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Abstract

VirtuosoNextTM is a distributed real-time operating system (RTOS) featuring a generic programming
model dubbed Interacting Entities. This paper focuses on these interactions, implemented as so-called
Hubs. Hubs act as synchronisation and communication mechanisms between the application tasks and
implement the services provided by the kernel as a kind of Guarded Protected Action with a well defined
semantics. While the kernel provides the most basic services, each carefully designed, tested and optimised,
tasks are limited to this handful of basic hubs, leaving the development of more complex mechanisms up to
application specific implementations.

In this work we investigate how to support a programming paradigm to compositionally build new
services, using notions borrowed from the Reo coordination language, and relieving tasks from coordination
aspects while delegating them to the hubs. We formalise the semantics of hubs using an automata model
with notions of dataflow and time, identify the behaviour of existing hubs, and propose an approach to
build new hubs by composing simpler ones. We also provide open-source tools and methods to analyse
and verify hubs under our automata interpretation, including time-sensitive behaviour via the Uppaal
model checker, usable on http://arcatools.org/hubs. In a first experiment several hub interactions are
combined into a single more complex hub, which raises the level of abstraction and contributes to a higher
productivity for the programmer. We illustrate the proposed tools and methods by verifying key properties
on different interaction scenarios between tasks and the specified hub. Finally, we investigate the impact on
the performance by comparing different implementations on an embedded board.
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1 Introduction

When developing software for resource-constrained embedded systems, optimising the utilization of
the available resources is a priority. In such systems, many system-level details can influence time
and performance in the execution, such as interactions with the cache, mismatches between CPU
clock speed, the speed of the external memory, and connected peripherals, leading to unpredictable
execution times. VirtuosoNext [1] is a Real Time operating system developed by the company
Altreonic that runs efficiently on a range of small embedded devices, and is accompanied by a set of
visual development tools – Visual Designer – that generates the application framework and provides
tools to analyse the timing behaviour in detail.
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2 Verification of Real-Time Coordination in VirtuosoNext

The developer is able to organise a program into a set of individual tasks, scheduled and
coordinated by the VirtuosoNext kernel. The coordination of tasks is a non-trivial process. A
kernel process uses a priority-based preemptive scheduler deciding which task to run at each time,
with hub services used to synchronise and pass data between tasks. A fixed set of hubs is made
available by the Visual Designer, which are used to coordinate the tasks. For example, a FIFO
hub allows one or more values to be buffered and consumed exactly once, a Semaphore hub uses
a counter to synchronise tasks based on counting events, and a Port hub synchronises two tasks,
allowing data to be copied between the tasks without being buffered. However, the set of available
hubs is limited. Creating new hubs to be included in the mainline distribution is difficult since each
hub must be carefully designed, model checked, implemented and tested. It is still possible for users
to create specific hubs in their installations, however they would need to fully implement them,
losing the assurances of existing hubs.

This paper provides the following contributions. Parts in bold denote new results regarding the
associated conference publication [2].

The formalisation of hubs as timed (hub) automata (Section 3),
capturing hubs currently present in VirtuosoNext (without real time),
suggesting new core hubs for VirtuosoNext (some with real time).

A compositional semantics for hubs as timed automata (Section 4).
Online tools (http://arcatools.org/hubs) to analyse hubs (Section 5),
using a DSL to specify hubs built by composing simpler hubs,
using a DSL to specify timed contracts of tasks’ interactions,
generating graphs and composed automata with dynamic layouts,
introducing a temporal logic focused on interactions,
generating and running extended UPPAAL specifications and logic formulas, and
including other analysis of hubs.

Analysis of time traces of hubs on an embedded platform (Section 6).

Using the existing set of hubs in VirtuosoNext, we can express in our DSL the scenario {task<t1>(W
s!) semaphore(s,t) task<t2>(2 t?) every 3}, where a semaphore is connecting 2 tasks via the
ports s and t. Here s waits indefinitely, marked with W , and t waits for at most 2 time units before
timing out, trying every 3 time units. We can then specify and verify temporal properties of this
scenario using our framework, such as “every time s fires, t will eventually fire in less than 3 time
units”. The verification process uses Uppaal, by encoding properties and models, hiding from the
user the underlying automata, including auxiliary variables and clocks.

This paper and the proposed framework address hubs that go beyond what is currently supported
by VirtuosoNext, by describing new hubs (not part of VirtuosoNext’s), and allowing hubs to be
connected to other hubs directly. The new hubs include a synchronous duplicator that requires all
output ports to synchronise, and a timer that can buffer a value for a certain time. The composition
of hubs maps introduces the possibility of specifying complex interaction protocols, inspired in
Reo’s syntax [3] and real-time semantics [4, 5, 6]. Currently, without these complex protocols, the
orchestration code must be intertwined with the tasks’ behaviour. Our tools provide some insights
on the code size, required memory, and number of context switches of a composition of hubs, which
can be leveraged by Altreonic to produce new hubs.

http://arcatools.org/hubs
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1 while(true){
2 test(SemaB,
3 wait)
4 put(Actuate,
5 noWait)
6 signal(SemaA,
7 timeout=10)
8 }

1 while(true){
2 get(Actuate,
3 wait)
4 }

1 while(true){
2 signal(SemaB,
3 timeout=10)
4 test(SemaA,
5 wait)
6 put(Actuate,
7 noWait)
8 }

Figure 1 Example application in VirtuosoNext, whereby two tasks communicate with an actuator in a
round robin sequence through two semaphores and a port.

2 Distributed tasks in VirtuosoNext

A VirtuosoNext system is executed on a target system, composed of processing nodes and com-
munication links. Orthogonally, an application consists of a number of tasks coordinated by hubs.
Unlike links, hubs are independent of the hardware topology. When building application images,
the code generators of VirtuosoNext map tasks and hubs onto specific nodes, taking into account
the target platforms. A special kernel task, running on each node, controls the scheduling of tasks,
the hub services, and the internode communication and routing.

This section starts by giving a small overview of how tasks are built and composed, followed by
a more detailed description over existing hubs.

2.1 Example of an architecture
A program in VirtuosoNext is a fixed set of tasks, each running on a given computational node, and
interacting with each other via dedicated interaction entities, called hubs. Consider the example
architecture in Fig. 1, where tasks Task1 and Task2 send instructions to an Actuator task in a round
robin sequence. SemaphoreA tracks the end of Task1 and the beginning of Task2, while SemaphoreB
does the reverse, and port Actuate forwards the instructions from each task to the Actuator. In this
case two Semaphore hubs were used, depicted by the diamond shape with a ’+’, and a Port hub,
depicted by a box with a ’P’. Tasks and hubs can be deployed on different processing nodes, but
this paper will consider only programs deployed in the same node, and hence omit references to
nodes. This and similar examples can be found in the VirtuosoNext’s manual [7].

2.2 Task coordination via Hubs
Hubs are coordination mechanisms between tasks that coordinate via put and get service requests
to transfer information from one task to another. This can be a data element, the notification of an
event occurrence, or some logical entity that needs to be protected for atomic access. A call to a
hub constitutes a descheduling point in the tasks’ execution. The behaviour depends on which hub
is selected, e.g. tasks can simply synchronise (with no data being transferred) or synchronise while
transferring data (either buffered or non-buffered). Other hubs include the Resource hub, often
used to request atomic access to a resource, and hubs that act as gateways to peripheral hardware.

Any number of tasks can make put or get requests to a given hub. Such requests will be queued
in waiting lists (at each corresponding hub) until they can be served. Waiting lists are ordered by
task priority – requests get served by following such an order. In addition, requests can use different
interaction semantics. These interaction semantics determine how a task waits on a request to
succeed. There are three synchronous and one asynchronous interaction semantics in VirtuosoNext.
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Table 1 Examples of existing Hubs in VirtuosoNext

Hub Waiting Lists for Service Requests

P Port put – signals some data entering the port; and get – signals some data leaving
the port. Both must synchronize to succeed.

Event raise – sets an event, succeeding if not set yet; and test – checks if an event
happened, in which case succeeds, and clears the event.

D DataEvent update – sets an event and buffers some data, overriding any previous data.
Always succeeds; read – reads the data. Succeeds if the event is set; and clear
– clears the buffer and the event.

Semaphore signal – signals the semaphore, incrementing an internal counter c. Succeeds
if c < MAX; and test – checks if c > 0, in which case succeeds, and decrements c.

Resource lock – locks a logical resource and buffers the id of the requesting task. Succeeds
only if the resource is free; and unlock – unlocks the resource. Succeeds only if
locked by the same task.

FIFO enqueue – buffers some data in the queue. Succeeds if the queue is not full; and
dequeue – gets data from the queue. Succeeds if the queue is not empty.

