
RebeCaos

José Proença1(B) and Maurice H. ter Beek2(B)

1 CISTER and University of Porto, Porto, Portugal
jose.proenca@fc.up.pt

2 CNR–ISTI, Pisa, Italy
maurice.terbeek@isti.cnr.it

Abstract. We describe RebeCaos, a user-friendly web-based front-end
tool for the Rebeca language, based on the Caos library for Scala. Rebe-
Caos can simulate different operational semantics of (timed) Rebeca, thus
facilitating the dissemination and awareness of Rebeca, providing insights
into the differences among existing semantics for Rebeca, and supporting
quick experimentation of new Rebeca variants (e.g., when the order of
received messages is preserved). The tool also comes with initial reacha-
bility analyses for Rebeca models (e.g., the possibility of reaching dead-
locks or desirable states). We illustrate the RebeCaos tool by means of a
ticket service use case from the timed Rebeca literature.

Keywords: Rebeca, actors, time, web front-end, reachability analysis

1 Introduction

This tool paper accompanies a recent Festschrift contribution [5], which we refer
to in particular for technical details. In this paper, we focus on describing some
details of the implementation and of the tool at work.

The Reactive objects language (Rebeca) [22,23,18] is a high-level language
designed for modelling and analysing concurrent and distributed systems based
on the actor model of computation, which views systems as a collection of au-
tonomous objects (actors) that communicate via asynchronous message passing.

Actors or reactive objects (rebecs) constitute its primary modelling compo-
nents, which are particularly useful for modelling and analysing reactive sys-
tems in which components react to incoming messages. Rebecs communicate in
a non-blocking fashion via asynchronous message passing between senders and
receivers. Each rebec has a set of variables that store values, a set of methods
(called message servers) and a message bag to store the received messages (along
with their arrival times and their deadlines). Operationally, a rebec may take a
message (with the least arrival time) from its message bag and execute the cor-
responding message server. Each rebec operates concurrently and can process
one message at a time.

Throughout the years, several extensions of Rebeca have been introduced
for the modelling and analysis of systems from specific domains, among which
pRebeca [27] for probabilistic systems, Timed Rebeca [24] for real-time systems,
PTRebeca [12] for probabilistic timed systems, and Hybrid Rebeca [14] for cyber-
physical systems. In particular, Timed Rebeca extends core Rebeca with a global

https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-0971-8919
http://orcid.org/0000-0002-2930-6367

2 Proença and ter Beek

notion of time [1,20,17,24], which is achieved by synchronisation of (local) time
of the actors (rebecs) involved. In Timed Rebeca, the primitives delay and after
are used to model the progress of time while executing a message server.

Timed Rebeca is supported by the tool Afra [16], which offers a comprehensive
IDE for specifying and verifying Rebeca models. It unifies the Java artifacts from
various Rebeca-related projects and offers tools for model creation, property
specification, model checking, and counterexample visualisation. Besides Afra,
there is a rich ecosystem of tools around Rebeca [22],3 including generators for
back-end model checkers such as SMV [25], mCRL2 [11], and McErlang [9], a
dedicated model checker Modere [13], and a more recent Jacco model checker
for Java actors [28] based on Rebeca’s existing toolset.

We recently developed the Caos Scala framework (Computer aided design
of structural operational semantics) [19]. Caos supports the creation of interac-
tive JavaScript-based websites meant to animate operational semantics. These
websites can provide both a quick feedback for developers and good insights to
newcomers of a specific language. Caos has been used, e.g., to animate and guide
the development of the semantics of choreographic languages [8,7,6,15] and reac-
tive systems [3,4,26], as well as to teach students about the semantics of C-like
languages and of a concurrent process calculus.4

A survey from 2020 with the participation of 130 formal methods experts—
including three Turing Award winners, all five FME Fellowship Award winners,
and 17 CAV Award winners—acknowledges the importance of supporting tools
for teaching formal methods, since “an overwhelming majority of answers judged
the use of tools essential when teaching formal methods” (75.4% of the respon-
dents answered “major role”) when asked “whether, and to which extent, students
should be exposed to software tools when being taught formal methods” [10, Sec-
tion 6: Formal Methods in Education]. Moreover, tools “allow students to quickly
link theory with practice” [2].

To this aim, we recently presented an animator of Rebeca, called RebeCaos [5].

