
“A Survey on Reactive 
Programming”

Engineer Bainomugisha, Andoni Lombide Carreton, Tom 
Van Cutsem, Stijn Mostinckx, Wolfgang De Meuter 

ACM Computing Surveys (CSUR) – 2013 

PLaNES reading club 
21 Jan 2015



:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.

6 Dimensions (Languages



:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.

6 Dimensions (Languages

Christophe’s paper next time

VUB’s work



Reactive programming
• for event-driven and interactive applications 

• express time-varying values 

• automatically manage dependencies between 
such values 

• abstract over time management 

• like spreadsheets:  
change 1 cell => others are recalculated

e.g., GUIs, web-apps



Example

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.



Example

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Stream	  s1	  =	  new	  Stream(“1”);	  
Stream	  s2	  =	  new	  Stream(“2”);	  
Stream	  s3	  =	  Stream.add(s1,s2);



“Callback Hell” [Edw09]

• Lots of event handlers - asynchronous callbacks 

• Manipulating the same data - unpredictable order 

• No return value => update state via side-effects



The 6 dimensions
1. representation of time-varying values 

2. evaluation model 

3. lifting operations 

4. multi-directionality 

5. glitch avoidance 

6. support for distribution
Conflicting



The 6 dimensions
1. representation of time-varying values 

2. evaluation model 

3. lifting operations 

4. multi-directionality 

5. glitch avoidance 

6. support for distribution

   Host languages:
✦ Haskell 
✦ Scala 
✦ Scheme/Racket 
✦ JavaScript 
✦ Java 
✦ Python 
✦ C#.Net 
✦ …



1. Basic abstractions
Behaviour

✦ time-varying values 
✦ continuously changing over time 
✦ e.g.: “seconds”	  “seconds*10” 

Events
✦ (maybe infinite) streams of values 
✦ discrete point in time 
✦ e.g.: “key-‐press”	  “merge”	  “filter”

What is manipulated?



:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.
Table I. A taxonomy of reactive programming languages

Language Basic abstractions Evaluation
model

Lifting Multidirectionality Glitch
avoidance

Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.



2. Evaluation model
Pull-based - good for continuous streams

✦ consumer asks for value 
✦ like a method call 
✦ demand-driven propagation 
✦ result of lazy evaluation (e.g., in Haskell) 

Push-based - good for discrete events
✦ producer pushes data based on availability 
✦ data-driven propagation 
✦ followed by most recent implementations

Who triggers sending of messages?



:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.



3. Lifting
add	  :	  (Int,Int)	  -‐>	  Int

lift(add)	  :	  
(Stream<Int>,Stream<Int>)	  
-‐>	  Stream<Int>

✦ Map operations to all elements of the streams 
✦ Registers a dependency graph

(In the paper: Stream <-> Behaviour/Events)



3. Lifting
lift(add)	  :	  
(Stream<Int>,Stream<Int>)	  
-‐>	  Stream<Int>

Explicit

x	  =	  add(get(stream1),get(stream2))

add	  :	  (Int,Int)	  -‐>	  Int	  
//	  this	  works	  automatically!	  
s3	  =	  add(stream1,stream2)	  

Implicit

Manual



3. Lifting
lift(add)	  :	  
(Stream<Int>,Stream<Int>)	  
-‐>	  Stream<Int>

Explicit

x	  =	  add(get(stream1),get(stream2))

add	  :	  (Int,Int)	  -‐>	  Int	  
//	  this	  works	  automatically!	  
s3	  =	  add(stream1,stream2)	  

Implicit

Manual

method overloading  
(define add for Int 

and Stream) 
still counts as 

explicit

in dynamically 
typed languages



:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.



4. Multidirectionality
• updates in both directions

:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.

:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.

F	  =	  (C	  *	  1.8)	  +	  32

(scheme)



4. Multidirectionality
• updates in both directions

:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.

:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.

F	  =	  (C	  *	  1.8)	  +	  32

ºF ºCConvert

ºF ºCConvert (scheme)



5. Glitches
“Momentary view of inconsistent data”

:6 E. Bainomugisha et al.

ally involves calling a registered callback or a method [Sperber 2001a]. Most recent
implementations of reactive programming such as Flapjax [Meyerovich et al. 2009],
Scala.React [Maier et al. 2010], and FrTime [Cooper and Krishnamurthi 2006] use a
push-based model. Languages implementing the push-based model need an efficient
solution to the problem of wasteful recomputations since recomputations take place
every time the input sources change. Also, because propagation of changes is data-
driven, reactions happen as soon as possible [Elliott 2009].

Push Versus Pull. Each of the evaluation models has its advantages and disadvan-
tages. For instance, the pull-based model works well in parts of the reactive system
where sampling is done on event values that change continuously over time [Sperber
2001a]. Additionally, lazy languages using a pull-based approach yield an advantage
with regard to initialisation of behaviours. Since their actual values are computed
lazily on a by-demand basis, initialisation does not have to happen explicitly. Espe-
cially continuous behaviours will already yield a value by the time it is needed. In a
push-based approach, the programmer must initialise behaviours explicitly to make
sure that they hold a value when eagerly evaluating code in which they are used.

