meta-model or bind-
ing approach.

6.2 Reconfiguration Frameworks

In a drive to reduce the complexity of distributed reflec-
tive programming and increase the reusability of software
components, Parlavantzas et al. [18] introduce the concept
of a component framework (CF). A CF first enforces a com-
mon composition structure and second allows its constituent
components to be managed as a single entity. For example,
Open Overlays [7] provides a generic overlay network CF
that enforces a control-state-forward seperation of concerns
and allows reflective operations to be applied to all con-
stituent components via the CF.

Distributed component frameworks [18] address the prob-
lem of reducing development effort for reflective distributed
systems, by aggregating distributed components into a sin-
gle software entity that can be more easily introspected and
reconfigured. However, there are a number of key differences
with refraction. First, Distributed CFs make direct use of
reflective primitives and therefore do not reduce the number
of messages transmitted, whereas refraction reduces network
load by aggregating meta-data with application messages.
Second, CFs must be declared before system deployment
and configuration, whereas refractive policies may be modi-
fied at runtime. In our view, refraction is a natural comple-
ment to CFs and could be used to create an efficient flow of
meta-data from constituent components to their host com-
ponent framework.

7. CONCLUSION AND FUTURE WORK

This paper proposed refraction, a principled means to
lower the cost of reflection in pervasive systems, and intro-
duced RxCom, a component model that realises this con-
cept. RxCom provides a concise and low-overhead mecha-
nism to distributed reflective meta-data accross distributed
pervasive applications. RxCom provides the developer with:
(i.) refractive policies to manage meta-data distribution,
(ii.) reactive policies to automatically react to updates of
meta-data from remote neighbours and (iii.) efficient run-
time support for meta-data distribution and reconfiguration
enactment.

Evaluation of RxCom shows that policy evaluation has
low overhead. Furthermore, we reimplemented a configura-
tion repair case-study from prior work [15]. In comparison
to monitoring purely through reflection, the refractive solu-
tion developed using RxCom requires only a small fraction
of the development effort and significantly reduce network
overhead.

Our future work will proceed along three fronts. First
we will port RxCom to the embedded C/Contiki version of
LooClI in order to demonstrate its applicability resource con-
strained pervasive scenarios. Second, we plan to develop and
deploy a large-scale case study application using RxCom.
Finally, we will investigate the support for managing refrac-
tive primitives. While the evaluation results presented in
this paper are very positive, we believe that more ature sup-
port for developing, deploying and (re-)configuring refractive
functionality will result in further effort savings.

Acknowledgements

This research is partially funded by the Research Fund KU
Leuven, FCT grant BPD/91908/2012 in Portugal, and by
the Agency for Innovation by Science and Technology in
Flanders (IWT).

8. REFERENCES

[1] D. Hughes, P. Greenwood, G. S. Blair, G. Coulson,
P. Grace, F. Pappenberger, P. Smith, and K. J.
Beven, “An experiment with reflective middleware to
support grid-based flood monitoring,” Concurrency
and Computation: Practice and Ezperience, vol. 20,
no. 11, pp. 1303-1316, 2008.

[2] K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,

M. Ruiz, and J. Lees, “Deploying a wireless sensor

3]

[10]

[13]

network on an active volcano,” in IEEFE Internet
Computing, 2006, pp. 18-25.

D. Hughes, K. Thoelen, J. Maerien, N. Matthys,

J. Del Cid, W. Horre, C. Huygens, S. Michiels, and
W. Joosen, “LooCI: The loosely-coupled component
infrastructure,” in In proceeding of 11th IEEE
International Symposium on Network Computing and
Applications, 2012, pp. 236-243.

G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan, “A generic
component model for building systems software,”
ACM Trans. Comput. Syst., vol. 26, no. 1, pp.
1:1-1:42, Mar. 2008.