Contribution We describe RebeCaos, a user-friendly web-based front-end tool
for Rebeca based on Caos, introduced in [5], to facilitate further dissemination
and awareness of Rebeca, provide insights into the differences among existing
Rebeca semantics, and support quick experimentation of new Rebeca variants
(e.g., when the order of received messages is preserved). We describe some de-
tails of its implementation and also present some initial reachability analyses for
Rebeca models (e.g., the possibility of reaching deadlocks or desirable states),
which are novel contributions with respect to [5].

Outline After this Introduction, Section 2 informally recalls the syntax and
semantics of core Rebeca, extended with time and dynamism, as described in
detail in [5]. This is followed by the presentation of RebeCaos in Section 3, after
which we conclude the paper and present ideas for future work in Section 4.
3 https://rebeca-lang.org/tools
4 Many examples are listed here: https://github.com/arcalab/caos

https://rebeca-lang.org/tools
https://github.com/arcalab/caos

RebeCaos 3

reactiveclass Example {
// rebecs to who it can send
knownrebecs {
Example ex;

}
// internal state variables
statevars {
int counter;

}

// available methods
msgsrv initial() {
counter=0;
ex.add(1);

}
msgsrv add(int a) {
if (counter < 100)
{counter = counter + a;}

}
}

// Starting point to
// run the system
main {
Example ex1(ex2):();
Example ex2(ex1):();

}

Fig. 1. Simple toy example � borrowed from Hojjat et al. [11]

2 Rebeca in RebeCaos: Syntax and Semantics

This section provides a quick introduction to Rebeca’s syntax and semantics
from [5], implemented in RebeCaos, by means of a simple toy example�, pre-
sented in Fig. 1, borrowed from Hojjat et al. [11],5 with a few adaptations. This
program resembles a typical object-oriented one, where all objects are actors
(called rebecs) and method invocation is asynchronous. In this concrete system
there is a single reactive class Example that is instantiated twice in the main

block on the right. The first instance is called ex1 and the second ex2. Two
groups of arguments can be passed: the first to provide other rebecs that can be
used to call methods to, and the second to provide values to initialise the rebec
(via the initial method).

In this system, both Example instances initialise their counter to zero and ask
each other to increment their counter by one. The order in which they increment
their counter is not fixed, and in the end both rebecs will have their counter set
to one. The syntax and semantics is precisely described in [5, Sects. 2 and 3].
Below we briefly describe how these are represented in RebeCaos.

2.1 Syntax in RebeCaos

RebeCaos is implemented in Scala, compiled into JavaScript, which is compiled to
JavaScript and loaded by a stand-alone HTML file. It uses our Caos library [19]
to generate the web-based front-end and present the full state-space exploration.

The general structure of a Rebeca program in RebeCaos is given by the Scala
data type System in Fig. 2.6 A system is a pair with (1) a table mapping names
to with known Rebeca classes, and (2) a list of instance declarations; a Rebeca
class has (1) a possible queue size, (2) a set of variables for known rebecs, (3) a
set of variables for the state, and (4) a set of methods. In turn, an instance
declaration has (1) a class name, (2) a rebec name, (3) a list of known rebec
names, and (4) a list of arguments; and a method has a list of variables and a
statement. We omit the definitions of QVar (variable names qualified with a type
name), expressions Expr, and statements Statement.
5 The electronic version of this paper includes hyperlinks to examples that open in

our online tool, marked with the symbol �.
6 The full syntax code can be found at https://github.com/FM-DCC/rebecaos/blob/

v0.1/src/main/scala/rebecaos/syntax/Program.scala

https://fm-dcc.github.io/rebecaos/?Simple
https://fm-dcc.github.io/rebecaos/?Simple
https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/syntax/Program.scala
https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/syntax/Program.scala

4 Proença and ter Beek

case class System(classes: Map[String,ReactiveClass]
,main: List[InstanceDecl])

case class ReactiveClass(qsize: Option[Int]
,known: List[QVar]
,state: List[QVar]
,msgsrv: Map[String,Msgsrv])

case class InstanceDecl(clazz: String
,name: String
,known: List[String]
,args: List[Expr])

case class Msgsrv(vars: List[QVar]
,stm: Statement)

Fig. 2. Structure of a Rebeca program in RebeCaos

RebeCaos includes a parser written with parser combinators that produces
a System from the input text, available at https://github.com/FM-DCC/rebecaos/
blob/v0.1/src/main/scala/rebecaos/syntax/Parser.scala. It does not include type-
checking or other simple analyses, hence some errors are caught only at runtime.