BB Blackboard update – buffers some data, overriding any previews data, incrementing a
sequence number. Always succeeds; read – reads the data and the sequence
number. Succeeds if not empty. Reader tasks can use the sequence number to
attest the freshness of the data; and wipe – clears the buffer.

Here we focus on the first three. These can be: waiting (W) – a task waits indefinitely until the
request can be served; non-waiting (NW) – either the requests is served without delay or the request
fails; waiting with time-out (WT) – waits either until the request is served or the specified time-out
has expired. In our example in Figure 1, observe that both tasks send signal messages with a
timeout of 10ms, wait indefinitely for test messages, and send messages to the actuator without
waiting to synchronise.

There are various hubs available, each with its predefined semantics [7]. Table 1 describes some
of them and their put and get service request methods.

3 Deconstructing Hubs via Timed Automata

This section formalises hubs, using an automata model with variables and time, providing both a
syntax (Section 3.1) and a semantics (Section 3.2).

3.1 Syntax
Our previous publication [2] formalises the behavioural semantics of hubs using an automata model
with variables, called Hub Automata. Here, we present an extension of this model with dense time,
as in timed automata [8], which we call Timed Hub Automata (THA), which will be able to capture
interaction with time-sensitive tasks (Section 5.1).

Informally, a timed hub automaton is a finite automaton enriched with clocks over R≥0, variables
over a data domain D, and an initial valuation of such variables; and where transitions are enriched
with multi-actions, and logic guards and updates over so-called clocks and updates. We call clock
constraints the guards over clocks and clock resets the updates over clocks that set a given collection
of clocks to zero.

A clock c is a logical entity that captures the (continuous and dense) time that has passed since
it was last reset, and which can only be inspected or reset. When an automaton evolves over time,
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all clocks are incremented simultaneously. Initially, all clocks are set to zero.
In the following, we provide a syntax for clock and data constraints, clock and data updates,

and THA.

I Definition 1 (Clock and Data Constraints). A clock constraint over a set of clocks C, written
cc ∈ C(C) is defined by:

cc ∶∶= c� n ∣ c − c� n ∣ cc ∧ cc ∣ ⊺ (clock constraint)

where c ∈ C, n ∈ N, and � ∈ {<,≤,=,>,≥}. A data constraint (or guard) over a set of variables X ,
written g ∈ Φ(X), is defined by:

g ∶= ⊺ ∣ pred(x) ∣ g ∧ g ∣ ¬g (data constaint)

where x ∈ X is a variable, x is a sequence of variables, and pred ∈ Pred is a predicate. The remaining
logic connectives can be achieved in the usual way g ∨ g = ¬(¬g ∧ ¬g) and � = ¬⊺.

I Definition 2 (Clock and data updates). A clock update (or clock reset) over a set of clocks C,
written r ⊆ C, is a set of clocks that are set to zero, also written as c1 ← 0; c2 ← 0 instead of {c1, c2}.

A data update over a set of variables X , written u ∈ U(X), is defined by:

u ∶= x← e ∣ u;u ∣ u∣u ∣ ε (data update)
e ∶= d ∣ x ∣ f(x) (expression)

where d ∈ D is a data value, and f ∈ F is a deterministic function without side-effects. The construct
u;u denotes sequential composition, u∣u denotes parallel composition, and ε denotes an empty
update.

For example, the update x ← 2; (y ← z + 1 ∣ z ← z ∗ 2) starts by setting x to 2, and then sets
y to z + 1 and z to z ∗ 2 in some (a-priori unknown) order. Note that the order of evaluation of
the parallel assignments will affect the final result. We avoid non-determinism by following up
dependencies (e.g., z ← z ∗ 2 should be executed before y ← z + 1) and by requiring that the order
of executing any two independent assignments does not affect the result. This will be formalised
later in the paper.

Hubs interact with the environment through ports that represent actions. Let P be the set
of all possible ports uniquely identified. For a p ∈ P, p̂ is a variable holding a data value flowing
through port p. We use P̂ to represent the set of all data variables associated to ports in P.

I Definition 3 (Timed Hub Automata (THA)). A timed hub automaton is a tuple H = (L, `0, P,X ,
δ0,C, I,→) where L is a finite set of locations, `0 is the initial location, P = PI ⊎ PO, is a finite set
of ports, with PI and PO representing the disjoint sets of input and output ports, respectively, X
is a finite set of internal variables, δ0 ∶ X → D is the initial valuation that maps variables in X to
a value in D, C is a finite set of clocks, I ∶ L→ C(C) is the invariant function that assigns clock
constraints to locations, and → ⊆ L ×Φ(X ∪ P̂) × C(C) × 2P × U(X ∪ P̂) × 2C ×L is the transition
relation.

For a given transition (`, g, cc, ω, u, r, `′) ∈→, also written ` g,cc,ω,u,rÐÐÐÐÐ→ `′, ` is the source location, g
and cc are the guard and clock constraint defining the enabling condition, ω is the set of ports
triggering the transition, u is the update triggered, r is the set of clocks to reset, and `′ is the target
location. The set X represents internal variables know only by the automaton, while P̂ represents
external variables, known also by the environment.
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A transition `
g,cc,ω,u,rÐÐÐÐÐ→ `′ is enabled only if (1) all of its ports ω are ready to be executed

simultaneously, and (2) the current variable valuation and clock valuation satisfy the associated
guard g and clock constraint cc, respectively. Performing this transition means applying the update
u to the current valuation, reseting the clocks in r, and moving to location `′. This is formalised in
the follow up section.

Fig. 2 depicts the THA for each of the hubs described in Section 2.2, except the Resource hub
(for space restrictions), and includes new hubs that are not yet implemented by VirtuosoNext,
marked with ‘*’. Most of the automata do not include clocks, i.e., they are not time-sensitive, since
time constraints will be provided by the environment (the tasks). The new hubs illustrate two
categories of hubs not currently exploited in VirtuosoNext: (1) providing a handshake of more than
2 ports, and (2) including time-dependent behaviour. For simplicity, we omit location invariants
and guards that are trivially satisfied, i.e. ⊺.

Example: FIFO. Consider the Hub Automaton for the FIFO hub (Fig. 2), implemented using an
internal circular queue, with size N and with elements of type T . Initially, the FIFO is at location
idle and its internal variables are assigned as follows: c↦0, f ↦0, p↦0, and bfi ↦ null for all
i ∈ {0 . . .N − 1}. Here c is the current number of elements in the queue, f and p are the pointers
to the front and last empty place of the queue, respectively, and each bfi holds the value of the
i-th position in the queue. The FIFO can enqueue an element —if the queue is not full (c < N )—
storing the incoming data value in bfp, and increasing the c and p counters; or it can dequeue an
element—if the queue is not empty (c ≥ 1 ), updating the corresponding variables.

Note that more than one task can be using the same port of a given hub. In these cases
VirtuosoNext selects one of the tasks to be executed, using its scheduling algorithm. The semantics
of this behaviour is illustrated in the automaton of Port+, that uses multiple incoming and outgoing
ports, denoting all possible combinations of inputs and outputs. This exercise can be applied to
any hub other than the Port hub.

Example: Duplicator and Drain. Both the Duplicator and the Drain hubs, inspired by Reo
connectors, do not exist yet in VirtuosoNext. The Duplicator is a variation of the Port hub that
broadcasts a given input to all its outputs atomically, i.e., all outgoing ports must receive the
data message before the original sender can resume its execution. The Drain is another variation
of the Port hub that ignores data values, and forces all participating ports to synchronise before
proceeding.

Example: P-Timer and B-Timer The P-Timer(t, T ) (precise-timer) and B-Timer(t, T ) (bounded-
timer) hubs are a variation of DataEvent(1, T ) with time constraints. P-Timer(t, T ) buffers a
received value for precisely t time units, and then sends it to its outgoing port, and B-Timer(t, T )
buffers a value for at most t time units, after which the data value is discarded.

