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Abstract
Construction and analysis of distributed systems is difficult. Multiparty session types (MPST)
constitute a method to make it easier. The idea is to use type checking to statically prove deadlock
freedom and protocol compliance of communicating processes. In practice, the premier approach to
apply the MPST method in combination with mainstream programming languages has been based
on API generation. In this paper (pearl), we revisit and revise this approach.

Regarding our “revisitation”, using Scala 3, we present the existing API generation approach,
which is based on deterministic finite automata (DFA), in terms of both the existing states-as-classes
encoding of DFAs as APIs, and a new states-as-type-parameters encoding; the latter leverages match
types in Scala 3. Regarding our “revision”, also using Scala 3, we present a new API generation
approach that is based on sets of pomsets instead of DFAs; it crucially leverages match types,
too. Our fresh perspective allows us to avoid two forms of combinatorial explosion resulting from
implementing concurrent subprotocols in the DFA-based approach. We implement our approach in
a new API generation tool.
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Figure 1 MPST method.
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protocol (Example 1).
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Figure 3 Master–workers
protocol (Example 2).

1 Introduction

Background. Construction and analysis of distributed systems is difficult. One of the key
challenges is to verify absence of communication errors, by proving deadlock freedom (i.e., the
processes can always terminate or reduce) and protocol compliance (i.e., if the processes can
terminate or reduce, then the protocol allows it). Multiparty session types (MPST) [18,19]
constitute a method to overcome these challenges. The idea is visualised in Figure 1:

1. First, a protocol among roles r1, . . . , rn is implemented as a session of processes P1, . . . , Pn

(concrete), while it is specified as a global type G (abstract). The global type models
the behaviour of all processes, collectively, from their shared perspective (e.g., “first, a
number from Alice to Bob; next, a boolean from Bob to Carol”).

2. Next, G is decomposed into local types L1, . . . , Ln, by projecting G onto every role. Every
local type models the behaviour of one process, individually, from its own perspective
(e.g., for Bob, “first, he receives a number from Alice; next, he sends a boolean to Carol”).

3. Last, absence of communication errors is verified, by type-checking every process Pi against
local type Li. MPST theory guarantees that well-typedness at compile-time (statically)
implies deadlock freedom and protocol compliance at execution-time (dynamically).

The following two examples [6, 34] further illustrate global/local types in the MPST method.

▶ Example 1 (seller–buyer [6]). In the seller–buyer protocol, visualised in Figure 2, first, the
seller (sss) tells the buyer (bbb) the description of an item (Descr) and a price (Price); next,
the buyer tells the seller whether it accepts the offer (Acc) or rejects it (Rej). The following
global type specifies the protocol from the seller’s and the buyer’s shared perspective:

G = sss_bbb:Descr . sss_bbb:Price . sss_bbb:{Acc, Rej} . end

In this notation, p_q :{ti .Gi}1≤i≤n specifies the communication of a value of type ti from
role p to role q, followed by Gi, for some 1 ≤ i ≤ n. We write p_q :{ti}1≤i≤n .G as a macro
for p_q :{ti .G}1≤i≤n, and we omit braces when n = 1. The following local types (projected
from the global type) specify the protocol from the seller’s and the buyer’s own perspectives:

Lsss = sssbbb !Descr . sssbbb !Price . sssbbb?{Acc, Rej} . end Lbbb = . . .

In this notation, pq !{ti .Li}1≤i≤n and pq?{ti .Li}1≤i≤n specify the send and receive of a value
of type ti from role p to role q, followed by Li, for some 1 ≤ i ≤ n. We write pq !{ti}1≤i≤n .L

and pq?{ti}1≤i≤n .L as macros for pq !{ti .L}1≤i≤n and pq?{ti .L}1≤i≤n, and we omit braces
when n = 1. Henceforth, also, we usually omit “.end”. ⌟
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Figure 4 Workflow of API generation (the first three arrows are performed automatically by the
tool; the last arrow is performed manually by the programmer).

▶ Example 2 (master–workers [34]). In the master–workers protocol, visualised in Figure 3,
first, the master (mmm) tells two workers (www1,www2) to perform work (Work); next, the workers tell
the master that they are done (Done). The following global/local types specify the protocol:

G = mmm_www1 :Work . mmm_www2 :Work .

www1_mmm:Done . www2_mmm:Done

Lmmm = mmmwww1 !Work . mmmwww2 !Work .

www1mmm?Done . www2mmm?Done

Lwww1 = mmmwww1?Work .

www1mmm !Done

Lwww2 = . . .

⌟

In practice, the premier approach to apply the MPST method in combination with
mainstream programming languages has been based on API generation. The main ideas,
originally conceived by Deniélou, Hu, and Yoshida, are based on the following insights: (a)
local types can be interpreted “operationally” as deterministic finite automata (DFA) [11,12];
(b) DFAs can be encoded as application programming interfaces (API), such that well-typed
usage of the APIs at compile-time implies deadlock freedom and protocol compliance at
execution-time (cf. step 3 of the MPST method) [20, 21]. The corresponding workflow
is visualised in Figure 4. API generation has been influential: it is used in the majority
of tools that support the MPST method, including Scribble [20], its many dialects/exten-
sions [7, 25,27,31,33,37,46], νScr [45], and mpstpp [23].

Unsolved: concurrent subprotocols in MPST practice. The global/local types in Example 1
and Example 2 specify sequential protocols: there is only a single static order in which the
roles are allowed to communicate. Intuitively, however, imposing such a single static order
is needlessly restrictive: in the seller–buyer protocol, there is no apparent reason why the
Descr-message and the Price-message should be sent by the seller in that order, while in
the master–workers protocol, there is no apparent reason why the Done-messages should be
received by the master in “worker-id-order”. Thus, the specified protocols in these examples
are not just sequential; they are oversequentialised.

In general, oversequentialisation in global/local types should be avoided for two reasons:

Some ordering decisions can be made only at implementation-time, based on implementa-
tion details that are unknown at specification-time. In Example 1, it may be known only
at implementation-time that the seller first computes the contents of the Price-message
and next of the Descr-message. Thus, to maximise throughput, the seller should be able
to send these messages in this alternative static order as well (forbidden in Example 1).

Some ordering decisions can be made only at execution-time, based on execution details
that are unknown both at specification-time and at implementation-time. In Example 2,
it is known only at execution-time in which order the workers send the Done-messages
(depending on how much actual time performing the work takes). Thus, to improve
throughput, the master should be allowed to receive those messages in any dynamic order
(forbidden in Example 2), which may be different in different executions.

To allow ordering decisions to be made at implementation-time and/or execution-time,
oversequentialisation at specification-time should be avoided. In recognition of this issue,
several papers on MPST theory feature a more relaxed version of global/local types in which

ECOOP 2022
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1. State explosion: Interpretations of local types as DFAs (i.e., second arrow in Figure 4)
may suffer from combinatorial explosion: in the presence of parallel composition, DFAs
may consist of an exponential number of states (e.g., with n workers, the DFA of local
type Lmmm in Example 4 has 2n + n states). As a result, both the time to generate APIs,
and the space to store them, are prohibitively long/large for many local types with ∥.

2. Branch explosion: Usages of APIs in processes (i.e., fourth arrow in Figure 4)
may suffer from combinatorial explosion, too: in the presence of parallel composition,
processes may consist of an exponential number of branches to achieve well-typedness.
As a result, APIs are prohibitively cumbersome to use for many local types with ∥.

Figure 5 Complications of supporting concurrent subprotocols in MPST practice.

concurrent subprotocols can be specified (e.g., [6,10,11,23,28]). The idea is to supplement the
basic prefix operators p_q :{ti .Gi}1≤i≤n, pq !{ti .Li}1≤i≤n, and pq?{ti .Li}1≤i≤n in global/
local type calculi with operators for parallel composition to express free interleaving (i.e.,
“fork” subprotocols) and sequential composition (i.e., “join” subprotocols).

▶ Example 3 (seller–buyer, relaxed). The following global/local types specify a relaxed version
of the seller–buyer protocol in Example 1:

G = (sss_bbb:Descr ∥ sss_bbb:Price) · sss_bbb:{Acc, Rej}
Lsss = (sssbbb !Descr ∥ sssbbb !Price) · sssbbb?{Acc, Rej} Lbbb = . . .

In this notation, G1 ∥ G2 (resp. L1 ∥ L2) specifies the parallel composition of G1 and G2 (resp.
L1 and L2) that freely interleaves their communications (resp. sends/receives), while G1 · G2
(resp. L1 · L2) specifies the sequential composition of G1 and G2 (resp. L1 and L2). ⌟

▶ Example 4 (master–workers, relaxed). The following global/local types specify a relaxed
version of the master–workers protocol in Example 2:

G = mmm_www1 :Work . mmm_www2 :Work .

(www1_mmm:Done ∥ www2_mmm:Done)
Lmmm = mmmwww1 !Work . mmmwww2 !Work .

(www1mmm?Done ∥ www2mmm?Done)
Lwww1 , Lwww2 = . . .

(as in Example 2)

We note that the local types of Lwww1 and Lwww2 are exactly the same as in Example 2. Thus,
the relaxation affects only the master. We also note that the protocol can be relaxed even
further by allowing the master to send to the workers in any order; we skip it for simplicity
of later examples in this paper (in which we revisit the relaxed master–workers protocol). ⌟

However, while the importance of supporting concurrent subprotocols to avoid over-
sequentialisation has been duly recognised in MPST theory [6, 10, 11, 23, 28], almost none
of the API generation tools offer it in MPST practice [7, 20, 25, 27, 31, 33, 37, 46]. Figure 5
explains two major complications; they pertain to the second arrow in Figure 4 (“interpret
as”) and the fourth arrow (“use in”). The only API generation tool that features parallel
composition does not at all address these complications [23] (i.e., it suffers from both forms
of combinatorial explosion in Figure 5). Thus, while concurrent subprotocols are supported
in MPST theory, they are effectively unsupported in API-generation-based MPST practice.

We note that concurrent subprotocols are effectively supported by some tools that are
based on runtime verification. For instance, the tool by Demangeon et al. [9] uses an
optimised DFA representation (in which “inner” DFAs for subprotocols can be nested inside
states of an “outer” DFA) to compactly represent parallel composition; process behaviour
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is dynamically monitored against optimised DFAs. Alternatively, the tool by Hamers and
Jongmans [16] computes traces of DFAs on-the-fly by dynamically interpreting global types,
guided by process behaviour at execution-time, so the full state space is never computed.

Contributions. In this paper (pearl), we present a fresh perspective on API generation: we
show how to effectively support concurrent subprotocols for the first time in MPST practice.
To achieve this, we leverage two recent advances:

On the theoretical side, we take advantage of Guanciale–Tuosto’s pomset framework [14]
to interpret local types as sets of pomsets (SOPs) instead of as DFAs. The key benefit
of SOPs over DFAs is that parallel composition can be represented in linear time and
space. In this way, both complications in Figure 5 can be avoided. Our usage of
Guanciale–Tuosto’s pomset framework in API generation is novel.