2.2 Semantics in RebeCaos

RebeCaos uses the operational semantics from the literature [5], by evolving a
configuration that captures the state of a program. At each operational step, a
pending message is selected, triggering execution of the body of the associated
method by the receiving rebec, and resulting in an update of the set of pending
messages. RebeCaos supports a timed extension of Rebeca [1] (with delays and
deadlines) and a dynamic extension [21] (with runtime creation of new rebecs).

Some snippets of the implementation are presented in Fig. 3. The full imple-
mentation can be found online at https://github.com/FM-DCC/rebecaos/blob/v0.
1/src/main/scala/rebecaos/backend/Semantics.scala.

Configuration The left of Fig. 3 presents the general structure for a config-
uration St of a running program. This state includes the full Rebeca program
(System), the local state of each rebec (Rebecs), and a bag of messages (Msgs).
In turn, each message describes the receiver rcv, the method name m, the actual
arguments args, the sender snd, and possible time restrictions (a waiting time
before execution tt and an optional deadline dl).

Evolution The right of Fig. 3 presents the signature of the main functions
that define the evolution of a configuration. The initial configuration is built by
initSt, which creates empty states for each rebec declared in the main body, and
initialises the pending messages with the initial methods of each rebec. The
operational semantics is encoded by the next function which, given the current
configuration st, produces a set of possible next configurations labelled by an
action of type Act (describing the message being executed). This next function
is part of the CAOS framework, and exploited to generate the visual analysis in
RebeCaos. Its definition uses auxiliary functions such as enabled, which checks if
a given message can be selected (i.e., it has no pending initial method and it has
the smallest delay to start), and evalStm. The latter evaluates the semantics of
the body of a method using a big-step semantics [5]. Given its non-deterministic
nature, the result is a set of possible outcomes, each of which has an updated
rebec state, a set of outgoing messages, and set of newly produced rebecs.

https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/syntax/Parser.scala
https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/syntax/Parser.scala
https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/backend/Semantics.scala
https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/backend/Semantics.scala

RebeCaos 5

type St = (System, Rebecs, Msgs)
type Rebecs = Map[String,RebecEnv]
type Msgs = Bag[Msg]
case class Msg(
rcv:String,m:String,args:List[Data],
snd:String,tt:Int,dl:Option[Int])

def initSt(s: System): St = //...
def next(st: St): Set[(Act, St)] = //...
def enabled(m: Msg, initials: Set[String],smallestTT: Int)
: Boolean = //...

def evalStm(stm:Statement)(using reb: RebecEnv, syst:System)
: Set[(RebecEnv, Msgs, Rebecs)] = //...

Fig. 3. Snippet of the implementation of the semantics of Rebeca in RebeCaos

val widgets = List(
//...
"Run semantics (state’s view)" -> steps((e:St)=>e, Semantics, Show.apply, a=>Show(a._1), Text),
"Run semantics (sequence chart)" -> steps(..., Mermaid)
//...

)

Fig. 4. Snippet of the configuration file that describes some widgets in RebeCaos

3 RebeCaos at Work

This section describes how to use RebeCaos, a tool for animating the semantics
of Rebeca, as first introduced in our Festschrift contribution [5].

RebeCaos is a Scala implementation with a web-based front-end to explore
the state-space of Rebeca programs. The tool consists of an interactive webpage
that does not rely on a server, and that can easily be used in any browser with
JavaScript support.

We describe how to use RebeCaos guided by an example: a dynamic variation
of the simple toy example�, listed in Fig. 1. In Section 3.4, we present some
initial reachability analyses for Rebeca models (e.g., the possibility of reaching
deadlocks or desirable states), which is a novel contribution with respect to [5].

3.1 Interface of RebeCaos

RebeCaos can be opened by navigating to https://fm-dcc.github.io/rebecaos,
where the user can view an interface similar to the screenshot in Fig. 5. Here we
use the second example, called “[Dyn] Simple” �, which is a variation of the simple
toy example from Fig. 1 that dynamically creates new instances. This interface
includes several widgets, each of which can be collapsed (such as Run semantics
(state’s view)) or expanded (such as Run semantics (sequence chart)). Clicking
the title of a widget toggles between these modes and reloads its content.