Observe that the P-Timer can produce a timelock, i.e., a deadlock caused by the model forbidding
time to pass, depending on the availability of their ports. More specifically, when it buffers a value
for t time units, but the port test is not available to communicate. We consider this to be neither
a problem of the THA formalism, nor a problem of the P-Timer hub. Instead, we consider it a
modelling flaw when combining a P-Timer with an incompatible environment, similarly to deadlocks
that arise from combining a Semaphore with an environment that tries to perform a test before
any signal being sent. As such, we find it crucial to provide tools to detect undesired (and desired)
behaviour statically, and later propose the use of the Uppaal model checker for THA.
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Hub Automaton Hub Automaton

P Port
X = ∅

idle
put∣get

ĝet← p̂ut

Event
X = ∅

false true

raise

test

P Port+

X = ∅

idle

put1 ∣get1

ĝet1 ← p̂ut1

put2 ∣get1

ĝet1 ← p̂ut2

put2 ∣get2

ĝet2 ← p̂ut2

put1 ∣get2

ĝet2 ← p̂ut1

Semaphore
X = {c ∶ N}

δ0 = {c↦ 0}
idle

signal

⟨c < MAX⟩

c← c + 1

test

⟨c > 0⟩

c← c − 1

D Duplicator∗

X = ∅

idle

put1 ∣get1 ∣get2

ĝet1 ← p̂ut1 ∣

ĝet2 ← p̂ut1

put2 ∣get1 ∣get2

ĝet1 ← p̂ut2 ∣

ĝet2 ← p̂ut2

Drain∗
X = ∅ idle

put1 ∣put2

BT B-Timer (t,T)
X = {bf ∶ T}

C = {c}

δ0 = {bf ↦ null}

idle set

c≤t

set

bf ← ŝet c←0
⟨c=t⟩

⟨c<=t⟩

test t̂est← bf

PT P-Timer (t,T)
X = {bf ∶ T}

C = {c}

δ0 = {bf ↦ null}

idle set
c≤t

set

bf ← ŝet c←0

⟨c=t⟩

test t̂est← bf

Hub Automaton

D DataEvent (T)
X = {bf ∶ T}

δ0 = {bf ↦ null}
false true

update

bf ← ûpdate

read

r̂ead← bf

clear

update

bf ← ûpdateclear

FIFO (N,T)
X = {c∶N, f ∶N, p∶N}

∪ {bfi∶T ∣ i < N}

δ0 = {c, f, p} ↦ 0
∪ {bfi ↦ null ∣ i < N}

idle

dequeue

⟨c ≥ 1⟩

c← c − 1;

̂dequeue← bff ;

f ← (f + 1) mod N

enqueue

⟨c <N⟩

c← c + 1;

bfp ← ̂enqueue;

p← (p + 1) mod N

BB Blackboard (T)
X = {bf ∶ T,u ∶ N}

δ0 = {bf ↦ null}
∪{u↦ 0}

empty nonempty

update

bf ← ûpdate;

u← u + 1

wipe

bf ← null

read

r̂ead← (bf,u)

update

bf ← ûpdate;

u← (u + 1) mod MAX
wipe

bf ← null

Figure 2 Automata semantics of hubs – from VirtuosoNext except those with ∗. Port+ captures how
VirtuosoNext interprets multiple calls to the same port.
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3.2 Semantics
This section formalises the satisfaction of (clock and data) constraints, the effect of updating (clock
and data) valuations, and the evolution of THA.

I Definition 4 (Clock valuation and satisfaction). A clock valuation η for a set of clocks C is a
function η ∶ C → R≥0 that assigns each clock c ∈ C to its current value η(c). We use RC to refer to
the set of all clock valuations over a set of clocks C.

The satisfaction of a clock constraint cc by a valuation η, written η ⊧ cc, is defined as follows:

η ⊧ ⊺ always η ⊧ cc1 ∧ cc2 if η ⊧ cc1 and η ⊧ cc2
η ⊧ c� n if η(c)� n η ⊧ c1 − c2 � n if η(c1) − η(c2)� n

(clock satisfaction)

where � ∈ {<,≤,=,>,≥}.

I Definition 5 (Data valuation and satisfaction). A data valuation δ for a set of variables X is a
function δ ∶ X → D that assigns every variable x ∈ X to its current value δ(x). We use DX to refer
to the set of all data valuations over a set of variables X .

The satisfaction of a data constraint g by a valuation δ, written δ ⊧ g, is defined as follows,
assuming an interpretation I of predicates.

δ ⊧ ⊺ always δ ⊧ φ1 ∧ φ2 if δ ⊧ φ1 and δ ⊧ φ2
δ ⊧ � never δ ⊧ φ1 ∨ φ2 if δ ⊧ φ1 or δ ⊧ φ2
δ ⊧ ¬φ if δ /⊧ φ δ ⊧ pred(x) if I(pred)(δ(x)) evaluates to true

(data satisfaction)

I Definition 6 (Clock and data updates). Let η0(c) = 0 for all c ∈ C be the initial clock valuation
that sets to 0 all clocks in C. We use η + d, d ∈ R≥0, to denote the clock assignment that maps all
c ∈ C to η(c) + d, and let η[r ↦ 0], r ⊆ C, be the clock assignment that maps all clocks in r to 0 and
agrees with η for all other clocks in C ∖ r.

Given a serialisation function σ that converts general updates into sequences of assignments,
the application of an update u to a valuation δ is given by δ[σ(u)], where δ[–] is defined below.

δ[x← d](x) = d
δ[x← y](x) = δ(y)

δ[x← f(y)](x) = f(δ(y))

δ[x← e](y) = δ(y) if x ≠ y
δ[u1;u2](x) = (δ[u1])[u2](x)

Here a serialisation function is any function that maps each data update (c.f. Def. 2) to a new
one that contains the same assignments and does not use the parallel operator. Section 4.3 will
present the specific serialisation used in our prototype implementation. This serialization function
is partial–i.e., it rejects parallel updates with cyclic variable dependencies. We will omit σ when
not relevant.

Serialisable THA. We say a THA is serialisable if the serialization function is defined for all its
updates, and we say it is serialised, if non of its updates contains the parallel operator.

The execution of an automaton is defined as sequences of steps that do not violate the guards, and
such that each step updates the current variable valuation according to the corresponding update.
A configuration (`, δ, η, α ) captures the current location `, the variable assignment δ ∶ X → D, the
clock valuation η, and the set of ports α that were last fired. Each step is either an action—denoted
by a partial valuation function δio ∶ P̂ → D that maps variables associated to ports to their current
value in the environment—, or a time delay t ∈ R≥0. Actions update `, δ, and α , and time delays
update η. We use δ ⊎ δio to denote the map δ extended with δio.

Extension for verification. We extend the core syntactic and semantic rules of THA only for
verification purposes, discussed further in Section 5.2. We highlight these extensions, which can
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be omitted without affecting the core semantics of THA. We extend every THA with the set α ,
mentioned above, and with extra variables and clocks: for every port a there is a clock ta that is
set to 0 when a is fired, and a boolean variable donea that is initially false and set to true when a
fires. We denote the new sets of variables and clocks DP and CP . Let S be a set of ports, we use
two auxiliary functions done(S) = {donea ↦ true ∣ a ∈ S} and reset(S) = {ta ↦ 0 ∣ a ∈ S}, that
set done and clock variables of ports in S to true and to 0, respectively.

I Definition 7 (Semantics of Hubs). The semantics of a serialised THA H = (L, `0, P,X ⊎DP , δ0,

C ⊎CP , I,→) is given by the rules below, starting on configuration (`0, δ0, η0, α ).

(act)

`
g,cc,dom(δio),u,rÐÐÐÐÐÐÐÐÐ→ `′ η ⊧ cc δ ⊎ δio ⊧ g

η′ = η[r ↦ 0] ⊎ reset(dom(δio))
δ′ = (δ ⊎ δio)[u] ∖ P̂ ∪ done(dom(δio))
(`, δ, η, α ) δioÐ→ (`′, δ′, η′ , dom(δio) )

(delay)

η ⊧ I(`)
∀t′∈[0,t] ⋅ η + t′ ⊧ I(`)

(`, δ, η, α ) tÐ→ (`, δ, η + t, α )

Example: FIFO steps. Below is a valid trace of a FIFO hub with size 3 (Fig. 2). In this example
there are no clocks nor time constraints, hence time can pass freely, as illustrated in the 2nd step,
taking 5 time units while remaining in the same configuration.

(idle, {c↦ 0, f ↦ 0, p↦ 0, bf0 ↦ null, bf1 ↦ null, bf2 ↦ null},∅)
{ ̂enqueue↦ 42}ÐÐÐÐÐÐÐÐÐ→ (idle, {c↦ 1, f ↦ 0, p↦ 1, bf0 ↦ 42, bf1 ↦ null, bf2 ↦ null},∅)

5ÐÐÐÐÐÐÐÐ→ (idle, {c↦ 1, f ↦ 0, p↦ 1, bf0 ↦ 42, bf1 ↦ null, bf2 ↦ null},∅)
{ ̂dequeue↦ 42}ÐÐÐÐÐÐÐÐ→ (idle, {c↦ 0, f ↦ 1, p↦ 1, bf0 ↦ 42, bf1 ↦ null, bf2 ↦ null},∅)

Example: B-Timer steps. Below is a valid trace of a B-Timer hub with its timer set to 5 (Fig. 2).
While in state idle, time can pass freely, as illustrated in the 1st step, taking 10 time units while
remaining in the same configuration. After the timeout is set, as shown in the 2nd step, clock c can
not growth beyond 5 time units. In this case, test does not synchronize, and the silent transition in
the 4th step, sets the process back to the idle state.