A push-based model on the other hand fits well in parts of the reactive system that
require instantaneous reactions. Some reactive programming languages use either a
pull-based or push-based model while others employ both. Another issue with push-
based evaluation are glitches, which are discussed in the next section. The approaches
that combine the two models reap the benefits of the push-based model (efficiency
and low latency) and those of the pull-based model (flexibility of pulling values based
on demand). The combination of the two models has been demonstrated in the Lula
system [Sperber 2001b] and the most recent implementation of Fran [Elliott 2009].

3.3. Glitch Avoidance
Glitch avoidance is another property that needs to be considered by a reactive lan-
guage. Glitches are update inconsistencies that may occur during the propagation of
changes. When a computation is run before all its dependent expressions are eval-
uated, it may result in fresh values being combined with stale values, leading to a
glitch [Cooper and Krishnamurthi 2006]. This can only happen in languages employ-
ing a push-based evaluation model.

Consider an example reactive program below:

var1 = 1
var2 = var1 * 1
var3 = var1 + var2

In this example, the value of the variable var2 is expected to always be the same
as that of var1, and that of var3 to always be twice that of var1. Initially when the
value of var1 is 1, the value of var2 is 1 and var3 is 2. If the value of var1 changes to,
say 2, the value of var2 is expected to change to 2 while the value of var3 is expected
to be 4. However, in a naive reactive implementation, changing the value of var1 to
2 may cause the expression var1 + var2 to be recomputed before the expression var1
* 1. Thus the value of var3 will momentarily be 3, which is incorrect. Eventually, the
expression var1 * 1 will be recomputed to give a new value to var2 and therefore the
value of var3 will be recomputed again to reflect the correct value 4. This behaviour is
depicted in Figure 3.

In the reactive programming literature, such a momentary view of inconsistent data
is known as a glitch [Cooper and Krishnamurthi 2006]. Glitches result in incorrect pro-
gram state and wasteful recomputations and therefore should be avoided by the lan-
guage. Most reactive programming languages eliminate glitches by arranging expres-

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Change to “2”



A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

5. GlitchesA Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1st Calculate ‘+’

3

2

Change to “2”



A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

5. GlitchesA Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1st Calculate ‘+’

3

2nd Calculate *

2

2

WRONG!

2

Change to “2”



A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

5. GlitchesA Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2. Calculate ‘+’

4

3. Calculate *

2

2

OK (now!)3rd REcalculate +

2

1. Change to “2”



A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

2 3

5. GlitchesA Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1. Change to “2”

2. Calculate

(distributed view)



A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

2 3

5. GlitchesA Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1. Change to “2”

2. Calculate

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

2

4

3. Recalculate

2 3

WRONG!

(distributed view)



6. Distribution

• Operations in different network nodes 

• hard to ensure consistency 

• (latency, network failures, etc.)

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T )! flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

1
1 2

1
* +



:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.

Table I. A taxonomy of reactive programming languages
Language Basic abstractions Evaluation

model
Lifting Multidirectionality Glitch

avoidance
Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.

within 
each node

extra care by 
developers

authors are 
not sure…

:1
0

E
.B

ai
no

m
ug

is
ha

et
al

.
Table I. A taxonomy of reactive programming languages

Language Basic abstractions Evaluation
model

Lifting Multidirectionality Glitch
avoidance

Support for
distribution

FRP Siblings

Fran behaviours and events Pull Explicit N Y N
Yampa signal functions and

events
Pull Explicit N Y N

FrTime behaviours and events Push Implicit N Y N
NewFran behaviours and events Push and

Pull
Explicit N Y N

Frappé behaviours and events Push Explicit N N N
Scala.React signals and events Push Manual N Y N
Flapjax behaviours and events Push Explicit and

implicit
N Y (local) Y

AmbientTalk/R behaviours and events Push Implicit N Y (local) Y

Cousins of Reactive Programming

Cells rules, cells and ob-
servers

Push Manual N Y N

Lamport Cells reactors and reporters Push and
Pull

Manual N N Y

SuperGlue signals, components,
and rules

Push Manual N Y N

Trellis cells and rules Push Manual N Y* N
Radul/Sussman
Propagators

propagators and cells Push Manual Y N N

Coherence reactions and actions Pull N/A Y Y N
.NET Rx events Push Manual N N? N

A
C

M
C

om
pu

ti
ng

Su
rv

ey
s,

Vo
l.

,N
o.

,A
rt

ic
le

,P
ub

lic
at

io
n

da
te

:
20

12
.



Going back to abstractions…
What is manipulated: 

Behaviour (continuous) vs. Events (discrete)

Siblings of RP - based on Fran
✦ about time-varying values (behaviour) and lifting 

Cousins of RP - less “pure”
✦ about “containers” with dedicated code to 

manage dependencies.