On the practical side, we take advantage of Scala 3’s match types (i.e., “lightweight form
of dependent typing”) [1] to encode SOPs into APIs. The key benefit of match types is
that they enable type-level programming; our encoding pivotally relies on these advanced
static capabilities (e.g., the encoding cannot be ported to Java). Our usage of Scala 3’s
match types in API generation is novel. (We note that Scalas et al. also use new features
in Scala 3 to support the MPST method [40,41], but not match types.)

In § 2, we summarise a version MPST theory that includes parallel composition and
sequential composition. In § 3, we revisit API generation by presenting the existing DFA-
based version in Scala 3. Besides the existing “states-as-classes” encoding of DFAs, we also
present a new “states-as-type-parameters” encoding that uses match types. In § 4, we revise
API generation to avoid the complications in Figure 5 by presenting a new SOP-based version
that also uses match types. In § 5, we give a brief overview of our tool.

2 MPST Theory in a Nutshell

In this section, we summarise a minimal, loop-free core of Deniélou–Yoshida’s version of
MPST theory, which includes parallel composition and sequential composition [10]. That is,
given the aim of this paper, we omit orthogonal and/or more advanced features from this
section (e.g., dynamic channel creation, dynamic process creation, delegation). Regarding
“loop-free”, we note that many practically relevant protocols do not require loops (e.g., the
auction protocol in [10], the ATM protocol in [14], and the OAuth protocol in [22]).

Global types. Let R = {alicealicealice,bobbobbob,carolcarolcarol, . . . ,sss,ccc,mmm,www, . . .} denote the set of all roles, ranged
over by p, q, r. Let T = {Unit, Bool, Nat, . . . , Descr, Price, Acc, Rej, . . .} denote the set of all
data types, ranged over by t. Let G denote the set of all global types, ranged over by G:

G ::= end
∣∣ p_q :{ti .Gi}1≤i≤n

∣∣ G1 ∥ G2
∣∣ G1 · G2

Informally, these forms of global types have the following meaning:

Global type end specifies the empty protocol.

Global type p_q :{ti .Gi}1≤i≤n specifies the asynchronous communication of a value
of type ti through the buffered channel from role p to role q (unbounded), followed by Gi,
for some 1 ≤ i ≤ n. As additional well-formedness requirements, we stipulate: (1) p ̸= q

(i.e., no self-communication); (2) ti ̸= tj , for every 1 ≤ i < j ≤ n (i.e., deterministic
continuations). Singleton types (e.g., Acc, Rej) can serve as labels to communicate choices.

ECOOP 2022
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end ↾ r = end

p_q :{ti .Gi}1≤i≤n ↾ r =


pq !{ti .(Gi ↾ r)}1≤i≤n if p = r ̸= q

pq?{ti .(Gi ↾ r)}1≤i≤n if p ̸= r = q

G1 ↾ r if p ̸= r ̸= q and G1 ↾ r = · · · = Gn ↾ r

(G1 ⊕ G2) ↾ r = (G1 ↾ r) ⊕ (G2 ↾ r)

Figure 6 Projection of global types.

Global type G1 ∥ G2 specifies the parallel composition of G1 and G2 that freely in-
terleaves their communications. As an additional well-formedness requirement [10], we
stipulate comm(G1) ∩ comm(G2) = ∅ (i.e., distinct communications in distinct subpro-
tocols), where comm : G → 2R×R×T is a function that maps every global type to the
communications that occur in it, represented as triples of the form (p, q, t).

Global type G1 · G2 specifies the sequential composition of G1 and G2.

Local types and projection. Let L denote the set of all local types, ranged over by L:

L ::= end
∣∣ pq !{ti .Li}1≤i≤n︸ ︷︷ ︸

send

∣∣ pq?{ti .Li}1≤i≤n︸ ︷︷ ︸
receive

∣∣ L1 ∥ L2
∣∣ L1 · L2

These forms of local types have a similar meaning as the corresponding forms of global types.
Henceforth, let † ∈ { ! , ?} and ⊕ ∈ {∥, ·}.

Let G ↾ r denote the projection of G onto r. Formally, ↾ is the smallest partial function
induced by the equations in Figure 6. The projections of end, G1 ∥ G2, and G1 · G2 are
easy. The projection of p_q :{ti .Gi}1≤i≤n onto r depends on the contribution of r to the
communication: if r is sender (resp. receiver), then the projection specifies a send (resp.
receive); if r does not contribute to the communication, and if r has a unique continuation,
then the projection is that continuation. The latter means that r is insensitive to which type
was communicated (which, as a non-contributor to the communication, r does not know).
We note that projection is partial: if the projection of a global type onto one of its roles is
undefined, then the global type is unsupported. We also note that, for simplicity and because
it does not affect this paper, we use the “plain merge” instead of the “full merge” [39].

Processes and typing rules. Let V denote the set of all values, ranged over by v. Let X
denote the set of all variables, ranged over by x. Let E denote the set of all expressions,
ranged over by e. Let P denote the set of all processes, ranged over by P :

P ::= 0
∣∣ pq !e.P

∣∣ pq?{xi :ti .Pi}1≤i≤n

∣∣ P1 ∥ P2
∣∣ P1 · P2

Informally, these forms of processes have the following meaning:

Process 0 implements the empty role.

Process pq !e.P implements the asynchronous send of the value of expression e through
the buffered channel from role p to role q, followed by P . Asynchronous sends can
be combined with conditional choices to implement internal choices by a process. For
instance, the following process implements the second part of the buyer in Example 1:

if goodOffer(descr,price) (bbbsss !Acc().0) (bbbsss !Rej().0)
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Γ ⊢ e : tk Γ ⊢ P : Lk

Γ ⊢ pq !e.P : pq !{ti .Li}1≤i≤n

[Send]
Γ, xi : ti ⊢ Pi : Li for every 1 ≤ i ≤ n

Γ ⊢ pq?{xi :ti .Pi}1≤i≤n : pq?{ti .Li}1≤i≤n

[Recv]

Γ ⊢ 0 : end
[Empty]

Γ ⊢ P1 : L1 Γ ⊢ P2 : L2

Γ ⊢ P1 ∥ P2 : L1 ∥ L2
[Par]

Γ ⊢ P1 : L1 Γ ⊢ P2 : L2

Γ ⊢ P1 · P2 : L1 · L2
[Seq]

Figure 7 Well-typedness of processes.

Process pq?{xi :ti .Pi}1≤i≤n implements the asynchronous receive of a value of type ti

into variable xi through the buffered channel from role p to role q, followed by Pi (i.e.,
type switch on the received value), for some 1 ≤ i ≤ n. Asynchronous receives can be used
to implement external choices by the environment of a process. For instance, the following
process implements the second part of the seller in Example 1: bbbsss?{x:Acc.0, x:Rej.0}.
Thus, through an internal choice and a reciprocal external choice, the sender can “select”
a value of a particular type to control whereto the receiver “branches off”.

Process P1 ∥ P2 implements the parallel composition of P1 and P2. We note that P1 ∥ P2
is intended to implement one role (i.e., there is no communication between P1 and P2);
the only purpose of parallel composition is to allow the sends and receives of P1 and P2
to be ordered dynamically at execution-time.

Process P1 · P2 implements the sequential composition of P1 and P2.

Let Γ ⊢ e : t denote well-typedness of expression e by data type t in environment Γ . Let
Γ ⊢ P : L denote well-typedness of process P by local type L in environment Γ . Formally,
⊢ is the smallest relation induced by the rules in Figure 7. Rule [Empty] states that the
empty role is well-typed by the empty protocol. Rule [Send] states that a send is well-typed
by pq !{ti .Li}1≤i≤n if, for some 1 ≤ k ≤ n, the value to send is well-typed by tk and the
continuation is well-typed by Lk. Dually, rule [Recv] states that a receive is well-typed
by pq?{ti .Li}1≤i≤n if, for every 1 ≤ i ≤ n, the continuation is well-typed by Li under the
additional assumption that the received value is well-typed by ti. Thus, a well-typed process
needs to be able to consume all specified inputs (i.e., input-enabledness), but produce only
one specified output. Rules [Par] and [Seq] state that a parallel and sequential composition
are well-typed if their operands are.

▶ Theorem 5 (Deniélou–Yoshida [10]). If G is a well-formed global type in which roles
r1, . . . , rn occur, and if ⊢ Pi : (G ↾ ri) for every 1 ≤ i ≤ n, then the session of P1, . . . , Pn is
deadlock-free and protocol-compliant with respect to G.

3 DFA-based API Generation

In this section, we revisit API generation by presenting the existing DFA-based version in
Scala 3, using concepts and notation of the previous section. First, we show how local types
can be interpreted operationally as DFAs (§ 3.1). Next, we show how DFAs can be encoded
as APIs using the existing “states-as-classes” encoding (§ 3.2). Last, we also show how DFAs
can be encoded as APIs using a new “states-as-type-parameters” encoding (§ 3.3). The value
of this second encoding is twofold: it yields APIs with a smaller memory footprint, and it
gently introduces match types to set the stage for the next section.

ECOOP 2022
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JendKDFA =

Jpq†{ti .Li}1≤i≤nKDFA =

A1

An

pq†t1

pq†tn

...

σ
11...

σ1k1...

σn1

σn
kn

such that, for every 1 ≤ i ≤ n, JLiKDFA = Ai

σi1...
σikiJL1 ∥ L2KDFA = (S1 × S2, (s1i, s2i), (s1f , s2f), δ)

such that δ((s1, s2), σ) =
{

(s′
1, s2) if δ1(s1, σ) = s′

1

(s1, s′
2) if δ2(s2, σ) = s′

2

JL1 · L2KDFA = (S1 ∪ S2, s1i, s2f , δ̂1 ∪ δ2)

such that δ̂1(s1, σ) =
{

s′
1 if δ1(s1, σ) = s′

1 ̸= s1f

s2i if δ1(s1, σ) = s′
1 = s1f

Figure 8 Interpretation of local types as DFAs.

3.1 From Local Types to DFAs
The first interpretation of local types as DFAs was discovered by Deniélou and Yoshida [11].
The key insight is that a local type for a role essentially defines a regular language, each of
whose words represents an admissible execution of the role’s implementation.

DFAs, formally. Let ΣΣΣ = {pq !t | p ̸= q} ∪ {pq?t | p ̸= q} denote the set of all type-level
actions (“the alphabet”), ranged over by σ. Let A denote the set of all deterministic finite
automata (DFA) over ΣΣΣ, ranged over by A. Formally, a DFA is a tuple (S, si, sf , δ), where S

denotes a set of states, si, sf ∈ S denote the initial state and the final state, and δ : S ×ΣΣΣ ⇀ S

denotes a transition function.