(idle, {bf ↦ null, t↦ 5},{c ↦ 0})
10ÐÐÐÐÐÐÐ→ (idle, {bf ↦ null, t↦ 5},{c ↦ 10})

{ŝet↦ 42}ÐÐÐÐÐÐÐ→ (set, {bf ↦ 42, t↦ 5},{c ↦ 0})
5ÐÐÐÐÐÐÐ→ (set, {bf ↦ 42, t↦ 5},{c ↦ 5})

ÐÐÐÐÐÐÐ→ (idle, {bf ↦ 42, t↦ 5},{c ↦ 5})

4 Reconstructing Hubs

Complex hubs can be built by composing simpler hubs, following the same ideas behind Reo [3].
The composition uses two simpler operations: product and synchronisation. This section starts by
defining these two operations, followed by an example and by a suitable definition of serialisation of
updates.

4.1 Hub composition
The product operation takes two hubs with disjoint ports and variables, and produces a new hub
that interleaves and joins transitions from both hubs, i.e. fully concurrent. The synchronisation
operation is conducted over a Hub Automaton H and it links pairs of ports a and b in P forcing
them fire only together.
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I Definition 8 (Hub Product (×)). Let H1 and H2 be two THA with disjoint sets of ports, variables,
and clocks. The product of H1 and H2, written H1 ×H2, is a new Hub Automaton defined as

H = (L1 ×L2, (l01 , l02), P1 ∪ P2,X1 ∪ X2, δ01 ∪ δ02 ,C1 ∪C2, I,Ð→)

where I(`1, `2) = I1(`1) ∧ I2(`2) and Ð→ is defined as follows.

(prod-left)
`1

g1,cc1,ω1,u1,r1ÐÐÐÐÐÐÐÐ→ `′1

(`1, `2)
g1,cc1,ω1,u1,r1ÐÐÐÐÐÐÐÐ→(`′1, `2)

(prod-right)
`2

g2,cc2,ω2,u2,r2ÐÐÐÐÐÐÐÐ→ `′2

(`1, `2)
g2,cc2,ω2,u2,r2ÐÐÐÐÐÐÐÐ→(`1, `

′
2)

(prod-both)
`1

g1,cc1,ω1,u1,r1ÐÐÐÐÐÐÐÐ→`′1 `2
g2,cc2,ω2,u2,r2ÐÐÐÐÐÐÐÐ→`′2

(`1, `2)
g1∧g2 , c1∧c2 , ω1∪ω2 , u1∣u2 , r1∪ r2ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→(`′1, `′2)

I Definition 9 (Hub Synchronisation (∆)). Let H = (L, l0, P,X , δ0,C, I,Ð→) be a THA, a and b two
ports in P , and xab a fresh variable. The synchronisation of a and b is given by ∆a,b(H), defined
below.

∆a,b(H) = (L, l0, (P /{a, b}),X ∪ {xab}, δ0,C, I,Ð→′)

Ð→′ = {` g,c,ω,u,rÐÐÐÐÐ→ `′ ∣ a /∈ ω and b /∈ ω} ∪
{` g′,c,ω′,u′,rÐÐÐÐÐÐ→ `′ ∣ ` g,c,ω,u,rÐÐÐÐÐ→ `′, a ∈ ω, b ∈ ω,ω′ = ω/{a, b},

g′ = g[xab/â][xab/b̂], u′ = u[xab/â][xab/b̂]}

where g[x/y] and u[x/y] are the logic guard g and the update u that result from replacing all
occurrences of variable y with x, respectively.

The composition of two THA consists of their product followed by the synchronisation of the
connected ports.

I Definition 10 (Hub Composition (&)). Let H1 and H2 be two Hub Automata with disjoint sets
of ports and variables, and let {(a0, b0), . . . , (an, bn)} be a finite (possibly empty) set of ports
bindings, such that for each pair (ai, bi) for 0 ≤ i ≤ n we have that (ai, bi) ∈ PIH1

×POH2
or (ai, bi) ∈

POH1
× PIH2

. The composition of H1 and H2 over such a set is defined as follows.

H1 &(a0,b0),...,(an,bn) H2 = ∆a0,b0 . . .∆an,bn(H1 ×H2)

Intuitively, composing two automata (&) means putting them in parallel (×), and then restricting
their behaviour by forcing shared ports to go together (∆). The first step joins concurrent transition
into new transitions, placing updates in parallel. This emphasises the need for a serialisation
process that guarantees a correct evaluation order of values to data in ports, which is the focus of
Section 4.3. Notice that the composition of THA can generate a non-serialisable automaton, in
which case the two automata are incompatible and cannot be composed.

Example Fig. 3 shows the composition of two Hub Automaton: a P-Timer, and a Duplicator with
two output points. The composed automaton (right) illustrates the behaviour of the two hubs when
synchronised over the actions test and put: whenever a timer is set and the buffer updated, the hub
waits exactly t time units after which it must be tested simultaneously by two tasks through get1
and get2 . Both tasks will receive the stored data in the P-Timer Hub, before setting the timer to
idle. Synchronised ports are removed from the composed model, and variables associated to such
ports are renamed accordingly, i.e. t̂est and p̂ut, are both renamed to ̂xtest-put.
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PT
&

test ↔ put

D = idle,idle set,idle c≤t

set

bf ← ŝet c←0

⟨c=t⟩ get1 ∣get2

xtest-put ← bf ∣ (ĝet1 ← xtest-put; ĝet2 ← xtest-put)

Figure 3 Example of composition between two Hub Automata, where a P-Timer automaton is composed
with a Duplicator automaton by synchronising on actions test and put (left), resulting in the composed
automaton on the right.

T
Task1

D D D D T
Task2

Event1

Event2

P

Actuate
T

Actuator

put1 put2

get

sta
rt1 start2

T1 T2

put1∣get∣start2

ĝet← p̂ut1

put2∣get∣start1

ĝet← p̂ut2

Figure 4 Alternative architecture for the example in Fig. 1 – Reo connector (left) and its THA (right)
after updates have been serialised and simplified.

4.2 Example: Round Robin tasks

Consider the example architecture in Fig. 1, consisting of 3 independent hubs. Such architectures
with independent hubs can be combined into a single hub, but it brings little or no advantage
because it will produce all possible interleavings and state combinations. In this case, the joint
automaton has 1 state and 26 transitions, representing the possible non-empty combinations of
transitions from the 3 hubs. More concretely, the set of transitions is the union of the 5 sets
below, abstracting away data, where pi , si and ti denote the put, signal and test actions of task i,
respectively, and g denotes the get action of the actuator.

P = {p1 ∣g , p2 ∣get}
A∥B = {s1 , s2 , t1 , t2}

A&B = {x1 ∣x2 ∣ x1 ∈ {s1 , t1} , x2 ∈ {s2 , t2}}
P&A∥B = {pi ∣g∣x ∣ i ∈ {1,2}, x ∈ A∥B}

P&A&B = {pi ∣g∣x ∣ i ∈ {1,2}, x ∈ A&B}

We propose an alternative hub that exploits shared ports, depicted in Fig. 4, built by composing
a set of primitives from Fig. 2. The primitive has the same behaviour as but its initial state
is true. This alternative hub extracts the coordination protocol from the tasks and places it into the
hub. I.e., tasks in the original hub are responsible to use the semaphores and the actuator in the
right order to have an alternating behaviour; in the new hub they alternate between starting and
placing a value, unaware of the coordination protocol. In this alternative hub, when a task sends
a data value to the actuator, the coordinator interprets it as the end of its round. Furthermore,
it requires each task to send only when the other is ready to start – a different behaviour could
be implemented to buffer the end of a task round (as in Fig. 1) by modifying the hub, without
modifying the tasks.
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Figure 5 Screenshot of the widgets in the online analyser for VirtuosoNext’s hubs.

4.3 Serialisation of Updates
The application of an update u (Def. 6) requires a serialisation function σ that converts an update
with parallel constructs into a sequence of assignments. This function, described in detail in [2],
preserves dependencies between variables and rejects updates that have variables with circular
dependencies. Later, it discards intermediate and unnecessary assignments.

For example, consider the transition (set, idle)
c=t,get1 ∣get2 ,u1∣u2ÐÐÐÐÐÐÐÐÐÐ→(idle, idle) from Fig. 3, where

u1 = xtest-put ← bf and u2 = ĝet1 ← xtest-put; ĝet2 ← xtest-put. Here, u2 depends on a variable
produced by u1. Thus, a serialisation of u1∣u2 is us = u1;u2. Once serialised, us has an intermediate
assignment, xtest-put ← bf , which can be removed by replacing appearances of xtest-put with bf ,
leading to ĝet1 ← bf ; ĝet2 ← bf , reducing the number of assignments and variables needed.