In Fig. 5, we provide the above mentioned variation of the simple toy example
in the widget Input Rebeca Program, plus an interactive step-by-step execution
of its semantics using sequence charts. Other examples, including the ones men-
tioned throughout the paper and in [5], can be loaded from the Examples widget.

Widgets are specified in an object that describes the layout of the web-
site (available at https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/
rebecaos/frontend/CaosConfig.scala). A snippet of the code building the widgets
that run the semantics (using the semantics from Fig. 3) is presented in Fig. 4.

https://fm-dcc.github.io/rebecaos/?[Dyn] Simple
https://fm-dcc.github.io/rebecaos
https://fm-dcc.github.io/rebecaos/?[Dyn] Simple
https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/frontend/CaosConfig.scala
https://github.com/FM-DCC/rebecaos/blob/v0.1/src/main/scala/rebecaos/frontend/CaosConfig.scala

6 Proença and ter Beek

Input Rebeca program

Variation of the "Simple" example of aVariation of the "Simple" example of a
Rebeca program from the paper Rebeca program from the paper "Sarir: A"Sarir: A
Rebeca to mCRL2 Translator" (ACSD 2007)Rebeca to mCRL2 Translator" (ACSD 2007)..
This version keeps creating new ExampleThis version keeps creating new Example
rebecs dynamically every 1-2 counts.rebecs dynamically every 1-2 counts.

Examples

Simple [Dyn] Simple [Reach] Simple

Prod-Cons [Dyn] Prod-Cons

[Time] Ticket service

Untimed Ticket Service Sender-receiver

Dining Philosophers Trains

Leader Election HS (fix)

Leader Election LCR

Commit (unsupported-array)

Commit (adapted) Sender-receiver

Prod-Cons (larger)

Spanning-tree (unsupported-casting)

Spanning-tree (adapted)

NOC (unsupported-array)

[Time] Vehicles (unsupported-casting)

View pretty data

Run semantics (state's view)

Run semantics (sequence chart)

Trace: ex1.initial(), [ex1] ex1.add(1)

undo

Enabled
transitions:

[ex1]
v0.initial()

ex1 v0

initial()

add(1)

initial()

add(1)

ex1 v0

Build LTS

Build LTS (explore)

Number of states and edges

Reachability checks

Simple animator of Rebeca, including time and dynamic extensions. Most examples can be found in https://rebeca-

lang.org/examples. Source code available online: https://github.com/fm-dcc/rebecaos (CAOS).

RebeCaos: an animator of Rebeca's semanticsRebeCaos: an animator of Rebeca's semantics

 





reactiveclass Example {
 knownrebecs {}
 statevars {
 int counter;
 Example target;
 }
 msgsrv initial() {
 counter=0;
 target = self;
 target.add(1);}
 msgsrv add(int a) {
 counter = counter + a;
 if (counter == 1)
 target = new Example():();
 target.add(1);
 }
}
main {
 Example ex1():();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Fig. 5. Screenshot of the interface of RebeCaos with a simple dynamic example �

The widget constructor steps receives a pre-processing function, an object that
implements the next function over states in St (Semantics), two functions to
present textual representations of the actions and the states, and a marker (Text
or Mermaid) describing how to interpret the textual representation of the states
(as pure text or as a Mermaid diagram,7 respectively).

3.2 Running Step-by-Step

The widget Run semantics (sequence chart) in Fig. 5 supports a guided step-
by-step execution of an input Rebeca program, following closely the semantics
presented in [5, Sect. 2.2]. The sequence diagram depicts the sequence of called
and processed methods; in this case, the rebec ex1 already processed the methods
initial() and add(1), marked with a solid line, and also created a new rebec
v0 and called its method add(1). On the other hand, neither of the initial and
the add methods have been processed yet, marked with a dashed arrow.