Interpretation. Let JLKDFA denote the interpretation of local type L as a DFA. Formally,
J-KDFA : L → A is the smallest function induced by the equations in Figure 8. The
interpretation of end is the DFA that accepts the empty language. The interpretation of
pq†{ti .Li}1≤i≤n is the DFA that accepts the language of words that begin with pq†ti and
continue with a word accepted by the interpretation of Li; the visualisation is intended to
convey that the final states of the interpretations of L1, . . . , Ln are “superimposed” to form
a single new final state. The interpretations of L1 ∥ L2 and L1 · L2 are the DFAs that accept
the shuffle and the concatenation of the languages accepted by the interpretations of L1
and L2. We note that the transition function of JL1 ∥ L2KDFA is well-defined due to the
well-formedness requirement (§ 2) that the sets of sends and receives that occur in L1 and L2
are disjoint (i.e., δ1(s1, σ) = s′

1 and δ2(s2, σ) = s′
2 cannot both be true).

▶ Example 6. The following DFA is the interpretation of Lsss in Example 3:

JLsssKDFA = 1

2

3

4 5
sssbbb !Descr

sssbbb !Price

sssbbb !Price

sssbbb !Descr

bbbsss?Acc

bbbsss?Rej
⌟
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▶ Example 7. The following DFA is the interpretation of Lmmm in Example 4:

JLmmmKDFA = 1 2 3

4

5

6
mmmwww1 !Work mmmwww2 !Work mmmwww1?Done

mmmwww2?Done

mmmwww2?Done

mmmwww1?Done ⌟

3.2 From DFAs to APIs – Using Classes
The first encoding of DFAs as APIs was developed by Hu and Yoshida [20]. The key insight
is that an input-enabled process P is well-typed by local type L (§ 2) if, and only if, every
possible sequence of sends and receives by P forms a word accepted by JLKDFA. The “trick”,
then, is to structure the API in such a way that when the compiler successfully type-checks
the API’s usage, it has effectively performed an accepting run of JLKDFA for every possible
sequence of sends and receives by P . In the rest of this subsection, we show how to achieve
this in Scala 3 using the existing states-as-classes encoding of DFAs as APIs; experts may skip
this subsection, or quickly browse through it only to familiarise themselves with notation.

Suppose that (S, si, sf , δ) is the interpretation of the local type for role r:

Every state s ∈ S is encoded as class ⟨r⟩$⟨s⟩ in the API, where ⟨r⟩ and ⟨s⟩ are identifiers
for r and s (and $ is a meaningless separator).

Every transition δ(s, σ) is encoded as a method of class ⟨r⟩$⟨s⟩ to perform action σ and
provide an instance of class ⟨r⟩$⟨δ(s, σ)⟩, as detailed shortly.

To use the API, the idea is to define a function f that consumes an “initial state object” s of
type ⟨r⟩$⟨si⟩ as input and produces a “final state object” of type ⟨r⟩$⟨sf⟩ as output. Inside of
f, initially, the only protocol-related actions that can be performed, are those for which s has
a method. When such a method is called on s, an action is performed and a fresh “successor
state object” sNext is provided. Subsequently, the only protocol-related actions that can be
performed, are those for which sNext has a method. When such a method is called on sNext,
another action is performed, and another fresh “successor successor state object” sNextNext
is provided. This goes on until the final state object is provided.2 To ensure that every state
object is used at most once (see also footnote 2), every state class extends the following trait:
trait UseOnce :

var used = false
def use = if used then throw new Exception () else used = true

When a method is called on a state object s, inside of it, method use is first called to ensure
that s has not been used before. Otherwise, an exception is thrown. This technique was first
used by Tov and Pucella [42] and has since been adopted in tools for both binary sessions
(e.g., [35, 38]) and multiparty sessions (e.g., [7, 20, 23, 31, 33, 37, 45]). We note that used in
UseOnce should actually be declared private to shield it from external modification; we omit
such access modifiers in our listings for simplicity.

2 When a method is called on an instance of class ⟨r⟩$⟨s⟩, but the method does not exist, it means
that: (1) state s in the DFA does not have a corresponding transition; (2) hence, the local type for r
does not specify the corresponding action; (3) hence, the action is not allowed in the protocol. The
compiler statically detects this while type-checking and reports an error. As successor state objects
become available only after predecessor state objects are used, and assuming that every state object is
used exactly once, well-typed usage of the API implies protocol compliance. Moreover, as a final state
object must have been provided upon termination, and assuming that there are no other sources of
non-terminating or exceptional behaviour, well-typed usage of the API also implies deadlock freedom.
We note that these two additional assumptions cannot be statically enforced using Scala 3’s type system
(just as with many existing tools [7, 20, 23, 31, 33, 37, 45]): checking the first assumption requires a form
of substructural typing, while checking the second assumption is generally undecidable. However, the
first assumption can be dynamically monitored using lightweight checks at execution-time.
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Next, we explain in more detail how states and transitions can be encoded as classes
and methods. As usual in DFA-based API generation, we require that every state in the
DFA-interpretation of a local type is either an output state with only send transitions, or
an input state with only receive transitions. In the absence of parallel composition, this
requirement is satisfied by construction (§ 3.2), but in the presence of parallel composition, it
needs to be checked separately. The classes for output states and input states look as follows:

Suppose that (S, si, sf , δ) is the interpretation of the local type for role p. Every out-
put state s ∈ S, with transitions δ(s, pq1 !t1), . . . , δ(s, pqn !tn), is encoded as follows:
class ⟨p⟩$⟨s⟩(net: Network ) extends UseOnce : // output state

def send(q: ⟨q1⟩, e: ⟨t1⟩): ⟨p⟩$⟨δ(s, pq1 !t1)⟩ = { use; ... /* real send */ }
...
def send(q: ⟨qn⟩, e: ⟨tn⟩): ⟨p⟩$⟨δ(s, pqn !tn)⟩ = { use; ... /* real send */ }

Parameter net of class ⟨p⟩$⟨s⟩ encapsulates the underlying communication infrastructure
(e.g., shared-memory channels); it is used inside of every send method to perform the
“real send”. Parameter q of every send method is the identifier of the receiver, parameter
e is the value to send, and the return value is a fresh successor state object. Roughly,
these methods in Scala 3 are typed versions of pq !e.P in the process calculus (§ 2).

Suppose that (S, si, sf , δ) is the interpretation of the local type for role q. Every input
state s ∈ S, with transitions δ(s, p1q?t1), . . . , δ(s, pnq?tn), is encoded as follows:
class ⟨q⟩$⟨s⟩(net: Network ) extends UseOnce : // input state

def recv(f1: (⟨p1⟩, ⟨t1⟩, ⟨q⟩$⟨δ(s, p1q?t1)⟩) => ⟨q⟩$⟨sf⟩,
... ,
fn: (⟨pn⟩, ⟨tn⟩, ⟨q⟩$⟨δ(s, pnq?tn)⟩) => ⟨q⟩$⟨sf⟩) = { use; ... /* real recv */ }

Parameter fi of method recv is the i-th continuation; it is called with the identifier of
the sender, the value to receive, and a fresh successor state object after the “real receive”.
Roughly, this method in Scala 3 is pq?{xi :ti .Pi}1≤i≤n in the process calculus (§ 2).

▶ Example 8. The following API is the states-as-classes encoding of JLsssKDFA in Example 6:
class S$1(net: Network ) extends UseOnce :

def send(q: B, e: Descr ): S$2 = ...
def send(q: B, e: Price ): S$3 = ...

class S$2(net: Network ) extends UseOnce :
def send(q: B, e: Price ): S$4 = ...

class S$3(net: Network ) extends UseOnce :
def send(q: B, e: Descr ): S$4 = ...

class S$4(net: Network ) extends UseOnce :
def recv(

f1: (B, Acc , S$5) => S$5 ,
f2: (B, Rej , S$5) => S$5 ): S$5 = ...

class S$5(net: Network ) extends UseOnce

type S$Initial = S$1
type S$Final = S$5

The following well-typed function implements the seller:
def seller (s: S$Initial ): S$Final = s

.send(B, new Descr ). send(B, new Price ). recv(
(q: B, x: Acc , s) => { println (" offer accepted "); s },
(q: B, x: Rej , s) => { println (" offer rejected "); s }

We note that the two sends in the implementation of the seller can be swapped (i.e., first
the price, second the description): the resulting code would still be well-typed, indicating to
the programmer that the protocol is not violated. We also note that the type of parameter
s in the continuations on the last two lines is inferred by the compiler. This demonstrates
that the programmer does not need to know how states are represented. The types of
parameters q and x can be inferred as well, so the annotations are redundant; we added
them here for clarity of presentation (but will omit them from now on). For details, see:
https://scastie.scala-lang.org/779xP1Z8QwC1DLKDFYAsJg. ⌟

https://scastie.scala-lang.org/779xP1Z8QwC1DLKDFYAsJg
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▶ Example 9. The following API is the states-as-classes encoding of JLmmmKDFA in Example 7:
class M$1(net: Network ) extends UseOnce :

def send(q: W1 , e: Work ): M$2 = ...
class M$2(net: Network ) extends UseOnce :

def send(q: W2 , e: Work ): M$3 = ...
class M$3(net: Network ) extends UseOnce :

def recv(
f1: (W1 , Done , M$4) => M$6 ,
f2: (W2 , Done , M$5) => M$6 ): M$6 = ...

class M$4(net: Network ) extends UseOnce :
def recv(f2: ... => M$6 ): M$6 = ...

class M$5(net: Network ) extends UseOnce :
def recv(f1: ... => M$6 ): M$6 = ...

class M$6(net: Network ) extends UseOnce

type M$Initial = M$1
type M$Final = M$6

The following well-typed function implements the master:
def master (s: M$Initial ): M$Final = s

.send(W1 , new Work ). send(W2 , new Work ). recv(
(_, _, s) => s.recv ((_, _, s) => { println (" first #1, second #2"); s }),
(_, _, s) => s.recv ((_, _, s) => { println (" first #2, second #1"); s }))

We note that the two sends in the implementation of the master cannot be swapped (i.e.,
first to worker 2, second to worker 1): the resulting code would not be well-typed, indicating
to the programmer that the protocol is violated. We also note that we omitted all type
annotations for parameters in continuations; they can be inferred by the compiler. For details,
see: https://scastie.scala-lang.org/Lg2ZNlw8T7eTfcef7k3yIw. ⌟

3.3 From DFAs to APIs – Using Type Parameters
In the previous subsection, we showed how the existing states-as-classes encoding of DFAs
can be used to “trick” the compiler into performing type-level accepting runs. Attractively,
states-as-classes requires only basic features of the underlying type system; as a result, it can
be applied in combination with a wide range of programming languages (e.g., F# [33], F⋆ [46],
Go [7], Java [20], OCaml [45], PureScript [25], Rust [27], Scala [37], TypeScript [31]). In this
subsection, we present a new states-as-type-parameters encoding of DFAs that leverages an
advanced feature of Scala 3’s type system: match types [1]. While the primary aim of this
subsection is to gently explain match types and set the stage for §4, states-as-type-parameters
has a technical advantage as well: it is more space-efficient (i.e., states-as-classes requires all
specific state classes to be loaded in memory, which can be many, while states-as-type-pa-
rameters requires only one generic state class to be loaded.)