Unnecessary assignments can be assignments to internal variables that are never consulted
or assignments that depend only on undefined variables. They arise when connecting hubs that
support data passing with hubs that do not. For example, consider the hub in Fig. 3 with an
Event instead of the P-Timer Hub. After serialization, the resulting automaton has two transitions:

`0
raiseÐÐÐ→ `1 and `1

get1 ∣get2 ,ĝet1 ← xput−test; ĝet2 ← xput−testÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ `0. The updates on the latter depend on an
undefined variable, xput1−test, and are discarded. Similarly, connecting a two entry Port Hub to the
input of the Event Hub produces updates with unused variables.

5 Online verification tools

We implemented a prototype that composes, simplifies, analyses, and verifies THA, available to use
online or download.1 Fig. 5 depicts the widgets available in the prototype. The generated automata
can be used to produce either new hubs or dedicated tasks that perform coordination, which we
address in Section 6.

1 http://arcatools.org/hubs

http://arcatools.org/hubs
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These generated automata can also be formally analysed to provide key insight information
regarding the usefulness and drawbacks of such a hub, and their behaviour can be formally verified.
Our current implementation allows specifications of composed hubs and tasks using a textual
representation based on ReoLive [9, 10] (top left part of Fig. 5), and produces:

1 the editor to specify the hub;
2 the architectural view of the hub;
3 the simplified automaton of the hub;
4 the timed automaton to be imported by Uppaal model checker;
5 a summary of some structural properties of the automaton, such as required memory, size

estimation of the code, information about which hubs’ ports are always ready to synchronise;
6 an interactive panel to produce the minimum number of context switches for a given trace; and
7 an interactive panel to verify a list of given timed behavioural properties, relying on Uppaal

running on our servers, and their result 8 together with the associated Uppaal models and
formulas.

The software is developed in Scala, an object-oriented programming language with functional
features [11]. The code is compiled both into JVM binaries that are executed on a server, and into
JavaScript using ScalaJS2 to produce the interactive web page. Note that currently the server is
only used to model-check properties using Uppaal, and everything else is computed by the browser
using the generated JavaScript libraries.

The rest of this section describes how tasks are abstracted and specified in our formal framework
(Section 5.1), presents a temporal logics fine-tuned to THA to specify timed properties (Section 5.2),
illustrates how to verify several properties of our running example under different scenarios (Sec-
tion 5.3), and describes an encoding of formulas and hubs into Uppaal’s temporal logic and timed
automata, respectively (Section 5.4).

5.1 Tasks
Tasks in our implementation denote contracts capturing the order and time bounds of the expected
interactions of task components. These are modelled as THA, extended with a notion of priority
supported by Uppaal, and are used to describe scenarios of our hubs. When verifying if the
architecture in Fig. 1 deadlocks, tasks can be used to specify a scenario, e.g., where Task1 and
Task2 execute periodically every 10ms, and the Actuator executes periodically every 2ms.

Contracts for tasks can be specified by the following grammar.

tk ∶= task<name>(port∗) [every n] mode ∶= W ∣ NW ∣ n
port ∶= mode name io io ∶= ! ∣ ?

For example, task<T1>(W a?, 4 b!) specifies a task that tries to read a value on its port a, waiting
indefinitely (W), followed by a call to write a value to port b with a timeout of 4 time units, after
which it loops again following the same behaviour forever . This example, when extended with
every 5, will periodically run every 5 time units. In our interpretation of a periodic run, every
round of the execution of this task takes exactly 5 time units, and repeats forever. In each round a
fires once and b either fires of times-out; hence a can wait at most 10 time units between 2 fires
(when it fires at the beginning and end of consecutive rounds). If after 5 time units after the start

2 https://wwws.scala-js.org

https://wwws.scala-js.org
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of a round a fires and b cannot fire, then b will timeout and not fire for that round. As another
example, task<T2>(NW c!) every 5 will periodically try to send a value to port c every 5 time units,
without waiting when it fails to fire. After 5 time units from the beginning of a round, if c did not
fire then it will either fire or timeout, giving priority to firing. These three examples produce the
THA in Fig. 6.

Observe that some edges have dashed lines; these capture a notion of priority: edges with
dashed lines have lower priority, to avoid failing to communicate when their connected hubs allow
communication. Intuitively, since THA are non-deterministic, we want to avoid the execution of a
timeout transition if there exists as well an enabled transition were the automaton can perform
some action. This notion of priority is not included in our semantics, but it exists in Uppaal, and
we will exploit it during verification. This will be further detailed in Section 5.4.

tob≤4

a

tob←0
b

⟨tob=4⟩

tev≤5

tob≤4

tev≤5

tev≤5

a

tob←0 b

⟨tob=4⟩

⟨tev=5⟩

tev←0

tev≤5

toc≤0

tev≤5

c

⟨toc=0⟩
⟨tev=5⟩

tev←0

toc←0

task<T1>(W a?, 4 b!) task<T1>(W a?, 4 b!)
every 5

task<T2>(NW c!)
every 5

Figure 6 Timed hub automata of specific tasks.

5.2 Temporal logic for THA
This section proposes a subset of Timed Computation Tree Logic (TCTL) for timed hub automata.
This logic can be seen as a subset of Uppaal TCTL, agnostic of locations, with new operators to
reason about the behaviour of the systems focused on actions, i.e., on ports that are fired. We
proposed a concrete syntax that closely follows that used by Uppaal’s model checker, and define its
semantics by formalising its satisfaction relation. Section 5.4 provides more details on the mapping
from the proposed TCTL subset into Uppaal’s TCTL, and describes how it is implemented by our
online prototype.

TCTL properties are described using path formulas and state formulas. A path formula quantifies
over paths of the underlying transition system, while a state formula quantifies over a single state
of such system. The syntax and semantics of TCTL properties are formalised below.

I Definition 11 (TCTL for THA). A valid property over a THA consists of a path formula π given
by the following grammar

π ∶∶= A ψ ∣ E ψ ∣ ψ –> ψ ∣ every a –> b [after n] (path-formula)
ψ ∶∶= ρ ∣ cc ∣ g ∣ not ψ ∣ ψ and ψ ∣ deadlock (state-formula)

where a, b ∈ P are ports, n ∈ N, ∈ {�,◇}, cc is a clock constraint, g is a guard, and ρ is defined
as follows

ρ ∶∶= a.doing ∣ a refiresAfter n ∣ a refiresAfterOrAt n (a-formula)

Informally, state properties describe what must hold for a given state (i.e., location and clock
valuation), and path properties describe what must hold while evolving the automaton. For example,
a.doing holds if a was the last port to be fired, and a refiresAfterOrAt 5 holds in states where, if a
fired before, then it cannot refire unless 5 units of time have passed. Regarding path properties,
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A ψ holds if ψ holds for all possible paths, while its E counterpart holds if ψ holds for
some path. Along an execution path p, � ψ holds if ψ holds for all states along p, ◇ ψ holds
if a state along p satisfies ψ, and ψ1 –> ψ2 is a shorthand for A� (ψ1 imply (A◇ ψ2)).3 Finally,
every a –> b after 5 holds if, whenever a fires, b will fire before a fires again, after 5 or more time
units.

Recall the extension for verification in page 8, using ta to capture the time since a last fired,
and donea to capture if a has been performed. We now enrich our syntax with syntactic sugar for
state formulas, summarised below. We write ⋀ to indicate the generalised and for multiple state
formulas.

a.t = ta
a = a.doing and a.t == 0

ψ1 or ψ2 = not (not ψ1 and not ψ2)
nothing = ⋀a∈P not a.doing

a.done = donea
ψ1 imply ψ2 = not ψ1 or ψ2

a refiresBefore n = a.t < n
a refiresBeforeOrAt n = a.t ≤ n

Satisfaction of TCTL Given a path formula π, a THA H, and a state s = (`, δ, η, α ) we write
H,s ⊧ π to denote that π is satisfied by H in state s.

Notation Given a state s = (`, δ, η, α ), we write s.`, s.δ, s.η, and s.α to denote the respective
components. Given a path p and a number i ∈ N, we write pi to denote the i-th state of p.

The definition of H,s ⊧ π is presented in Fig. 7. The core auxiliary function Path, which we
only describe informally, receives an automata H and a state s and returns a set ps of all possible
paths in H from s. In turn, each of these paths p ∈ ps is a (possibly infinite) sequence s1, s2, . . . of
states, following the semantic rules from Def. 7.

5.3 Example: Verifying the sequencer protocol
Recall our running example illustrated in Fig. 4 of a sequencer protocol. We illustrate the proposed
specification constructs for tasks and time-sensitive behavioural properties by verifying different
properties under different scenarios, i.e., connecting tasks with different models of interaction to
the hub. The goal is to provide some insight on how to use our tools to understand the different
expected behaviours of a hub in different scenarios.