The column on the left of the sequence chart lists the enabled transitions;
in this case there is only one enabled transition named “[ex1] v0.initial()”,
representing a pending method call initial to rebec v0 by triggered by rebec ex1.
7 See https://mermaid.js.org/.

https://fm-dcc.github.io/rebecaos/?
https://mermaid.js.org/

RebeCaos 7

The method add(1) is not yet enabled because initial methods have precedence
over all other methods of the same rebec. By iteratively clicking on an enabled
transition we can grow the sequence chart, producing a trace in which solid
arrows are ordered based on when they are processed, while dashed arrows are
randomly ordered at the bottom, representing the multiset of pending messages.

An alternative widget to build a trace of a Rebeca program is Run semantics
(state’s view), not depicted in the screenshot. This has the same buttons to select
enabled transitions, but instead of the sequence chart it depicts the precise state
of each rebec and the multiset of pending messages.

3.3 Running All Steps

It is often convenient to automatically traverse all possible states, instead of
manually creating possible traces. This is performed by the widget Build LTS, il-
lustrated in [5, Figs. 3 and 4].8 This concrete program was used, e.g., by Khames-
panah et al. [17], and it produces an infinite state space partially represented
in [5, Fig. 4]. Our implementation performs a breath-first traversal, stopping af-
ter a finite number of steps. By using an adaptation of this program without time
references�, included in the examples of our tool, the state space becomes finite,
also depicted in [5, Fig. 4]. The initial parts of these two graphs are identical.
Interestingly, the finite state space for the untimed version has the same shape
as the state space produced by Khamespanah et al. [17] for the timed version,
where they use an optimisation that collapses states that are similar, i.e., with
a behaviour that keeps on repeating itself after some time. This optimisation is
not currently implemented in RebeCaos.

3.4 Reachability Analysis

The widget Reachability checks is a novel contribution to be used as follows. An
input Rebeca program can end with some lines with reachability queries, written
as “reaches EXPR;” (cf. Fig. 6, left side). This new widget traverses the state
space while searching for states where property EXPR holds. It terminates when
all queries have been validated, the state space has been fully traversed, or after
a bound on the number of transitions has been reached (whatever happens first).

An example is displayed in Fig. 6, where we search for the three properties
appended at the end of the input Rebeca program depicted on the left. Reach-
ability queries are written using the same syntax as expressions in Rebeca, with
the exception that variable names must be qualified. For example, ex1.counter
represents the counter variable of rebec ex1. Furthermore, the special keyword
deadlock is a predicate that holds if and only if the state has no outgoing transi-
tions. In the displayed example, the Reachability checks widget of RebeCaos finds
states for only two of the reachability queries (cf. Fig. 6, right side). For each of
these two queries, it provides both a sequence of actions and a description of the
state reached (including variables of the rebecs and the messages in the queue).
8 The widget Build LTS (explore) (cf. Fig. 5) is similar to Built LTS but the state space

is drawn iteratively, requiring the user to click the states that (s)he wants to expand.

https://fm-dcc.github.io/rebecaos/?Untimed Ticket Service
https://fm-dcc.github.io/rebecaos/?Untimed Ticket Service

8 Proença and ter Beek

Input Rebeca program Reachability checks

Found state where 'ex2.counter == 1' after
 ex1.initial()
 ex2.initial()
 [ex1] ex2.add(1):
Rebecs
ex1 => [self:&ex1,now:0,ex:&ex2,sender:&,counter:0]:Example
ex2 => [now:0,ex:&ex1,self:&ex2,a:1,sender:&ex1,counter:1]:Example
Messages
{[ex2] ex1.add(1)}

Found state where 'deadlock' after
 ex1.initial()
 ex2.initial()
 [ex2] ex1.add(1)
 [ex1] ex2.add(1):
Rebecs
ex1 => [now:0,ex:&ex2,self:&ex1,a:1,sender:&ex2,counter:1]:Example
ex2 => [now:0,ex:&ex1,self:&ex2,a:1,sender:&ex1,counter:1]:Example
Messages
{}

Simple animator of Rebeca, including time and dynamic extensions. Most examples can be found in https://rebeca-

lang.org/examples. Source code available online: https://github.com/fm-dcc/rebecaos (CAOS).