Match types. As a brief digression, consider the following example to introduce match
types: suppose that we need to write a function that converts Ints to Booleans and vice
versa. Naively, we could write the signature of this function as follows:
type IntOrBoolean = Int | Boolean // type alias for a union type
def convert (x: IntOrBoolean ): IntOrBoolean = x match

case i: Int => i == 1
case b: Boolean => if b then 1 else 0

The trouble with this first attempt is that the return type, IntOrBoolean, is insufficiently
precise. For instance, the compiler fails to prove that expression convert(5) && false is
safe, as it cannot infer that convert(5) is of type Boolean. Essentially, what the compiler
is missing, is a relation between the actual type of x (e.g., Int) and the return type (e.g.,
Boolean). Match types allow us to define such relations.

1. First, we redefine the signature of convert as follows:
def convert [T <: IntOrBoolean ](x: T): Convert [T] = ... // same as before

That is, we introduce a type parameter T, which must be a subtype of IntOrBoolean
(generally, A and B are subtypes of A|B), and we declare x to be of type T. Furthermore,
we declare the return value of the function to be of match type Convert[T]. The idea is
to define Convert[T] in such a way that the intended relation between the actual type of
x and the return type can be inferred.
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2. Next, we define Convert[T] as follows:
type Convert [T] = T match

case Int => Boolean
case Boolean => Int

The compiler reduces every occurrence of Convert[T] to Int or Boolean, depending on the
instantiation of T (e.g., Convert[Int] reduces to Boolean).

3. Last, for instance, the compiler succeeds/fails to type-check the following expressions:
convert (5) + 6 // fail
convert (5) && false // succeed

convert (true) + 6 // succeed
convert (true) && false // fail

Thus, match types constitute a “lightweight form of dependent typing” to perform “type-
level programming” [1]. In the rest of this subsection, we show how to leverage them in the
states-as-type-parameters encoding of DFAs as APIs.

Encoding of DFAs as APIs. The idea behind the states-as-type-parameters encoding is to
generate, for every role r, a generic state class ⟨r⟩$State; it has one type parameter, called N.
Every instantiation of N with a numeric literal type (e.g., in Scala, symbol “5” denotes both
value 5 and a type with value 5 as its only inhabitant) specialises the generic state class into
a specific one. For instance, ⟨r⟩$State[1], ⟨r⟩$State[2], and ⟨r⟩$State[3] represent three
different states, identified by types 1, 2, and 3. Thus, ⟨r⟩$State has the following header:
class ⟨r⟩$State [N](n: N, net: Network ) extends UseOnce :

This class has two methods: send and recv. At execution-time, when send or recv is
called, an action is performed and a fresh successor state object is returned. At compile-time,
to check that this method call is actually allowed in the current state, the compiler tries to
reduce a match type: if it succeeds, the call is allowed; if it fails, it is not.

Regarding send, the idea is to use a match type ⟨r⟩$SendReturn for the return value; it has
three type parameters, called N, Q, and E, which identify the current state s, the receiver q,
and the type t of the value to send. If the DFA has a send transition δ(s, rq !t) = s′, then the
compiler succeeds to reduce ⟨r⟩$SendReturn[⟨s⟩,⟨q⟩,⟨t⟩] to ⟨r⟩$State[⟨s′⟩]; this is the type of
the fresh successor state object after sending. In contrast, if the DFA does not have such a
transition, then the compiler fails to reduce and yields an error. Thus, send looks as follows:

def send[Q, E](q: Q, e: E): ⟨r⟩$SendReturn [N, Q, E] = { use; ... }

Regarding recv, the idea is to use a match type ⟨r⟩$RecvArgument for the argument val-
ues; it has one type parameter, called N, which identifies the current state s. If the DFA
has receive transitions δ(s, p1r?t1) = s′

1, . . . , δ(s, pnr?tn) = s′
n, then the compiler succeeds

to reduce ⟨r⟩$RecvArgument[⟨s⟩] to a tuple of function types each of which is of the form
(⟨pi⟩,⟨ti⟩,⟨r⟩$State[⟨s′

i⟩]) => ⟨r⟩$Final; these are the types of the continuations after receiv-
ing. In contrast, if the DFA does not have such transitions, then the compiler fails to reduce
and yields an error. Thus, recv looks as follows:

def recv(fff: ⟨r⟩$RecvArgument [N]): ⟨r⟩$Final = { use; ... }

The following examples demonstrate these match types.
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▶ Example 10. The following API (excerpt) is the states-as-type-parameters encoding of
JLsssKDFA in Example 6 (cf. the states-as-classes encoding in Example 8):
type S$SendReturn [N, Q, E] =

(N, Q, E) match
case (1, B, Descr ) => S$State [2]
case (1, B, Price ) => S$State [3]
case (2, B, Price ) => S$State [4]
case (3, B, Descr ) => S$State [4]

type S$RecvArgument [N] = N match
case 4 => (

(B, Acc , S$State [5]) => S$State [5] ,
(B, Rej , S$State [5]) => S$State [5])

Every case in match type S$SendReturn encodes a send transition out of states 1–3 in the
DFA in Example 6. Similarly, the single case in match type S$RecvArgument encodes the set
of receive transitions out of state 4. We note that exactly the same function that implements
the seller in Example 8 is also well-typed using the API in this example. For details, see:
https://scastie.scala-lang.org/YB9G1KuVQxGkbwgqm7LKLw. ⌟

▶ Example 11. The following API (excerpt) is the states-as-type-parameters encoding of
JLmmmKDFA in Example 7 (cf. the states-as-classes encoding in Example 9):
type M$SendReturn [N, Q, E] = (N, Q, E) match

case (1, W1 , Work) => M$State [2]
case (2, W2 , Work) => M$State [3]

type M$RecvArgument [N] = N match
case 3 => ((W1 , Done , M$State [4]) => M$State [6] ,

(W2 , Done , M$State [5]) => M$State [6])
case 4 => ((W2 , Done , M$State [6]) => M$State [6])
case 5 => ((W1 , Done , M$State [6]) => M$State [6])

Every case in match type M$SendReturn encodes a send transition out of states 1–2 in the
DFA for the master in Example 7. Similarly, every case case in match type M$RecvArgument
encodes a set of receive transitions out of states 3–5. We note that exactly the same functions
that implement the master and worker 1 in Example 9 are also well-typed using the API in
this example. For details, see: https://scastie.scala-lang.org/HHy4TUYLREeQYc8yW6U
wHw. ⌟

We note that states-as-type-parameters fully supports recursive protocols, and it never
gives rise to non-terminating compile-time reductions of match types: every reduction only
checks if a call to send or recv on a state object is allowed by considering its finitely many
outgoing transitions; possibly infinitely long paths through the DFA are not considered.

4 SOP-based API Generation

To more clearly demonstrate the complications of supporting concurrent subprotocols with
DFA-based API generation (Figure 5), we consider another example.

▶ Example 12. The following local type specifies the master in the relaxed master–workers
protocol (Example 4), but with three workers instead of two:

Lmmm = mmmwww1 !Work . mmmwww2 !Work . mmmwww3 !Work . (www1mmm?Done ∥ www2mmm?Done ∥ www3mmm?Done)

The following DFA is the interpretation of the local type:
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1

2

3

4

5

6

7

8

9

10

11

mmmwww1 !Work
mmmwww2 !Work

mmmwww3 !Work

www1mmm
?Done

www2mmm?Done

www2mmm?Done

www1mmm
?Done

www1mmm
?Done

www2mmm?Done

www2mmm?Done

www1mmm
?Done

www3mmm?Done

www3mmm?Done
www3mmm?Done

www3mmm?Done

This DFA demonstrates complication 1 in Figure 5 (i.e., state explosion): it has
O(2n) states, where n = 3 is the number of unordered receives.

The following well-typed function implements the master, using an API that encodes the
DFA (whether states-as-classes or states-as-type-parameters is used, is irrelevant here):
def master (s: M$Initial ): M$Final = s

.send(W1 , new Work ). send(W2 , new Work ). send(W3 , new Work ). recv(
(_, _, s) => s.recv(

(_, _, s) => s.recv(
(_, _, s) => { println ("#1 , #2, #3"); s }),

(_, _, s) => s.recv(
(_, _, s) => { println ("#1 , #3, #2"); s })) ,

(_, _, s) => s.recv(
(_, _, s) => s.recv(

(_, _, s) => { println ("#2 , #1, #3"); s }),
(_, _, s) => s.recv(

(_, _, s) => { println ("#2 , #3, #1"); s })) ,
(_, _, s) => s.recv(

(_, _, s) => s.recv(
(_, _, s) => { println ("#3 , #1, #2"); s }),

(_, _, s) => s.recv(
(_, _, s) => { println ("#3 , #2, #1"); s })))

This implementation demonstrates complication 2 in Figure 5 (i.e., branch
explosion): it has O(n!) branches (each of which implements a distinct order in which the
receives might dynamically take place), where n = 3 is the number of unordered receives. ⌟

In this section, we revise API generation to avoid the complications in Figure 5 by
presenting a new version based on sets of pomsets (SOP). First, we show how local types
can be interpreted operationally as SOPs (§ 4.1). Next, we show how SOPs can be encoded
as APIs using match types (§ 4.2).

4.1 From Local Types to SOPs
Our interpretation of local types as SOPs is based on the recent pomset framework by
Guanciale and Tuosto [14]. The key insight is that every subset of words that differ only
in the order of concurrent actions (in the regular language defined by a local type) can be
represented as a pomset in exponentially less time and space.

Pomsets, formally (structure). The formalisation of pomsets (“partially ordered multisets”)
is relatively complicated; we first explain the intuition. Recall that a multiset is a set in
which every element can have multiple “instances” (e.g., {a, a, b} has two elements but three
instances). A pomset is just a multiset endowed with a partial order ≺ on the instances
(e.g., a ≺ b ≺ a, where the left a and the right a are different instances). Following Pratt
and Gischer [13, 36], the idea is to formalise pomsets using labelled digraphs: vertices
represent instances, arcs represent the ordering, and vertex labels represent elements (e.g.,
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v′ ̸≺ v for every v′

(V, ≺, λ) λ(v)−−−→ (V \{v} , ≺\({v} × V ) , λ\(v 7→ λ(v)))
[Lpo]

X
σ−→ X ′

[X] σ−→ [X ′]
[Pom]

Xi
σ−→ X ′

i and 1 ≤ i ≤ n

{X1, . . . , Xn} σ−→ {X ′
i }

[SopA] or

Xi
σ−→ X ′

i for every 1 ≤ i ≤ k

Xi ̸ σ−→ for every k + 1 ≤ i ≤ n

{X1, . . . , Xn} σ−→ {X ′
1, . . . , X ′

k}
[SopB]

Figure 9 Transitions of lposets, pomsets, and sets of pomsets.

{a, a, b}, endowed with a ≺ b ≺ a, can be formalised using labelled vertices 1a, 2a, 3b and
arcs (1, 3), (3, 2)); such labelled digraphs are called lposets (“labelled partially ordered sets”).
To make the formalisation of pomsets insensitive to the choice of vertices (e.g., it should not
matter if we use 1a, 2a, 3b or 4a, 5a, 6b as labelled vertices), pomsets are ultimately defined as
isomorphism classes of lposets. Henceforth, we write “events” instead of “vertices”.