We create 5 different scenarios with 2 producer tasks and an actuator task, varying on how the
producer tasks interact with the hub. More specifically, using wait, non-wait, and timeout calls to
the hubs, at different periodicities. These scenarios are presented in the left column of Table 2. On
the right of the same table we list 6 different properties that we find of relevance, and whether these
are satisfied under each scenario. These properties are described below, together with a discussion
regarding their satisfaction on the scenarios.

ψt1#t2 = {A� start1 imply ((put1 .t ≥ put2 .t) and (start2 .t ≥ put2 .t))}

Task 1 can start only if Task 2 was the last one to run, and when Task 2 is not running (or just
finishing).

This is a core functional requirement of the hub: guaranteeing exclusivity. All scenarios satisfy
this property, as desired, supporting the claim that the hub is successfully imposing this
requirement.

3 As in Uppaal, nested path formulas are not supported explicitly. However, some are introduced through
specific constructs like ψ --> ψ.
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H,s ⊧ a.doing if a ∈ s.α

H, s ⊧ a refiresAfter n if (s.δ(donea) and s δio
ÐÐ→ s′ and a ∈ dom(δio))

then s.η(a.t) > n

H, s ⊧ a refiresAfterOrAt n if (s.δ(donea) and s δio
ÐÐ→ s′ and a ∈ dom(δio))

then s.η(a.t) ≥ n
H, s ⊧ cc if s.η ⊧ cc
H, s ⊧ g if s.δ ⊧ g
H, s ⊧ not ψ if H,s /⊧ ψ
H, s ⊧ ψ1 and ψ2 if H,s ⊧ ψ1 and H,s ⊧ ψ2

H,s ⊧ deadlock if ∀t∈R≥0 ∶ ∀δio ∶ ∀s′,s′′ ∶ not s
tÐ→ s′

δioÐ→ s′′

H,s ⊧ A� ψ if ∀p∈Path(H,s) ∶ ∀s′∈p ∶ H,s′ ⊧ ψ
H, s ⊧ A◇ ψ if ∀p∈Path(H,s) ∶ ∃s′∈p ∶ H,s′ ⊧ ψ
H, s ⊧ E� ψ if ∃p∈Path(H,s) ∶ ∀s′∈p ∶ H,s′ ⊧ ψ
H, s ⊧ E◇ ψ if ∃p∈Path(H,s) ∶ ∃s′∈p ∶ H,s′ ⊧ ψ
H, s ⊧ ψ1 –> ψ2 if H,s ⊧ A� (ψ1 imply (A◇ ψ2))

(Note: this is an abuse of notation for simplicity.)

H,s ⊧ every a –> b if { ∀p∈Path(H,s) ∶ ∀i∈N ∶ if a ∈ pi.α then
∃j≥i ∶ (b ∈ pj .α and ∀i<k≤j ∶ a ∉ pk.α)

H,s ⊧ every a –> b

after n

if
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀p∈Path(H,s) ∶ ∀i∈N ∶ if a ∈ pi.α then
∃j≥i ∶ (b ∈ pj .α and (∀i<k≤j ∶ a ∉ pk.α) and

pj .η(a.t) ≥ n and ∀i≤k<j ∶ b ∉ pk.α)

Figure 7 Satisfaction of TCTL formulas

Table 2 Verification of the sequencer hub under different scenarios.

Scenario ψt1#t2 ψt2 ψs1→s2 ψ
s1→2 s2

ψt2⋯t2 ψ≤9

task<T1>(W put!,W st! )
task<T2>(W st!, W put!)
task<Ac>(W get)

3 7 7 7 7 7

task<T1>(W put!,W st! ) every 3
task<T2>(W st!, W put!) every 3
task<Ac>(W get)

3 3 3 7 7 3

task<T1>(NW put!,NW st! ) every 3
task<T2>(NW st!, NW put!) every 3
task<Ac>(W get)

3 3 3 3 3 3

task<T1>(3 put!,3 st! ) every 6
task<T2>(3 st!, 3 put!) every 6
task<Ac>(W get)

3 3 3 7 7 3

task<T1>(NW put!,3 st! ) every 2
task<T2>(W st!, 3 put!) every 3
task<Ac>(W get)

3 3 7 7 3 3
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ψt2 = {A◇ start2}

Task 2 must start eventually.

This is a liveness property, to check Task 2 must run. Only the first scenario fails to satisfy this
property, because our interpretation of “W st!” is that the task can chose to wait as long as it
wants. Hence, there is no guarantee that the Task 2 will run, when the tasks decide to wait
forever. In the other scenarios there is a round clock (“every” construct) that forces actions to
be taken within a time bound, and timeouts or failures to communicate will still allow Task 2
to run because they have lower priority than having communication.

ψs1→s2 = {start1 –> start2}

If start1 fires, start2 must eventually fire.

This is a stronger liveness property than the previous one, that is a requirement to have
continuous progress. Only two scenarios fail to satisfy this property: the first one, because it
allows eternal waiting after firing start1 , and the last one, because it deadlocks. This deadlock
is not clear at first sight: the tasks can successfully finish a full round, where Task 1 will finish
first. Once Task 1 restarts a new round, it will timeout the port put1 , leading to a state where
both Task 1 and Task 2 are waiting to fire start, without a timeout option. At the end of the
round of Task 1 the system cannot evolve: it cannot fire any start port and time cannot pass
(due to the “every” construction).

ψ
s1→2 s2 = {every start1 –> start2 after 2}
Everytime start1 fires, start2 must eventually fire before start1 again, and wait at least 2 time
units before firing start2 .

This is a variation of the previous property, with the key difference of a mandatory waiting
period. The choice of start1 on the left and start2 on the right side is to capture the change of
rounds (by the every construct). Consequently, all scenarios fail to satisfy this property with
the exception of 3rd scenario: the 1st scenario fails because rounds can be faster than 2; the
2nd and 4th scenarios fail because start1 can be executed at the end of a round, and put2 at
the beginning of the following round; the last scenario fails for the same reason ψs1→s2 does.

ψt2⋯t2 = {A� start2 imply (put2 .t ≥ 2) or not(put2 .done)}

Task 2 can only start 2 time units after finishing a previous round.

This property checks if Task 2 has a minimum time delay between rounds. Only the 3rd and
the 5th scenario satisfy this property – the others allow Task 2 to fire put2 at the end of a
round, and immediately fire start2 at the beginning of the next round. Note that, if we modify
the scenario with timeouts by either reducing the timeout or by increasing the periodicity, this
property will already hold – as long as the latest time put2 can fire is at least 2 time units
before the end of the round.

ψ≤9 = {A� start2 refiresBeforeOrAt 9}
Task 2 starts within 9 time units after finishing a previous round.

This property checks an upper bound for the longest time it can wait between firing start2 twice.
Only the first scenario fails, since it can take an infinite amount of time between two actions.
For example, the 2nd scenario can take up to 6 time units between executions, if start2 fires at
the beginning of a round, and at the end of the follow up round (hence 3 + 3 time units). The
4th scenario can take the longest: up to 9 time units, if start2 fires at the beginning of a round,
and in the follow up round fires right before timing out (hence 6 + 3 time units).

Observations The selected set of scenarios and properties above illustrate the style of properties
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that one can verify using our logic and tasks. An important observation is that tasks can decide to
wait, even if the hub is ready to communicate, although tasks can be forced to communicate when a
timeout is reached or at the end of a round. This was a design decision based on the more traditional
semantics of timed automata. Alternatively, we could make the tasks to communicate as soon as
possible, shifting the decision of waiting to the hubs; technically, this would involve introducing a
notion of urgent action to our semantics, already supported by Uppaal. For simplicity, we decided
to leave this for future work.

Another relevant observation is that the firing of ports takes zero time in our model, based
on timed automata. Hence, in any of our scenarios, it is possible to run a full round in zero time.
Furthermore, a possible trace in the first scenario is an infinite stream of communication without
time passing, known in the literature as a Zeno path, which should be avoided. Our notion of
periodicity provides some control over forcing time to evolve, but other mechanisms could be added,
such as introducing time delays between actions, or requiring each port to take some amount of
time to fire.

5.4 Under the hood: verification via Uppaal
This subsection describes how we verify THA using Uppaal. More precisely, how it proposes
an encoding of THA as Uppaal’s timed automata, and an encoding of TCTL formulas for THA
to Uppaal’s TCTL. The automata encoding introduces new data variables and clocks to reason
about which ports have been fired, and new intermediate locations to distinguish when an action is
about to fire from when it actually fires. The TCTL encoding converts the references to ports into
references to locations or to the new variables, following closely the notion of satisfaction of TCTL
described in Section 5.2.

Note that this subsection is not as formal and detailed as the previous ones, since we neither
formalise Uppaal’s semantics nor present a proof of correctness of the encodings. Instead, we
guide the reader throw key examples to describe the encodings. This choice is mainly due to the
large similarity of the syntaxes of automata and formulas, and because this paper focuses more
on tools than on theory, i.e., on providing practical machinery to help developers analysing and
verifying hubs.