RebeCaos: an animator of Rebeca's semanticsRebeCaos: an animator of Rebeca's semantics



reactiveclass Example {
 knownrebecs { Example ex;}
 statevars { int counter; }
 msgsrv initial() {
 counter=0;
 ex.add(1);}
 msgsrv add(int a) {
 if (counter < 100)
 {counter = counter + a;}
 }
}
main {
 Example ex1(ex2):();
 Example ex2(ex1):();
}
reaches ex1.counter > 1;
reaches ex2.counter==1;
reaches deadlock;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Fig. 6. Reachability feedback using our toy example with reachability queries �

3.5 Beyond RebeCaos

Existing tools for Rebeca, like Afra [16], use an extended version of the syntax
presented in [5, Sect. 2.1]. These extensions—including, e.g., arrays, syntactic
macros (with the env keyword), and type casting—are not yet implemented in
RebeCaos, as they are typically not needed for the examples from the literature.

Furthermore, as mentioned in the Introduction, Rebeca has been equipped
with a probabilistic semantics (cf., e.g., [27,12]) and this also has not been im-
plemented in RebeCaos so far. RebeCaos moreover provides neither support for
model checking nor for code generation, mainly because RebeCaos is not meant
to substitute an IDE for Rebeca, but rather to provide an easy entry point.

RebeCaos can be useful not only to help teaching and explaining the insights
of Rebeca, but also as a relatively easy and intuitive tool for quick feedback on
experiments with new extensions or with variations. One could, for instance,
implement a semantics that preserves the order of method calls, replacing the
multiset of pending messages B by a queue, or attempt to define a type-checking
algorithm that verifies conformity with a given behavioural type.

4 Conclusion

We presented RebeCaos, a user-friendly web-based front-end tool based on our
Caos library for Scala, and illustrated by means of examples how to animate
Rebeca extended with time and dynamism. In particular, we presented some
initial reachability analyses for Rebeca models (e.g., the possibility of reaching
deadlocks or desirable states), which is a novel contribution. We expect to include
a generalisation of this reachability search in a future version of Caos.

In the future, we might extend the syntax and semantics of Rebeca cur-
rently supported by RebeCaos with a means to deal with probabilistic exten-
sions of Rebeca, with support for the symbolic time representation presented by
Khamespanah et al. [17], or with entirely new extensions such as an experimental
type-checking algorithm for verifying conformity with a given behavioural type.

https://fm-dcc.github.io/rebecaos/?[Reach] Simple

RebeCaos 9

Acknowledgements

This work was funded by the MUR PRIN 2020TL3X8X project T-LADIES (Typeful
Language Adaptation for Dynamic, Interacting and Evolving Systems) and by the
CNR project “Formal Methods in Software Engineering 2.0”, CUP B53C24000720005.
This work is also supported by the CISTER Research Unit (UIDP/UIDB/04234/2020),
financed by National Funds through FCT/MCTES (Portuguese Foundation for Science
and Technology), and by the EU/Next Generation, within the Recovery and Resilience
Plan, within project Route 25 (TRB/2022/00061 – C645463824-00000063).

References

1. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sir-
jani, M.: Modelling and Simulation of Asynchronous Real-Time Systems using
Timed Rebeca. In: Mousavi, M.R., Ravara, A. (eds.) Proceedings of the 10th In-
ternational Workshop on the Foundations of Coordination Languages and Soft-
ware Architectures (FOCLASA 2011). EPTCS, vol. 58, pp. 1–19 (2011). https:
//doi.org/10.4204/EPTCS.58.1

2. ter Beek, M., Broy, M., Dongol, B.: The Role of Formal Methods in Computer
Science Education. ACM Inroads 15(4), 58–66 (2024). https://doi.org/10.1145/
3702231

3. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can we Communicate?
Using Dynamic Logic to Verify Team Automata. In: Chechik, M., Katoen, J.P.,
Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 122–141. Springer (2023).
https://doi.org/10.1007/978-3-031-27481-7_9

4. ter Beek, M.H., Hennicker, R., Proença, J.: Team Automata: Overview and
Roadmap. In: Castellani, I., Tiezzi, F. (eds.) COORDINATION 2024. LNCS, vol.
14676, pp. 161–198. Springer (2024). https://doi.org/10.1007/978-3-031-62697-5_
10

5. ter Beek, M.H., Proença, J.: Animating Rebeca. In: Lee, E.A., Mousavi, M.R.,
Talcott, C. (eds.) Rebeca for Actor Analysis in Action. LNCS, vol. 15560, pp.
182–194. Springer (2025). https://doi.org/10.1007/978-3-031-85134-6_8