Let Lpo denote the set of all lposets, ranged over by X. Formally, an lposet is a tuple
(V, ≺, λ), where V is a set of events, ≺ ⊆ V × V is a precedence relation (strict partial order),
and λ : V → ΣΣΣ is a labelling function, where ΣΣΣ = {pq !t | p ̸= q} ∪ {pq?t | p ̸= q} (§ 3.1).
Let predX(v) and succX(v) denote the immediate predecessors and successors of v in X.
Formally, pred and succ are the smallest functions induced by the following equations:

pred(V,≺,λ)(v) = {v′ | v ≺ v′ and (v′, v) /∈ {(v1, v3) | v1 ≺ v2 ≺ v3}}

succ(V,≺,λ)(v) = {v′ | v′ ≺ v and (v, v′) /∈ {(v1, v3) | v1 ≺ v2 ≺ v3}}

Let X1 ∥ X2 and X1 · X2 denote the parallel composition and the sequential composition of
X1 and X2. Formally, ∥ and · are the smallest functions induced by the following equations:

(V1, ≺1, λ1) ∥ (V2, ≺2, λ2) = (V1 ∪ V2, ≺1 ∪ ≺2, λ1 ∪ λ2)
(V1, ≺1, λ1) · (V2, ≺2, λ2) = (V1 ∪ V2, ≺1 ∪ ≺2 ∪ (V1 × V2), λ1 ∪ λ2)

Let X1 ∼= X2 denote isomorphism equivalence of X1 and X2; informally, X1 and X2 are
isomorphic if, and only if, there exists a bijection between their sets of events that preserves
their precedence relations and labelling functions.

Let Pom = Lpo/∼= denote the set of all pomsets, ranged over by X ; it is the quotient set
of Lpo by ∼= (i.e., a pomset is an isomorphism class of lposets). We write [X] to denote the
isomorphism class of X (i.e., a pomset). A set of pomsets is similar to a formal language
(i.e., a set of words), except that words that differ only in the order of concurrent actions are
represented collectively as a single pomset instead of individually as multiple words.

Pomsets, formally (behaviour). A transition relation can be associated to lposets, pomsets,
and sets of pomsets. Figure 9 shows the rules. Rule [Lpo] states that an lposet can reduce
with symbol λ(v) when v is minimal; v is removed from the reduced lposet. Rule [Pom]
states that a pomset can reduce with symbol σ when one of its lposets can.

Rule [SopA] states that a set of pomsets can reduce when one of its pomsets can; the
reduced pomset is kept, while the others are removed. This formalises the idea of an early
choice: at the start of an execution, when the first action is performed, a commitment is
made to one behaviour. Alternatively, rule [SopB] states that a set of pomsets can reduce
with symbol σ when it can be split into two disjoint subsets, such that k pomsets can reduce
with σ, while the remaining n − k pomsets cannot; the k reduced pomsets are kept, while
the others are removed. This formalises the idea of a late choice: during an execution, as
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JendKSOP = {[(∅, ∅, ∅)]}

Jpq†{ti .Li}1≤i≤nKSOP =
{[

pq†ti

X

]∣∣∣∣ [X] ∈ JLiKSOP and 1 ≤ i ≤ n

}
= {[({•}, ∅, {• 7→ pq†ti}) · X] | [X] ∈ JLiKSOP and 1 ≤ i ≤ n}

JL1 ∥ L2KSOP = {[X1 ∥ X2] | [X1] ∈ JL1KSOP and [X2] ∈ JL2KSOP}
JL1 · L2KSOP = {[X1 · X2] | [X1] ∈ JL1KSOP and [X2] ∈ JL2KSOP}

Figure 10 Interpretation of local types as SOPs.

actions are performed, a commitment is gradually made towards a subset of behaviours that
are still “eligible”. The transition system generated by rule [SopA] is trace equivalent to
the transition system generated by rule [SopB]. However, these two transition system are
not bisimulation equivalent: the former can be simulated by the latter, but not vice versa
(i.e., rule [SopB] subsumes rule [SopA]). Shortly, we will argue that late choices (i.e., rule
[SopB]) are appropriate in our setting, so we will use rule [SopB] instead of rule [SopA].

Interpretation. Let JLKSOP denote the interpretation of local type L as a SOP. Formally,
J-KSOP : L → 2Pom is the smallest function induced by the equations in Figure 10. The
interpretation of end is the SOP that contains only the empty pomset. The interpretation
of pq†{ti .Li}1≤i≤n is the SOP that contains for every 1 ≤ i ≤ n, and for every pomset X in
the interpretation of Li, the pomset in which a pq†ti-labelled event precedes all events in X;
in the visualisation, the arrow represents precedence (≺). The interpretations of L1 ∥ L2 and
L1 · L2 are the pairwise parallel composition and the pairwise sequential composition.

▶ Example 13. The following SOP is the interpretation of Lsss in Example 3:

JLsssKSOP = J(sssbbb !Descr ∥ sssbbb !Price) · sssbbb?{Acc, Rej}KSOP

=




sssbbb !Descr

sssbbb !Price

bbbsss?Acc

,


sssbbb !Descr

sssbbb !Price

bbbsss?Rej


 ⌟

▶ Example 14. The following SOP is the interpretation of Lmmm in Example 4:

JLmmmKSOP = Jmmmwww1 !Work . mmmwww2 !Work . (www1mmm?Done ∥ www2mmm?Done)KSOP

=


 mmmwww1 !Work mmmwww2 !Work

www1mmm?Done

www2mmm?Done


 ⌟

▶ Example 15. The following SOP is the interpretation of Lmmm in Example 12:

JLmmmKSOP = Jmmmwww1 !Work . mmmwww2 !Work . mmmwww3 !Work . (www1mmm?Done ∥ www2mmm?Done ∥ www3mmm?Done)KSOP

=




mmmwww1 !Work mmmwww2 !Work mmmwww3 !Work

www1mmm?Done

www2mmm?Done

www3mmm?Done




(We explain the
meaning of the

dashed lines later.)

This SOP avoids complication 1 in Figure 5 (i.e., state explosion): it has linearly
many events in the number of unordered receives (cf. the DFA in Example 12). ⌟
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4.2 From SOPs to APIs
To encode SOPs as APIs, the key insight is that an input-enabled process P is well-typed by
local type L (§ 2) if, and only if, every possible sequence of sends and receives by P precisely
covers the set of events of a pomset X in JLKSOP (i.e., every send or receive in the sequence
is an event of X , and vice versa) and respects the precedence relation (i.e., the sequence is
a linearisation of X ). That is, the sequence of sends and receives by P must correspond
to a sequence of transitions of the SOP, derived using the rules in Figure 9. The “trick”,
then, is to structure the API in such a way that when the compiler successfully type-checks
the API’s usage, it has effectively validated coverage and respectfulness. In the rest of this
subsection, we show how to achieve this in Scala 3 using match types.

We proceed in three paragraphs: first, to set the stage, we present a basic encoding of
SOPs for choice-free protocols; next, we extend the basic encoding with advanced support for
concurrent subprotocols; last, we also extend the basic encoding with advanced support for
choice-based protocols. We note that “advanced” pertains to the encodings, but not to the
features (i.e., choices are a basic feature in theory, but when modelled as SOPs, they require
an advanced encoding in practice). Furthermore, we note that the two extensions cannot be
used together yet; we explain the challenges to combine them at the end of this section.

Our aim in this subsection is to convey the main ideas and insights of the encoding as
clearly as possible. To this end, we focus mostly on examples (instead of presenting the
general encoding schemes). We do emphasise upfront, though, that the encodings are general,
as also evidenced by our tool and the examples that we distribute with it (§ 5).

Basic encoding: choice-free protocols. The idea behind the basic encoding of singleton
SOPs is similar to the states-as-type-parameters encoding of DFAs. That is, as in § 3.3, a
single generic state class is generated, combined with the usage of match types ⟨r⟩$SendReturn
and ⟨r⟩$RecvArgument for the return and argument values of methods send and recv:
class ⟨r⟩$State [X](x: X, net: Network ) extends UseOnce :

def send[Q, E](q: Q, e: E): ⟨r⟩$SendReturn [X, Q, E] = { use; ... }
def recv(fff: ⟨r⟩$RecvArgument [X]): ⟨r⟩$Final = { use; ... }

The main difference is the way in which the type parameter of ⟨r⟩$State is instantiated:
whereas N in § 3.3 was instantiated with numeric literal types to identify states in a DFA, X
in this section is instantiated with tuples of boolean literal types (e.g., in Scala, symbol “true”
denotes both value true and a type with value true as its only inhabitant) to represent events
in the current pomset. For instance, if {1, 2, 3} is the set of events, then its representation
as a tuple is (v1, v2, v3), where each of v1, v2, and v3 is either type true or type false.
Intuitively, if an event is represented as true, then it is still enabled (i.e., it has not happened
yet); if it is represented as false, then it is disabled (i.e., it has happened already). We note
that “state” in this section should be understood as “the current pomsets in the SOP”.

Match type ⟨r⟩$SendReturn has three type parameters, called X, Q, and E, which represent
the current pomset X , the receiver q, and the type t of the value to send. If the pomset has
a send transition X rq !t−−→ X ′ (derived using the rules in Figure 9 through a new auxiliary
match type ⟨r⟩$Pom$Send), then the compiler succeeds to reduce ⟨r⟩$SendReturn[⟨X ⟩,⟨q⟩,⟨t⟩]
to ⟨r⟩$State[⟨X ′⟩]; this is the type of the fresh successor state object after sending. Match
type ⟨r⟩$RecvArgument has one type parameter, called X, which represents the current pomset
X . If the pomset has receive transitions X p1r?t1−−−−→ X ′

1, . . . , X pnr?tn−−−−→ X ′
n (derived using

the rules in Figure 9 through a new auxiliary match type ⟨r⟩$Pom$Recv), then the compiler
succeeds to reduce ⟨r⟩$RecvArgument[⟨X ⟩] to a tuple of function types each of which is of the
form (⟨pi⟩,⟨ti⟩,⟨r⟩$State[⟨X ′⟩]) => ⟨r⟩$Final; these are the types of the continuations after
receiving. The following examples demonstrate these match types.
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▶ Example 16. The following API (excerpt) is the encoding of JLmmmKSOP in Example 14. We
present it in two steps. First, we define auxiliary match types M$Pom$Send and M$Pom$Recv to
derive transitions of the single pomset in JLmmmKSOP using rules [Lpo] and [Pom] in Figure 9.
Second, we use these auxiliary match types to define M$SendReturn and M$RecvArgument.