5.4.1 Encoding Automata by Example
Recall the timer hub connected to the duplicator hub, depicted in Fig. 3. Its encoding into a
timed automata in Uppaal is illustrated in Fig. 8, which introduces new locations, clocks, and data
variables. These includes, for each port a, the clock ta and variable donea, introduced in Section 3.2.
The resulting automata discards data information because the existing tools are focused on timed
properties, but in the future we plan to support Uppaal’s data operations in our encodings.

Locations are depicted with dashed lines, and are associated to sets of ports that triggered them.
These are marked as committed locations in Uppaal, meaning that they do not allow time to
proceed, and have priority over non-committed locations to proceed. Hence, to know if set has
just been fired, one can check if the automata is in any of these special committed locations
associated to the set port.

Data variables (x) Every port a yields a variable xa, set to ⊺ when port a was fired in the last set
of fired ports, I.e., it represents whether a ∈ α .

Data variables (since) Every pair of different ports (a, b) yields a variable sincea,b, which is a
number between 0 and 2 (considering that 2 + 1 = 2 and 0 − 1 = 0), roughly denoting the number
of times a fired since b was last fired. More precisely, sinceset,get1 is 0 if set never fired, it is 1
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idle,idle set,idle c≤t

set

bf ← ŝet c←0

⟨c=t⟩ get1 ∣get2

ĝet1 ← bf ; ĝet2 ← bf

Ð→
idle,idle set,idle c≤t

set

get1 ,get2

xset ← ⊺

xget1← �

xget2← �

c← 0

doneset← ⊺

tset← 0

sinceset,get1 += 1
sinceset,get2 += 1
sinceget1,set −= 1
sinceget2,set −= 1

xset ← �

xget1← ⊺

xget2← ⊺

⟨c=t⟩

sinceget1,set += 1
sinceget2,set += 1
sinceset,get1 −= 1
sinceset,get2 −= 1

doneget1← ⊺

doneget2← ⊺

tget1← 0
tget2← 0

Figure 8 Encoding the simplified automata from Fig. 3 (left) into a Uppaal’s automata (right); dashed
locations are committed.

if it was fired once since the last time get1 was fired (or from the beginning), and it is 2 if it
was fired more than once since the last time get1 was fired. These since constructs are used
when verifying formulas like every a –> b, where for each a fired, b should fire without a firing
in between.

Optimisation: Observe that there is a large number of new variables and clocks, and also a large
number of extra (committed) locations. In practice we do not add all variables and extra locations,
but only the ones needed by each individual rule. Hence, verifying 4 properties will generate 4
(potentially different) Uppaal automata, each simplified to include only the needed artefacts, and
including the encoded property to be verified. For simplicity, we do not present here the simpler
automata versions with less variables, clocks, or locations.

Priority: Recall the notion of priority mentioned when describing tasks (Section 5.1), where we
used dashed arrows in automata to depict low-priority transitions. This priority is meant only
to avoid ports from discarding data and timeout when the hub is ready to communicate. This is
encoded in Uppaal using its notion of channel priority. Channels in Uppaal are labels of transitions
in automata used to synchronise with channels of neighbour automata. Our encoding does not rely
on channels since it produces a single automata, but we introduce here a set of dummy channels
priop that can always be fired,4 where p ∈ Z denotes the priority of the channel (higher numbers
mean higher priority). Transitions in an automaton are marked with priority 0 if it synchronizes
with other automaton, and with priority −1 if it denotes a timeout. During composition, priorities
of transitions that go together are added up, reducing the priority of transitions with more timeouts.

5.4.2 Encoding Formulas by Example
The Uppaal5 model checker supports a subset of TCTL formula for timed automata [12], which
we took into account when proposing the logic for THA. Similar to the proposed logic, properties
consist of path and state formulas.

I Definition 12 (Uppaal TCTL). Given a network of Uppaal’s timed automata, a valid property
over the network consists of a path formula given by the following grammar

πu ∶∶= A ψu ∣ E ψu ∣ ψu –> ψu (Uppaal path formula)
ψu ∶∶= ta.` ∣ cc ∣ g ∣ not ψu ∣ ψu ⊙ ψu ∣ deadlock (Uppaal state formula)

4 This is technically achieved using a broadcast channel in Uppaal.
5 http://www.uppaal.org/

http://www.uppaal.org/
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where cc ∈ C(C) and g ∈ Φ(X) are clock constraints and guards over clocks C and variables6 X
known in the network; ta.` represents location ` in the automaton named ta; and ⊙ ∈ {and, or, imply}.

The key differences with our logic are: the use of locations (ta.`) in state formulas, the absence
of references to actions (or ports) and their associated clocks, and the absence of the every-path
formula. Hence, when encoding our logic into Uppaal’s TCTL, each of the missing constructs
are mimicked using the extra variables and clocks, and using references to known locations in the
automata encoding.

To refer to the committed locations introduced in Section 5.4.1 we will use the following
shorthand, where a is a port:

cmt(a) = { `1 or . . . or `n if {`1, . . . , `n} are the locations where a appears;
false otherwise.

The encoding of examples of key formulas is presented in Table 3 – the general encoding of
formulas follows the same structure as in these examples, and is omitted in this paper. This
proof relies on the fact that the observable behaviour is not modified by adding new intermediate
committed states to an automata that has no committed states, and by adding new variable
assignments that are never read.

Table 3 Examples of encodings of THA TCTL formulas into Uppaal

TCTL Encoding to Uppaal

A◇ put2 and get A◇ xput2 and tput2 = 0 and xget and tget = 0

A� act.doing or nothing A� xact or (notxget and notxput1 and notxput2 )

every put1 –> put2

after 2

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

xput1 –> xput2

A� cmt(put2 ) imply sinceput1 ,put2 ≤ 1

A� (
cmt(put2 ) and
sinceput1 ,put2 = 1 ) imply tput1 ≥ 2

A◇ put1 refiresAfterOrAt2 A◇ (doneput1 and cmt(put1 )) imply tput1 ≥ 2

6 Executing hubs

We compare the two architectures from Section 4.2, using a variation of these, and provide both an
analytical comparison, using different metrics, and a performance comparison, executing them in
an embedded board. This comparison does not use hubs with timed behaviour, since VirtuosoNext
does not support these, and the timed behaviour is mainly captured by tasks.

6.1 Scenarios
We compare four different scenarios in our evaluation, using the architectures from Section 4.2, and
compile and execute them on a TI Launchpad EK-TM4C1294XL7 board with a 120MHz 32-bit
ARM Cortex-M4 CPU.

6 Uppaal supports two predefined types for data variables: int and bool; and Array and record types can be
defined over these types. Integers range over [−32768, 32767].

7 http://www.ti.com/tool/EK-TM4C1294XL#

http://www.ti.com/tool/EK-TM4C1294XL#
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Task2
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Actuator

1 while(true){
2 get1; get2
3 }

put1 get1

put2
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T
Task1

D

T
Task2

D

P T
ActuatorN=1

1 while(true){
2 get
3 }

put1

put2

get

Figure 9 Architectural view of scenarios S2-ports (left) and Saltern (right).

Sorig the initial architecture as in Fig. 1;
Scustom using a custom-made hub that follows the automaton in Fig. 4 without any data transfer;
Saltern using a custom-made hub that acts as Scustom, but discarding the start queues, and
assuming that tasks start as soon as possible (Fig. 9 right); and
S2-ports simple architecture with two ports, each connecting a task to the actuator, also discarding
the start queue, whereas the actuator is responsible to impose the alternating behaviour
(Fig. 9 left).

Observe that Saltern and S2-ports are meant to produce the same behaviour, but only the latter
is compiled and executed. While Saltern assumes that the actuator is oblivious of who sends the
instructions, S2-ports relies on the actuator to perform the coordination task.

6.2 Analytic comparison
We claim that the alternative architecture requires less memory and requires less context switches
(and hence is expected to execute faster). Memory can be approximated by adding up the number
of variables and states. The original example uses a stateless hub (a Port) and two Semaphores,
each also stateless but with an integer variable each—hence requiring the storage of 2 integers. The
refined example requires 2 states and no variables (after simplification), hence a single bit is enough
to encode its state.

Table 4 lists possible sequence of context switches for each of the 4 proposed scenarios, for each
round where both tasks send an instruction to the actuator. Observe that Sorig requires the most
context switches for each pair of values sent (17), while S2-ports and Saltern require the least (9).