6. Cledou, G., Edixhoven, L., Jongmans, S.S., Proença, J.: API Generation for Multi-
party Session Types, Revisited and Revised Using Scala 3. In: Ali, K., Vitek, J.
(eds.) Proceedings of the 36th European Conference on Object-Oriented Program-
ming (ECOOP 2022). LIPIcs, vol. 222, pp. 27:1–27:28. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.27

7. Edixhoven, L., Jongmans, S.S.: Realisability of Branching Pomsets. In: Tapia Tar-
ifa, S.L., Proença, J. (eds.) FACS 2022. LNCS, vol. 13712, pp. 185–204. Springer
(2022). https://doi.org/10.1007/978-3-031-20872-0_11

8. Edixhoven, L., Jongmans, S.S., Proença, J., Cledou, G.: Branching Pomsets for
Choreographies. In: Aubert, C., Di Giusto, C., Safina, L., Scalas, A. (eds.) Pro-
ceedings of the 15th Interaction and Concurrency Experience (ICE 2022). EPTCS,
vol. 365, pp. 37–52 (2022). https://doi.org/10.4204/EPTCS.365.3

9. Fredlund, L., Svensson, H.: McErlang: a model checker for a distributed functional
programming language. In: Proceedings of the 12th International Conference on
Functional Programming (ICFP 2007). pp. 125–136. ACM (2007). https://doi.org/
10.1145/1291151.1291171

https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.1145/3702231
https://doi.org/10.1145/3702231
https://doi.org/10.1145/3702231
https://doi.org/10.1145/3702231
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.1007/978-3-031-62697-5_10
https://doi.org/10.1007/978-3-031-85134-6_8
https://doi.org/10.1007/978-3-031-85134-6_8
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.1007/978-3-031-20872-0_11
https://doi.org/10.1007/978-3-031-20872-0_11
https://doi.org/10.4204/EPTCS.365.3
https://doi.org/10.4204/EPTCS.365.3
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1145/1291151.1291171

10 Proença and ter Beek

10. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 Expert Survey on Formal
Methods. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327,
pp. 3–69. Springer (2020). https://doi.org/10.1007/978-3-030-58298-2_1

11. Hojjat, H., Sirjani, M., Mousavi, M.R., Groote, J.F.: Sarir: A Rebeca to mCRL2
Translator. In: Proceedings of the 7th International Conference on Application of
Concurrency to System Design (ACSD 2007). pp. 216–222. IEEE (2007). https:
//doi.org/10.1109/ACSD.2007.62

12. Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H., Cimini, M.: PTRebeca:
Modeling and analysis of distributed and asynchronous systems. Sci. Comput. Pro-
gram. 128, 22–50 (2016). https://doi.org/10.1016/J.SCICO.2016.03.004

13. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine
of Rebeca. In: Proceedings of the 21st Symposium on Applied Computing (SAC
2006). pp. 1810–1815. ACM (2006). https://doi.org/10.1145/1141277.1141704

14. Jahandideh, I., Ghassemi, F., Sirjani, M.: Hybrid Rebeca: Modeling and Analyzing
of Cyber-Physical Systems. In: Chamberlain, R.D., Taha, W., Törngren, M. (eds.)
WESE 2018. LNCS, vol. 11615, pp. 3–27. Springer (2018). https://doi.org/10.1007/
978-3-030-23703-5_1

15. Jongmans, S.S., Proença, J.: ST4MP: A Blueprint of Multiparty Session Typ-
ing for Multilingual Programming. In: Margaria, T., Steffen, B. (eds.) ISoLA
2022. LNCS, vol. 13701, pp. 460–478. Springer (2022). https://doi.org/10.1007/
978-3-031-19849-6_26

16. Khamespanah, E., Sirjani, M., Khosravi, R.: Afra: An Eclipse-Based Tool with
Extensible Architecture for Modeling and Model Checking of Rebeca Family Mod-
els. In: Hojjat, H., Ábrahám, E. (eds.) FSEN 2023. LNCS, vol. 14155, pp. 72–87.
Springer (2023). https://doi.org/10.1007/978-3-031-42441-0_6

17. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184–204 (2015). https://doi.org/10.
1016/J.SCICO.2014.07.005