1. The first listing shows the two auxiliary match types:
type M$Pom$Send [X, Q, E] = (X, Q, E) match

case (( true , v2 , v3 , v4), W1 , Work) => (false , v2 , v3 , v4)
case (( false , true , v3 , v4), W2 , Work) => (false , false , v3 , v4)
case Any => Error

type M$Pom$Recv [X, P, E] = (X, P, E) match
case ((v1 , false , true , v4), W1 , Done) => (v1 , false , false , v4)
case ((v1 , false , v3 , true), W2 , Done) => (v1 , false , v3 , false )
case Any => Error

Every case in match type M$Pom$Send encodes a send transition of the pomset represented
by X, with Q as the receiver and E as the type of the value to send, derived using rules
[Lpo] and [Pom] in Figure 9. The first case states that if X matches (true, v2, v3, v4),
where v2, v3, and v4 are local type variables that are bound by matching (i.e., the first
event in the pomset has not yet happened and is still enabled, hence true; the other
events are irrelevant), and if Q and E match W1 and Work, then the pomset can make a
transition to (false, v2, v3, v4) when work is sent to worker 1 (i.e., the first event has
happened and is disabled, hence false; the other events are unaffected). We note that it
is more convenient to “set” events to false instead of removing them as in rule [Lpo].
The second case is similar, except that it imposes a precedence constraint: to match X, its
first element must be false. That is, for the second event to happen, the first event must
have already happened (i.e., the second event must have become minimal to satisfy the
premise of rule [Lpo]). The third case states that if the first two cases do not apply, then
a send of a value of type E to receiver Q cannot happen in X. Here, Error is a special type
that we use to explicitly represent “failed reduction”; it is dealt with in the next step.
Match type M$Pom$Recv is similar, but for receives instead of sends.

2. The second listing shows ⟨r⟩$SendReturn and ⟨r⟩$RecvArgument:
type M$SendReturn [X, Q, E] = /* |-then -| */

IfThenElse [ IsError [ M$Pom$Send [X, Q, E]], Unit , M$State [ M$Pom$Send [X, Q, E]]]
/* |---if -----------------------| |---else --------------------| */

type M$RecvArgument [X] =
Simplify [( IfThenElse [ IsError [ M$Pom$Recv [X, W1 , Done ]], Unit ,

(W1 , Done , M$State [ M$Pom$Recv [X, W1 , Done ]]) => M$Final ],
IfThenElse [ IsError [ M$Pom$Recv [X, W2 , Done ]], Unit ,

(W2 , Done , M$State [ M$Pom$Recv [X, W2 , Done ]]) => M$Final ])]

To reduce match type M$SendReturn[X, Q, E], the compiler checks if M$Pom$Send[X, Q, E]
reduces to Error, using “utility match types” IfThenElse and IsError. If it does (i.e., a
send of E to Q in X cannot happen), then the type of the fresh successor state object is
Unit (i.e., to indicate that something is wrong). In contrast, if it does not reduce to Error
(i.e., the send can happen), then the type of the fresh successor state is proper.
To reduce match type M$RecvArgument[X], the compiler uses a similar approach to de-
termine for every possible receive (characterised in terms of the sender and the type of
the value) if it can happen or not in X. The result is a tuple that consists of either a
proper continuation function or Unit for every possible receive; the Units are subsequently
removed using utility match type Simplify.

We note that exactly the same function that implements the master in Example 9 is also
well-typed using the API in this example. For details, see: https://scastie.scala-lang.
org/3PyXcwBKS2argRL9oPlspg. ⌟

https://scastie.scala-lang.org/3PyXcwBKS2argRL9oPlspg
https://scastie.scala-lang.org/3PyXcwBKS2argRL9oPlspg
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Advanced encoding: concurrent subprotocols. In this paragraph, we extend the basic
encoding with an advanced feature that significantly subsumes DFA-based API generation:
the ability to fork and join pomsets. Intuitively, when a fork is performed, the pomset is
“broken” into “shards”, each of which can evolve independently of the others; when a join is
performed, shards are “glued” back together. In terms of typing rules, intuitively, forking
corresponds to rule [Par] in Figure 7, while joining corresponds to rule [Seq]. In the DFA
encodings, rule [Par] has no corresponding representation, as the parallel structure is lost in
translation. In contrast, in the SOP encodings, the parallel structure is still there and thus
can be exploited. This extension is crucial to effectively support concurrent subprotocols
(i.e., avoid branch explosion; Figure 5), as will be demonstrated shortly in Example 18.

A first essential ingredient that we need, is an analysis procedure to statically identify
shards. To explain it, suppose that [X] = [(V, ≺, λ)] is a pomset. The idea is to partition V

into two kinds of subsets, each of which forms a shard:

Join shards: If v ∈ V , and if |predX(v)| > 1, then {v} forms a join shard.

Sequential shards: If v ⪯ v1 ≺ · · · ≺ vn ⪯ v′, and if |succX(vi) ∪ predX(vi)| ≤ 2, for every
1 ≤ i ≤ n − 1 (i.e., v1, . . . , vn is a chain), and if either |succX(v)| > 1 or |predX(v1)| ≠ 1
(i.e., either v1 is preceded by “fork event” v, or it is an “initial event” itself), and if either
|predX(v′) > 1| or |succX(vn)| ≠ 1 (i.e., vn is succeeded by “join event” v′, or it is a
“final event” of “fork event” itself), then {v1, . . . , vn} forms a sequential shard. That is, a
sequential shard is a longest chain of events, optionally preceded by a fork event (if v1 is
not initial), and optionally succeeded by a join event (if vn is not final or fork).

For instance, the dashed lines in Example 15 visualise four shards. We note that identification
of shards is computationally easy: it can be done in polynomial time (in the size of the
pomset), using standard graph traversal techniques.

Using this concept of shards, forking and joining generally works as follows:

If an event e has multiple immediate successors, and if every immediate predecessor has
already happened, and if every immediate successor has not yet happened, then the “old
pomset” can be forked into “new sub-pomsets” by breaking it into shards: for every
immediate successor of e, there is a new sub-pomset that consists of all sequential shards
that are reachable from e without passing through a join shard; the join shards and
all shards beyond are temporarily disabled. That is, each new sub-pomset can evolve
independently within the boundaries of its shards, but to go further, a join is needed first.
We also note that sub-pomsets can be recursively forked.

If an event e has multiple immediate predecessors, and if every immediate predecessor has
already happened, then the sub-pomsets can be joined by gluing their shards, re-enabling
the temporarily disabled join shards and all shards beyond.

To incorporate these concepts, we extend the basic encoding as follows:

Class ⟨r⟩$State is extended with a method fork. At execution time, when fork is called,
a fork is performed and fresh successor state objects are returned; they can be used
independently of each other (i.e., concurrent subprotocols). At compile-time, to check
that this method call is actually allowed in the current pomset, the compiler tries to
reduce a match type: if it succeeds, the call is allowed; if it fails, it is not. More precisely,
the idea is to use a match type ⟨r⟩$ForkReturn for the return value; it has one type
parameter, called X, which represents the current pomset X . If X can be forked into
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sub-pomsets X1, . . . , Xn, then the compiler succeeds to reduce ⟨r⟩$ForkReturn[⟨X ⟩] to a
tuple (⟨r⟩$State[⟨X1⟩],...,⟨r⟩$State[⟨Xn⟩]); these are the types of the fresh successor
state objects after forking. In contrast, if X cannot be forked, then the compiler fails to
reduce and yields an error. Thus, fork looks as follows:

def fork (): M$ForkReturn [X] = { use; ... }

We note that forking a pomset also counts as “usage”: after calling fork, the state object
should not be used again to send or receive.

Class ⟨r⟩$State is also extended with a static method join for every “join event” in the
pomset, using overloading. At execution time, when join is called, multiple final state
objects for sub-pomsets are collected (passed as arguments) and a single fresh successor
state object is returned. At compile-time, to check that this method call is actually
allowed, the compiler checks if the types of the actual parameters match the types of the
formal parameters of one of the overloaded join methods.

To conveniently distinguish sub-pomsets, the representation X of the current pomset (i.e.,
tuple of boolean literal types) is extended with an extra element, namely a fork identifier
(i.e., numeric literal type): if the current pomset was previously forked off (i.e., X actually
represents a sub-pomset), then the fork identifier is a numeric literal type that identifies
the immediate successor of the “fork event”; else, the fork identifier is 0.

To enable method recv in class ⟨r⟩$State to return different final states for different
sub-pomsets, the type of its return value is refined to depend on fork identifiers. The
idea is to use an auxiliary match type ⟨r⟩$Pom$Final to derive final states: it has one type
parameter, called X, which represents the current sub-pomset. Based on the fork identifier
in X, the compiler reduces ⟨r⟩$Pom$Final[X] to a tuple in which all events of the enabled
shards are represented as false (i.e., they have happened). Thus, recv looks as follows:

def recv(fff: ⟨r⟩$RecvArgument [X]): ⟨r⟩$State [⟨r⟩$Pom$Final [X]] = { use; ... }

The following examples demonstrate these match types.

▶ Example 17. The following API (excerpt) is the encoding of JLmmmKSOP in Example 14. We
present it in three steps. First, we define auxiliary match types M$Pom$Send and M$Pom$Recv
(similar to Example 16) and auxiliary match type M$Pom$Final (new). Second, we use these
auxiliary match types to define M$SendReturn and M$RecvArgument (similar to Example 16)
and M$Fork$Return (new). Third, we define static method join.

1. The first listing shows the three auxiliary match types:
type M$Pom$Send [X, Q, E] = (X, Q, E) match

case ((n, true , v2 , v3 , v4), W1 , Work) => (n, false , v2 , v3 , v4)
case ((n, false , true , v3 , v4), W2 , Work) => (n, false , false , v3 , v4)
case Any => Error

type M$Pom$Recv [X, P, E] = ...

type M$Pom$Final [X] = X match
case (0, v1 , v2 , v3 , v4) => (0, false , false , false , false )
case (3, v1 , v2 , v3 , v4) => (3, v1 , v2 , false , v4)
case (4, v1 , v2 , v3 , v4) => (4, v1 , v2 , v3 , false )

Match types M$Pom$Send and M$Pom$Recv are the same as in Example 16, except that tuple
X has an extra element n, namely a numeric fork identifier. Match type M$Pom$Final is
new: it is used to infer when a sub-pomset has fully evolved (i.e., within the boundaries
of its shards, but not beyond). For instance, the second case states that the sub-pomset
identified by 3 is final when the event identified by 3 has happened.
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2. The second listing shows M$SendReturn, M$RecvArgument, and M$Fork$Return:
type M$SendReturn [X, Q, E] = ...

type M$RecvArgument [X] =
Simplify [( IfThenElse [ IsError [ M$Pom$Recv [X, W1 , Done ]], Unit ,

(W1 , Done , M$State [ M$Pom$Recv [X, W1 , Done ]]) =>
M$State [ M$Pom$Final [X]]] ,

...)]

type M$ForkReturn [X] = X match
case (0, v1 , v2 , true , true) => (

M$State [(3 , v1 , v2 , true , false )], M$State [(4 , v1 , v2 , false , true )])

Match types M$SendReturn and M$RecvArgument are the same as in Example 16, except
that the return types of the continuations as computed by M$RecvArgument depend on the
fork identifier in X, using match type M$Pom$Final. Match type M$ForkReturn is new: it is
used to infer which old pomsets can be forked into which tuples of new sub-pomsets. In
this example, there is only one case. It states that if the old pomset is unforked, and if
the third and fourth events have not yet happened, then it can be forked into two new
sub-pomsets: one for the third event and one for the fourth event.
In general, match type ⟨r⟩$ForkReturn has as many cases as there are “fork events” in
the pomset. That is, we allow a pomset to be forked only right after a fork event, before
any event of the immediate successors has happened (if we would allow it also “later”,
then we would need to generate exponentially many cases).