A. Taherkordi, F. Loiret, A. Abdolrazaghi, R. Rouvoy,
Q. Le-Trung, and F. Eliassen, “Programming sensor
networks using remora component model,” in
Distributed Computing in Sensor Systems, ser. Lecture
Notes in Computer Science, R. Rajaraman,

T. Moscibroda, A. Dunkels, and A. Scaglione, Eds.
Springer Berlin Heidelberg, 2010, vol. 6131, pp. 45-62.
D. Hughes, E. Canete, W. Daniels, R. G. Sankar,

J. Meneghello, N. Matthys, J. Maerien, S. Michiels,
C. Huygens, W. Joosen, M. Wijnants, W. Lamotte,
E. Hulsmans, B. Lannoo, and I. Moerman, “Energy
aware software evolution for wireless sensor networks,”
in WOWMOM. 1EEE, 2013, pp. 1-9.

P. Grace, D. Hughes, B. Porter, G. S. Blair,

G. Coulson, and F. Tafani, “Experiences with open
overlays: a middleware approach to network
heterogeneity,” in EuroSys, J. S. Sventek and S. Hand,
Eds. ACM, 2008, pp. 123-136.

G. S. Blair, G. Coulson, P. Robin, and

M. Papathomas, “An architecture for next generation
middleware,” in Proceedings of the IFIP International
Conference on Distributed Systems Platforms and
Open Distributed Processing, ser. Middleware ’98.
London, UK, UK: Springer-Verlag, 1998, pp. 191-206.
B. C. Smith, “Procedural reflection in programming
languages,” Ph.D. dissertation, MIT, 1982.

D. Hughes, P. Greenwood, G. S. Blair, G. Coulson,
P. Grace, F. Pappenberger, P. Smith, and K. J.
Beven, “An experiment with reflective middleware to
support grid-based flood monitoring,” Concurrency
and Computation: Practice and Experience, vol. 20,
no. 11, pp. 1303-1316, 2008.

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny
networked sensors,” in In proceedings of 29th Annual
IEEFE International Conference on Local Computer
Networks, Nov 2004, pp. 455-462.

D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and

D. White, “Java on the bare metal of wireless sensor
devices,” in Proceedings of the 2nd international
conference on Virtual execution environments (VEE
’06). New York, New York, USA: ACM Press, 2006,
pp. 78-88.

K. Thoelen, D. Preuveneers, S. Michiels, W. Joosen,
and D. Hughes, “Types in their prime: sub-typing of
data in resource constrained environments,” in
International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services
(Mobiquitous 2013), 2013.

(14]

(15]

(16]

(17]

(18]

A. L. Tavares and M. T. Valente, “A gentle
introduction to OSGi,” SIGSOFT Softw. Eng. Notes,
vol. 33, no. 5, pp. 8:1-8:5, Aug. 2008.

J. Maerien, C. Huygens, D. Hughes, and W. Joosen,
“Enabling resource sharing in heterogeneous wireless
sensor network,” in to appear in proc. of the
Middleware for IoT workshop (MW4I1oT’15), 2014.

P. Costa, G. Coulson, C. Mascolo, G. Picco, and

S. Zachariadis, “The runes middleware: a
reconfigurable component-based approach to
networked embedded systems,” in In proceedings of
IEEFE 16th International Symposium on Personal,
Indoor and Mobile Radio Communications, 2005, pp.
806-810 Vol. 2.

J. S. Rellermeyer, G. Alonso, and T. Roscoe,
“R-OSGi: Distributed applications through software
modularization,” in Proceedings of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware, ser. Middleware ’07. New York, NY,
USA: Springer-Verlag New York, Inc., 2007, pp. 1-20.
N. Parlavantzas and G. Coulson, “Designing and
constructing modifiable middleware using component
frameworks,” IET Software, vol. 1, no. 4, pp. 113-126,
2007.

	Introduction
	Reflection and its shortcomings in pervasive systems
	Refraction in Principle
	The Refractive Meta-Model of RxCom
	Specifying Refractive Policies
	Specifying reconfiguration policies

	Refraction in Practice
	The Standard LooCI Component Model
	The extended RxCom component model

	Evaluation
	Performance and overhead analysis
	Configuration repair case-study

	Related Work
	Reflective Component Models
	Reconfiguration Frameworks

	Conclusion and future work
	References