18. Khosravi, R., Khamespanah, E., Ghassemi, F., Sirjani, M.: Actors Upgraded
for Variability, Adaptability, and Determinism. In: de Boer, F.S., Damiani, F.,
Hähnle, R., Johnsen, E.B., Kamburjan, E. (eds.) Active Object Languages: Cur-
rent Research Trends, LNCS, vol. 14360, pp. 226–260. Springer (2024). https:
//doi.org/10.1007/978-3-031-51060-1_9

19. Proença, J., Edixhoven, L.: Caos: A Reusable Scala Web Animator of Op-
erational Semantics. In: Jongmans, S.S., Lopes, A. (eds.) COORDINATION
2023. LNCS, vol. 13908, pp. 163–171. Springer (2023). https://doi.org/10.1007/
978-3-031-35361-1_9

20. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using Timed Rebeca. Sci. Comput. Program. 89, 41–68 (2014). https://doi.org/
10.1016/J.SCICO.2014.01.008

21. Sirjani, M.: Formal Specification and Verification of Concurrent and Reactive Sys-
tems. Ph.D. thesis, Sharif University of Technology (June 2004)

22. Sirjani, M.: Rebeca: Theory, Applications, and Tools. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 102–126.
Springer (2006). https://doi.org/10.1007/978-3-540-74792-5_5

23. Sirjani, M., Jaghoori, M.M.: Ten Years of Analyzing Actors: Rebeca Experience. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 20–56. Springer (2011). https://doi.org/
10.1007/978-3-642-24933-4_3

https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1109/ACSD.2007.62
https://doi.org/10.1016/J.SCICO.2016.03.004
https://doi.org/10.1016/J.SCICO.2016.03.004
https://doi.org/10.1145/1141277.1141704
https://doi.org/10.1145/1141277.1141704
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-030-23703-5_1
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-031-19849-6_26
https://doi.org/10.1007/978-3-031-42441-0_6
https://doi.org/10.1007/978-3-031-42441-0_6
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1016/J.SCICO.2014.07.005
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-51060-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3

RebeCaos 11

24. Sirjani, M., Khamespanah, E.: On Time Actors. In: Ábrahám, E., Bon-
sangue, M.M., Johnsen, E.B. (eds.) Theory and Practice of Formal Meth-
ods. LNCS, vol. 9660, pp. 373–392. Springer (2016). https://doi.org/10.1007/
978-3-319-30734-3_25

25. Sirjani, M., Shali, A., Jaghoori, M.M., Iravanchi, H., Movaghar, A.: A Front-End
Tool for Automated Abstraction and Modular Verification of Actor-Based Models.
In: Proceedings of the 4th International Conference on Application of Concurrency
to System Design (ACSD 2004). pp. 145–150. IEEE (2004). https://doi.org/10.
1109/CSD.2004.1309125

26. Tinoco, D., Madeira, A., Martins, M.A., Proença, J.: Reactive Graphs in Action. In:
Marmsoler, D., Sun, M. (eds.) FACS 2024. LNCS, vol. 15189, pp. 97–105. Springer
(2024). https://doi.org/10.1007/978-3-031-71261-6_6, cf. Reactive graphs in ac-
tion (extended version), arXiv:2407.14705 [cs.PL], https://doi.org/10.48550/arXiv.
2407.14705

27. Varshosaz, M., Khosravi, R.: Modeling and Verification of Probabilistic Ac-
tor Systems Using pRebeca. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012.
LNCS, vol. 7635, pp. 135–150. Springer (2012). https://doi.org/10.1007/
978-3-642-34281-3_12

28. Zakeriyan, A., Khamespanah, E., Sirjani, M., Khosravi, R.: Jacco: more efficient
model checking toolset for Java actor programs. In: Boix, E.G., Haller, P., Ricci, A.,
Varela, C.A. (eds.) Proceedings of the 5th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control (AGERE! 2015). pp. 37–44.
ACM (2015). https://doi.org/10.1145/2824815.2824819

https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1109/CSD.2004.1309125
https://doi.org/10.1007/978-3-031-71261-6_6
https://doi.org/10.1007/978-3-031-71261-6_6
https://doi.org/10.48550/arXiv.2407.14705
https://doi.org/10.48550/arXiv.2407.14705
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1007/978-3-642-34281-3_12
https://doi.org/10.1145/2824815.2824819
https://doi.org/10.1145/2824815.2824819

	RebeCaos