3. The third listing shows join:
object M$State : // static methods of class M$State

def join(
s1: M$State [(3 , false , false , false , false )],
s2: M$State [(4 , false , false , false , false )]

): M$State [(0 , false , false , false , false )] = ...

Method join is needed in this example to provide a final state object with a unique type;
it is implicitly present in every pomset with more than one maximal element.
In general, ⟨r⟩$State has as many join methods as there are “join events” in the pomset.

We note that exactly the same function that implements the master in Example 9 is also
well-typed using the API in this example. Thus, the fork–join extension of the basic encoding
is backwards-compatible. To additionally demonstrate forking and joining, the following
well-typed function implements the master as well:

def master (s: M$Initial ): M$Final =
val (s1 , s2) = s.send(W1 , new Work ). send(W2 , new Work ). fork ()
val f1 = Future { s1.recv ((_, _, s) => { println ("#1"); s }) }
val f2 = Future { s2.recv ((_, _, s) => { println ("#2"); s }) }
Await . result (for { t1 <- f1; t2 <- f2 } yield M$State .join(t1 , t2), ...)

In the first line of the body, the two sends are sequentially performed as before; after
that, the pomset is forked into two pomsets, divided over successor state objects s1 and
s2. On the second and third line, the two receives are performed concurrently using two
futures (built-in Scala mechanism for asynchronous programming, using a default thread
pool). On the fourth line, the results of the futures are awaited. Any change in the order
of the actions (sends, receives, fork, join) results in a compile-time error. For details, see:
https://scastie.scala-lang.org/RoIs43OcTsS3w9wh8GC74w. ⌟

▶ Example 18. The following well-typed function implements the master (with three workers),
using an API that encodes the SOP in Example 15, including the fork–join extension.
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def master (s: M$Initial ): M$Final =
val (s1 , s2 , s3) = s.send(W1 , new Work ). send(W2 , new Work ). send(W3 , new Work ). fork ()
val f1 = Future { s1.recv ((_, _, s) => { println ("#1"); s }) }
val f2 = Future { s2.recv ((_, _, s) => { println ("#2"); s }) }
val f3 = Future { s3.recv ((_, _, s) => { println ("#3"); s }) }
Await . result (

for { t1 <- f1; t2 <- f2; t3 <- f3 } yield M$State .join(t1 , t2 , t3), ...)

This implementation avoids complication 2 in Figure 5 (i.e., branch explosion):
it has linearly many branches in the number of unordered receives (cf. the implementation
in Example 12, which has exponentially many branches). For details, see: https://scasti
e.scala-lang.org/MUEFr4ZvSEyFepAJWAKh3g. ⌟

Advanced encoding: choice-based protocols. In the previous paragraphs, we presented
the basic encoding of singleton SOPs and the fork–join extension. In this last paragraph, we
present another extension of the basic encoding to support non-singleton SOPs.

Intuitively, a non-singleton SOP {X1, . . . , Xn} represents a choice among n possible local
behaviours. The trouble is that both at compile-time and initially at execution-time, it is still
unknown which of the n pomsets will actually be chosen (e.g., the seller in the seller-buyer
protocol initially does not know yet if the buyer will accept or reject the offer). In particular,
this observation entails that we cannot “compositionally” apply the basic encoding to each
of the n pomsets and require a process to choose one of them in the beginning; generally,
there is no way in which the process can make such an early choice upfront. That is, rule
[SopA] in Figure 9, which formalises the idea of early choices, is too inflexible.

Instead, a process needs to keep its options open for as long as possible. To achieve
this, in accordance with rule [SopB] in Figure 9, which formalises the idea of late choices,
the plan is to incrementally refine the set of “eligible pomsets” (to become the chosen one),
by accumulating knowledge during the execution of the process. That is (cf. rule [SopB]),
initially, all pomsets are eligible; subsequently, every time a send or receive happens, all
eligible pomsets that do not allow the action to happen, become ineligible. In this way, when
the process terminates, coverage and respectfulness are satisfied if, and only if, all events of
at least one remaining eligible pomset have happened. It is straightforward to perform such
an incremental eligibility analysis dynamically; the challenge is to “trick” the compiler into
doing it statically. To achieve this, we extend the basic encoding as follows:

Class ⟨r⟩$State is extended with additional type parameters: instead of just X, which
represents the one pomsets in a singleton SOP, it has X1,...,Xn, which represent the n

pomsets in a non-singleton SOP.

Similarly, match types ⟨r⟩$SendReturn and ⟨r⟩$RecvArgument are extended with additional
type parameters X1,...,Xn. Furthermore, the definitions of these match types are extended
to derive send and receive transitions of the non-singleton SOP represented by X1,...,Xn
using rule [SopB] in Figure 9. We note that, essentially, the basic encoding of singleton
SOPs is a special case of the advanced encoding of non-singleton SOPs.

The following example demonstrates these match types.

▶ Example 19. The following API (excerpt) is the encoding of JLsssKSOP in Example 13. We
present it in two steps. First, we define auxiliary match types S$Pom1$Send and S$Pom1$Recv
to derive transitions of the “left” pomset in JLsssKSOP, and auxiliary match types S$Pom2$Send
and S$Pom2$Recv to derive transitions of the “right” pomset in JLsssKSOP, using rules [Lpo]
and [Pom] in Figure 9 (similar to Example 16). Second, we use these auxiliary match types
to define S$SendReturn and S$RecvArgument.

https://scastie.scala-lang.org/MUEFr4ZvSEyFepAJWAKh3g
https://scastie.scala-lang.org/MUEFr4ZvSEyFepAJWAKh3g
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1. The first listing shows the four auxiliary match types:
type S$Pom1$Send [X, Q, E] = (X, Q, E) match

case (( true , v2 , v3), B, Descr ) => (false , v2 , v3)
case ((v1 , true , v3), B, Price ) => (v1 , false , v3)
case Any => Error

type S$Pom1$Recv [X, Q, E] = (X, P, E) match
case (( false , false , true), B, Acc) => (false , false , false )
case Any => Error

type S$Pom2$Send [X, Q, E] = (X, Q, E) match
case (( true , v2 , v3), B, Descr ) => (false , v2 , v3)
case ((v1 , true , v3), B, Price ) => (v1 , false , v3)
case Any => Error

type S$Pom2$Recv [X, P, E] = (X, P, E) match
case (( false , false , true), B, Rej) => (false , false , false )
case Any => Error

Conceptually, there is nothing new here relative to the basic encoding, except that we
should be more precise about the meaning of Error: it stands for “ineligible”.

2. The second listing shows S$SendReturn and S$RecvArgument:
type S$SendReturn [X1 , X2 , Q, E] =

IfThenElse [
And[ IsError [ S$Pom1$Send [X1 , Q, E]], IsError [ S$Pom2$Send [X2 , Q, E]]] , Unit ,
S$State [ S$Pom1$Send [X1 , Q, E], S$Pom2$Send [X2 , Q, E]]]

type S$RecvArgument [X1 , X2] =
Simplify [(

IfThenElse [
And[ IsError [ S$Pom1$Recv [X1 , B, Acc ]], IsError [ S$Pom2$Recv [X2 , B, Acc ]]] , Unit ,
(B, Acc , S$State [ S$Pom1$Recv [X1 , B, Acc], S$Pom2$Recv [X2 , B, Acc ]]) =>

S$Final ],
...)]

To reduce match type S$SendReturn[X1, X2, Q, E], where X1 and X2 represent the two pom-
sets in the SOP, the compiler checks if M$Pom1$Send[X1, Q, E] and M$Pom2$Send[X2, Q, E]
reduce to Error. If they do (i.e., a send of E to Q can happen neither in X1 nor in X2),
then the type of the fresh successor state object is Unit (i.e., all pomsets have become
ineligible). In contrast, if they do not both reduce to Error (i.e., the send can happen in
X1, or in X2, or in both), then the type of the fresh successor state is proper; it is formed
by evolving both X1 and X2. There are three cases:

If X1 and X2 are bound to a non-Error type, and they evolve to non-Error types, then
the corresponding type parameters of the successor remain bound to non-Error types.
That is, both pomsets remain eligible.

If X1 (resp. X2) is bound to a non-Error type, but it evolves to Error, then the
corresponding type parameter of the successor becomes bound to Error as well. That
is, the first pomset (resp. second pomset) becomes ineligible. We note that it is more
convenient to “set” pomsets to Error instead of removing them as in rule [SopB].

If X1 (resp. X2) is bound to Error, then it “evolves” again to Error (see previous listing),
so the corresponding type parameter of the successor remains bound to Error as well.
That is, the first pomset (resp. second pomset) remains ineligible.

To reduce match type M$RecvArgument[X1, X2], the compiler uses a similar approach to
determine for every possible receive if it can happen or not in X1 and X2.

We note that exactly the same function that implements the master in Example 8 is also
well-typed using the API in this example. For details, see: https://scastie.scala-lang.
org/WN5ZmEMcRh2ecUMaCgvjPA. ⌟
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It remains a largely open question how to use both the fork–join extension of the previous
paragraph, and the choice extension of this paragraph, together. The only situation in which
we know how to do it, is when a non-singleton SOP has evolved in such a way that only one
of its pomsets has remained eligible; in that case, it has effectively become a singleton SOP,
to which the fork–join extension readily applies. The main challenge to also support forking
and joining of SOPs with multiple eligible pomsets is that we need to devise a mechanism to
control non-forked pomsets. For instance, suppose that we have a SOP {[X1], [X2]} (both
eligible), and suppose that [X1] can be forked into [X†

1 ] and [X‡
1 ]. By naively performing the

fork, we get two fresh successor state objects: one for {[X†
1 ], [X2]} and one for {[X‡

1 ], [X2]}.
However, without an additional control mechanism, the events in [X2] are now allowed to be
executed twice. Solving this non-trivial problem is part of future work.

5 Tool Support: Pompset

We developed a tool, called Pompset (portmanteau of pom_set and __mps_t), to automatically
generate SOP-based APIs, according to the workflow in Figure 4. More precisely, Pompset
consumes a global type as input and produces a set of APIs as output as follows:

1. From global type to local types: First, the global type is parsed to a “global AST”.
Next, for every role that occurs in the global AST, the global AST is projected to a “local
AST” in accordance with § 2.