Note that conceptually the original architecture further requires the tasks to be well behaved,
in the sense that a task should not signal/test a semaphore more times than the other task
tests/signals it. In the refined architecture functionality is better encapsulated: tasks abstract
from implementing coordination behaviour and focus only on sending data to the actuator, while
the coordinator handles the order in which tasks are enabled to send the data. This contributes
to a better understanding of the behaviour of both the tasks and the coordination mechanism.
In addition, knowing the semantics of each hub and looking at the architecture in Fig. 1 is not
enough to determine the behaviour of the composed architecture, but it requires to look at the
implementation of the tasks to get a better understanding of what happens. However, in Fig. 4
these two premises are sufficient to understand the composed behaviour.

6.3 Measuring execution times on the target processor
We compiled, executed, and measured the execution of 4 systems: (1) Sorig, (2) a variation of
Scustom implemented as a dedicated task, which we call Task[Scustom], (3) a variation of Scustom
that abstracts away from the actual instructions (implemented as a native hub, which we call
NoData[Scustom]), and (4) S2-ports. The results of executing 1000 rounds using our TI Launchpad
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Table 4 Possible sequence of context switches between the Kernel task (executing the hubs) and the
user tasks for each scenario.

Sorig Scustom S2-ports & Saltern

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Kernel Ð→ Actuator
Actuator get

Ð→ Kernel
Kernel Ð→ Task2
Task2 signalB

ÐÐÐÐ→Kernel
Kernel Ð→ Task1
Task1 testB

ÐÐÐ→ Kernel
Kernel Ð→ Task1
Task1 put

ÐÐ→ Kernel
Kernel Ð→ Actuator

Actuator get
Ð→ Kernel

Kernel Ð→ Task1
Task1 signalA

ÐÐÐÐ→Kernel
Kernel Ð→ Task2
Task2 testA

ÐÐÐ→ Kernel
Kernel Ð→ Task2
Task2 put

ÐÐ→ Kernel
Kernel Ð→ Actuator
(Repeat from #2)

Kernel Ð→ Actuator
Actuator get

Ð→ Kernel
Kernel Ð→ Task1
Task1 put

ÐÐ→ Kernel
Kernel Ð→ Task2
Task2 start

ÐÐ→Kernel
Kernel Ð→ Actuator

Actuator get
Ð→ Kernel

Kernel Ð→ Task2
Task2 put

ÐÐ→ Kernel
Kernel Ð→ Task1
Task1 start

ÐÐ→Kernel
Kernel Ð→ Actuator
(Repeat from #2)

Kernel Ð→ Actuator
Actuator get

Ð→ Kernel
Kernel Ð→ Task1
Task1 put

ÐÐ→Kernel
Kernel Ð→ Actuator

Actuator get
Ð→ Kernel

Kernel Ð→ Task2
Task2 put

ÐÐ→Kernel
Kernel Ð→ Actuator
(Repeat from #2)

board are presented below, whereas the end of each round consists of the actuator receiving an
instruction from both tasks (i.e., 500 values from each task).

Sorig Task[Scustom] NoData[Scustom] S2-ports

Time (ms) 41.88 64.27 32.19 21.16

These numbers provide some insight regarding the cost of coordination. On one hand, avoiding the
loop of semaphores can double the performance (Sorig vs. S2-ports). On the other hand, replacing
the loop of semaphores by a dedicated hub that includes interactions with the actuator can reduce
the execution time to around 75% (Sorig vs. NoData[Scustom ]). Note that this dedicated hub
does not perform data communication, and the tasks do not send any data in any of the scenarios.
Finally, Task[Scustom ] reflects the cost of building a custom hub as a user task, connected to the
coordinated tasks using extra (basic) hubs, which can be seen as the price for the flexibility of
complex hubs without the burden of implementing a dedicated hub.

7 Related work

The global architecture of VirtuosoNext RTOS, including the interaction with hubs, has been
formally analysed using TLA+ by Verhulst et al. [1]. More concretely, the authors specify a set of
concrete hubs, their waiting lists, and the priority of requests, and use the TLC model checker to
verify a set of safety properties over these. Recently, we proposed an approach to formalise existing
and new hubs through hub automata [2], focused on the interactions, abstracting away waiting
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lists, and aiming at the analysis of more complex hubs built compositionally. Here, we extend hub
automata with time and propose a dynamic temporal logic to express temporal properties focusing
on ports behaviour. By including time, we can model tasks as THA and verify how hubs behave
when coordinating tasks with different timed behaviour, such as periodic tasks, tasks that timeout,
and tasks that wait forever.

The automata model proposed here is inspired by Reo’s parametrised constraint automata [3],
constraint automata with memory cells [13], and Reo’s semantics using timed automata [4, 6],
which are extensions of constraint automata to reason about data-dependent and time-dependent
coordination mechanisms. Parametrised constraint automata consist of symbolic representations of
automata, where states can store variables, which are updated or initialised when transiting; while
constraint automata with memory cells treats variables as first-class objects, as in here, allowing
to efficiently deal with infinite data domains. The semantics based on timed automata provide
encodings of Reo connectors using the same notion of time used by Uppaal, as we do, and further
exploit the notion of automata composition embedded in Uppaal. Both data-approaches use data
constraints as a way to assign values to ports, and define updates as a way to modify internal
variables. Unlike these approaches, we introduce a notion of sequential and parallel updates, and
invest a large effort to facilitate the verification process, by providing support for a fine-tuned
language for specifying logical properties agnostic of locations and for describing timed scenarios.
We avoid exposing the user to Uppaal, using a similar automata model that is better suited for
multiple actions.

The composition and the restrictions imposed here on the input and output ports are similar
to those introduced by Interface Automata [14] to deal with the composition of open systems.
However, [14] imposes additional restrictions to ensure automata compatibility, i.e. whenever an
automaton is ready to send an output, which is an input of the other, the latter should be able to
receive it.

Finite-memory automata [15] and nominal automata [16, 17] are models that deal with infinite
alphabets, focusing on the expressiveness of their variants and on the decidability of some of their
properties, which is not the goal of this paper. Finite-memory automata use substitution instead
of equality tests over the input alphabet with the support of a finite set of registers (variables)
associated to the automata, and nominal automata are based on nominal sets, which can be seen
as infinite sets with a finite representation.

Formal analysis of RTOS are more typically focused on the scheduler, which is not the focus of
this work. For example, theorem provers have been used to analyse schedulers for avionics software
[18]. Carnevali et al. [19] use preemptive Time Petri Nets to support exact scheduling analysis and
guide the development of tasks with non-deterministic execution times in an RTOS with hierarchical
scheduling. Dietrich et al. [20] analyse and model check all possible execution paths of a real-time
system to tailor the kernel to particular application scenarios, resulting in optimisations in execution
speed and robustness. Dokter et al. [21] propose a framework to synthesise optimised schedulers
that consider delays introduced by interaction between tasks. Scheduling is interpreted as a game
that requires minimising the time between subsequent context switches.

8 Conclusions

This paper proposes an approach to build and analyse hubs in VirtuosoNext, which are services
used to orchestrate interacting tasks in a Real Time OS that runs on embedded devices. When
using VirtuosoNext, programmers can orchestrate individual tasks by using a set of core hubs,
provided as services by the OS. More complex interaction mechanisms must be encoded within the
tasks, which is hard to debug and maintain.
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Our proposed formal framework provides mechanisms to design and implement complex hubs
that can be formally analysed and verified to provide the same level of assurance that predefined
hubs provide. Currently, the framework allows to (1) construct complex hubs out of simpler ones,
(2) verify timed properties using a variation of TCTL used by Uppaal tailored to reason about
interactions with hubs, and (3) analyse some aspects of the hubs such as: memory used, estimated
lines of codes, always available ports, and minimum number of context switches required to perform
certain behaviour. This is publicly available both to run online using our web interface, and to
download and execute locally.8

Preliminary tests on a typical set of scenarios have confirmed our hypothesis that using dedicated
hubs to perform custom coordination can result in performance improvements. In addition, we
claim that moving coordination aspects away from tasks enables a better understanding of the tasks
and hubs behaviour, and provides better visual feedback regarding the semantics of the system. The
tools provide benefits both for users of VirtuosoNext and for Altreonic’s developers. The former
can use it to experiment how existing hubs behave in different timed scenarios; while the latter
can use it to help designing new hubs, and can potentially incorporate it into a future version of
VirtuosoNext to support custom-made hubs.

Ongoing work to extend our formal framework includes:

variability support to analyse and improve the development of families of systems in Virtuoso-
Next, since VirtuosoNext provides a simple and error-prone mechanism to allow topologies to
be applied to the same set of tasks;
code refactoring and generation applied to existing (on-production) VirtuosoNext programs,
probably adding new primitive hubs, by extracting the coordination logic from tasks and into
new complex hubs; and
analysis extension to support a wider range of analysis to Hub Automata, such as the model
checking of liveness and safety properties using other tools, e.g. mCRL2 (c.f. [9, 22]).
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