2. From local types as SOPs: Every local AST is interpreted to a “SOP data structure”
in accordance with § 4.1.

3. From SOPs to APIs: Every SOP data structure is encoded as an API in accordance
with § 4.2, including the ability to fork–join SOPs. (For practical/engineering reasons,
though, the generated code is not completely identical, but it follows the same ideas and
insights and works morally the same as in the examples.)
Technically, the encoding is carried out by filling generic templates with specific data
from the SOP under consideration. We refer to our artefact (published in DARTS),
for details of the templates and the filling process; it includes source code and build
instructions. Furthermore, it includes additional examples to demonstrate the generality
of the implemented encoding scheme.
We note that generated APIs also consist of functions to spawn processes and transparently
set up the underlying communication infrastructure (i.e., transport abstraction). The
latter is based on shared-memory channels, but it could work equally well with TCP
channels; it just requires additional engineering effort.

The guarantees that APIs generated by Pompset provide at compile-time, are as usual
(§ 3.2): deadlock freedom and protocol compliance, modulo non-linear usage of state ob-
jects (checked at execution-time), and modulo uncontrollable sources of non-terminating/
exceptional behaviour. In addition to API generation as presented so far, Pompset also offers
enhanced error messages and additional pomset support to improve both the usability of the
generated APIs and the usefulness of Pompset; we describe these features in [8, § A].

Pompset is written in Scala, open source, and it has a browser-based graphical user
interface; we provide a screenshot in [8, § B].
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6 Conclusion

In this paper (pearl), we revisited and revised the API generation approach to support the
MPST method in practice. Regarding the “revisitation”, using Scala 3, we presented two
versions of the existing DFA-based API generation: states-as-classes (existing) and states-as-
type-parameters (new, by leveraging match types in Scala 3). Regarding the “revision”, we
presented a new SOP-based API generation (again, by leveraging match types in Scala 3).
Through this fresh perspective, we showed how to effectively support concurrent subprotocols
for the first time in MPST practice. The SOP-based version is incorporated in a new tool.

Regarding choices, DFA-based and SOP-based API generation are equally expressive.
However, the DFA approach supports loops, which the SOP approach currently does not.
In contrast, the SOP approach supports forking/joining of subprotocols, which the DFA
approach does not. Thus, for now, a trade-off needs to be made when choosing which
encoding to use, but our vision is that the SOP approach has the potential to subsume the
DFA approach (when the type system of the host language supports a kind of match types).

6.1 Related Work
Local types as DFAs. The idea to interpret local types as DFAs was conceived by Deniélou
and Yoshida [11,12], within the framework of communicating finite state machines (CFSM) [5].
A central notion in this work is multiparty compability: it is used to provide a sound and
complete characterisation between global types and systems (i.e., parallel compositions of
DFAs that communicate through asynchronous channels). Multiparty compatibility was
further studied and generalised in subsequent work, to cover timed behaviour [4], more
flexible choice [28], and non-synchronisability [29].

DFAs as APIs. The idea to encode DFAs as APIs was conceived by Hu and Yoshida [20,21],
for Java. The approach has subsequently been used in combination with numerous other
programming languages as well, including F# [33], F⋆ [46], Go [7], OCaml [45], PureScript [25],
Rust [27], Scala [37], and TypeScript [31]. In many of these works, distinguished capabilities
of the type system of “the host” are leveraged to offer additional compile-time guarantees
and/or support MPST extensions. For instance, Neykova et al. and Zhou et al. use type
providers in F# and refinement types in F⋆ to generate APIs that support MPST-based
refinement [33,46], while King et al. and Lagaillardie et al. use indexed monads in PureScript
and ownership types in Rust to support static linearity [25,27].

Alternative approaches (i.e., not based on API generation) to apply the MPST method
in combination with mainstream programming languages include the work of Imai et al. [22]
(for OCaml), the work of Harvey et al., Kouzapas et al., and Voinea et al. [17,26,44] (for Java,
using a typestate extension), and the work of Scalas et al. [40,41] (for Scala, using an external
model checker). Furthermore, there exist approaches to apply the MPST method that rely
on monitoring and/or assertion checking at execution-time [2,3,9,16,32,33]. The motivation
is that in practice, some distributed components of a system might not be amenable to static
type-checking (e.g., the source code is unavailable), but they can be dynamically monitored
for compliance.

Local types as pomsets. The idea to encode local types as pomsets was conceived by
Guanciale and Tuosto [14], in a continuation of earlier work on pomset-based semantics
of global types [43]. A key contribution of Guanciale and Tuosto is a sound and complete
procedure to determine if a SOP-interpretation of a global type is realisable as a collection
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of SOP-interpretations of the global type’s projections; most procedures in the MPST
literature are only sound. The PomCho tool [15] supports analysis (including counterexample
generation), visualisation, and projection of pomsets. The crucial difference with our tool is
that PomCho cannot generate APIs.

6.2 Future Work
We intend to demonstrate the potential of SOP-based API generation with this paper, and
we believe that it can become the starting point for many improvements to the current design.
Concretely, we are pursuing two pieces of future work.

First, as explained at the end of § 4.2, fork–join support and choice support can be used
together only to a limited extent. We are currently approaching this open problem from two
angles: on the practical side, we try to devise a mechanism to control non-forked pomsets,
without changing the underlying foundations; meanwhile, on the theoretical side, we are
studying an alternative pomset-based version of MPST theory that should make choices
simpler to support (inspired by branching automata [30] and pomset automata [24]).

Second, our current version of SOP-based API generation does not support loops. This
open problem is foundational: in the same way that Kleene star gives rise to infinite regular
languages of finite words, a looping construct in the grammar of global/local types would
give rise to infinite sets of finite pomsets. In theory, this is fine; in practice, it is not (i.e.,
generated APIs would need to be infinite as well). Solving this problem is another reason
for us to study an alternative pomset-based version of MPST theory, in which loops can be
represented finitely. We expect the key ideas and insights of SOP-based API generation in
this paper to remain applicable, though.

References
1 Olivier Blanvillain, Jonathan Immanuel Brachthäuser, Maxime Kjaer, and Martin Odersky.

Type-level programming with match types. Proc. ACM Program. Lang., 6(POPL):1–24, 2022.
2 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.

Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.
3 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-

contract for distributed multiparty interactions. In CONCUR, volume 6269 of Lecture Notes
in Computer Science, pages 162–176. Springer, 2010.

4 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together. In CONCUR,
volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

5 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

6 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Log. Methods Comput. Sci., 8(1), 2012.

7 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go: statically-typed endpoint
apis for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL):29:1–29:30, 2019.

8 Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença. Api generation
for multiparty session types, revisited and revised using scala 3 (full version). Technical Report
OUNL-CS-2022-03, Open University of the Netherlands, 2022.

9 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and python. Formal Methods Syst. Des., 46(3):197–225, 2015.



G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:27

10 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages
435–446. ACM, 2011.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 194–213.
Springer, 2012.

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP (2), volume 7966
of Lecture Notes in Computer Science, pages 174–186. Springer, 2013.

13 Jay L. Gischer. The equational theory of pomsets. Theor. Comput. Sci., 61:199–224, 1988.
14 Roberto Guanciale and Emilio Tuosto. Realisability of pomsets. J. Log. Algebraic Methods

Program., 108:69–89, 2019.
15 Roberto Guanciale and Emilio Tuosto. Pomcho: A tool chain for choreographic design. Sci.

Comput. Program., 202:102535, 2021.
16 Ruben Hamers and Sung-Shik Jongmans. Discourje: Runtime verification of communication

protocols in clojure. In TACAS (1), volume 12078 of Lecture Notes in Computer Science,
pages 266–284. Springer, 2020.

17 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty session types
for safe runtime adaptation in an actor language. In ECOOP, volume 194 of LIPIcs, pages
10:1–10:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016.

20 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE, volume 9633 of Lecture Notes in Computer Science, pages 401–418. Springer,
2016.

21 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In FASE, volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer, 2017.

22 Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session program-
ming with global protocol combinators. In ECOOP, volume 166 of LIPIcs, pages 9:1–9:30.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

23 Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards more
expressive multiparty session types. In ESOP, volume 12075 of Lecture Notes in Computer
Science, pages 251–279. Springer, 2020.

24 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. On series-parallel
pomset languages: Rationality, context-freeness and automata. J. Log. Algebraic Methods
Program., 103:130–153, 2019.

25 Jonathan King, Nicholas Ng, and Nobuko Yoshida. Multiparty session type-safe web de-
velopment with static linearity. In PLACES@ETAPS, volume 291 of EPTCS, pages 35–46,
2019.

26 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with mungo and stmungo: A session type toolchain for java. Sci. Comput. Program., 155:52–75,
2018.

27 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing multiparty
session types in rust. In COORDINATION, volume 12134 of Lecture Notes in Computer
Science, pages 127–136. Springer, 2020.

28 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In POPL, pages 221–232. ACM, 2015.

29 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating
session automata. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages
97–117. Springer, 2019.

ECOOP 2022



27:28 API Generation for MPST, Revisited and Revised Using Scala 3

30 Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theor. Comput. Sci., 237(1-2):347–380, 2000.

31 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in typescript with routed multiparty session types. In CC, pages 94–106. ACM,
2021.

32 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Aspects Comput., 29(5):877–910, 2017.

33 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In CC,
pages 128–138. ACM, 2018.

34 Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery.
In CC, pages 98–108. ACM, 2017.

35 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017.

36 Vaughan R. Pratt. Modeling concurrency with partial orders. Int. J. Parallel Program.,
15(1):33–71, 1986.

37 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In ECOOP, volume 74 of LIPIcs, pages
24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

38 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP,
volume 56 of LIPIcs, pages 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

39 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019.

40 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Effpi: verified message-passing programs
in dotty. In SCALA@ECOOP, pages 27–31. ACM, 2019.

41 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying message-passing programs with
dependent behavioural types. In PLDI, pages 502–516. ACM, 2019.

42 Jesse A. Tov and Riccardo Pucella. Stateful contracts for affine types. In ESOP, volume 6012
of Lecture Notes in Computer Science, pages 550–569. Springer, 2010.

43 Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies. J. Log.
Algebraic Methods Program., 95:17–40, 2018.

44 A. Laura Voinea, Ornela Dardha, and Simon J. Gay. Typechecking java protocols with
[st]mungo. In FORTE, volume 12136 of Lecture Notes in Computer Science, pages 208–224.
Springer, 2020.

45 Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines
and an extensible toolchain for multiparty session types. In FCT, volume 12867 of Lecture
Notes in Computer Science, pages 18–35. Springer, 2021.

46 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically verified refinements for multiparty protocols. Proc. ACM Program. Lang.,
4(OOPSLA):148:1–148:30, 2020.


	1 Introduction
	2 MPST Theory in a Nutshell
	3 DFA-based API Generation
	3.1 From Local Types to DFAs
	3.2 From DFAs to APIs – Using Classes
	3.3 From DFAs to APIs – Using Type Parameters

	4 SOP-based API Generation
	4.1 From Local Types to SOPs
	4.2 From SOPs to APIs

	5 Tool Support: Pompset
	6 Conclusion
	6.1 Related Work
	6.2 Future Work