Code examplesA Survey on Reactive Programming :13

Table II. Functional reactive programming (FRP) siblings
Language Host language
Fran [Elliott and Hudak 1997] Haskell
Yampa [Hudak et al. 2003] Haskell
Frappé [Courtney 2001] Java
FrTime [Cooper and Krishnamurthi 2006] PLT Scheme (now

known as Racket)
NewFran [Elliott 2009] Haskell
Flapjax [Meyerovich et al. 2009] JavaScript
Scala.React [Maier et al. 2010] Scala
AmbientTalk/R [Carreton et al. 2010] AmbientTalk

composing events and switching combinators to support the dynamic reconfiguration
of the dataflow and support higher-order dataflow.

One important point is that the literature on these languages sometimes uses
slightly different terminology for behaviours and events, while sometimes the abstrac-
tions truly differ. In the following, we will always relate the offered abstractions to our
terminology of behaviours and events and stick to this where possible.

In FRP languages, the arguments to functions vary over time and automatically
trigger propagation whenever values change. That is, the function is automatically re-
applied as soon as one of the arguments changes. FRP allows programmers to express
reactive programs in a declarative style. For instance, a sample functional program to
draw a circle on the screen at the current mouse position can be easily expressed as
(draw-circle mouse-x mouse-y). In this expression, whenever the value of mouse-x or
mouse-y changes, the function draw-circle is automatically re-applied to update the
circle position. Elliot et.al [Elliott and Hudak 1997] identify the key advantages of the
FRP paradigm as: clarity, ease of construction, composability, and clean semantics.

FRP was introduced in Fran [Elliott and Hudak 1997], a language specially designed
for developing interactive graphics and animations in Haskell. Since then, FRP ideas
have been explored in different languages including Yampa, FrTime, Flapjax, etc. In-
novative research on reactive programming has been mostly carried out in the context
of FRP. It is therefore not surprising that a large number of the surveyed languages
evolve around the notion of FRP. We review 8 languages (outlined in Table II) in this
category.

Fran
Fran (Functional Reactive Animation) [Elliott and Hudak 1997] is one of the first lan-
guages designed to ease the construction of interactive multimedia animations. Fran
was conceived as a reactive programming library embedded in Haskell. Its main goal is
to enable programming interactive animations with high-level abstractions that pro-
vide ways of expressing what the application does and let the language take care of
how the interaction occurs.

Fran represents continuous time-varying values as behaviours while discrete values
are represented as events. Both behaviours and events are first-class values and can be
composed using combinators. Behaviours are expressed as reactions to events or other
behaviours. In other words, behaviours are built up from events and other behaviours
using combinators.

As Haskell is a statically typed host language, Fran provides lifting operators that
transform ordinary Haskell functions into behaviours. Hence, lifting must happen ex-
plicitly using these operators. In addition, Fran offers a rich set of overloaded primitive
operators that are lifted to work on behaviours as well. Many of these primitives are

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Siblings
(lifting)

A Survey on Reactive Programming :23

Table III. The cousins of reactive programming
Language Host language
Cells [Tilton 2008] CLOS
Lamport Cells [Miller 2003] E
SuperGlue [McDirmid and Hsieh 2006] Java
Trellis [Eby 2008] Python
Radul/Sussman Propagators [Radul and Sussman 2009] MIT/GNU Scheme
Coherence [Edwards 2009] Coherence
.NET Rx [Hamilton and Dyer 2010] C#.NET

4.2. The Cousins of Reactive Programming
As discussed in Section 3.7, there are a few reactive languages that do not provide
primitive abstractions for representation of time-varying values and primitive switch-
ing combinators for dynamic reconfiguration but provide support for automatic prop-
agation of state changes and other features of reactive programming such as glitch
avoidance. Since their abstractions for representing time-varying values do not inte-
grate with the rest of the language, lifting must always performed manually by the
programmer in these languages. We refer to those languages as cousins of reactive
programming. Table III outlines the reactive languages in this category.

As with the FRP siblings, we illustrate each cousin reactive language with the tem-
perature conversion example. However, since these languages do not provide event
and behaviour combinators such as merge, map-e, and switch, it is difficult to express
some applications such as that of drawing a circle that starts with a colour red and
switches to green or red depending on the left or right mouse button is pressed.

Cells
Cells [Tilton 2008] is a reactive programming extension to the Common Lisp Object
System (CLOS). It allows programmers to define classes whose instances can have
slots that trigger events when their values change. These slots are known as cells.
Such classes are defined using the defmodel abstraction, which is similar to defclass
for class definition in CLOS, but with support for defining cells as slots.

A programmer can define dependencies between cells such that when a value of
one cell changes, all the dependent cells are updated. In addition, cells can get their
values by evaluating rules that are specified at instance creation time. Rules contain
regular CLOS code as well as reads of other cells. Rules are run immediately after
instantiation and any reads to other cell slots create dependencies between the cell on
which the rule is specified and the cell being read.

Computations external to the object model need to be defined as observer functions.
One can define an observer function that is invoked when a cell of a specified name
is updated to a new value. Any observer function is guaranteed to be invoked at least
once during the instance creation process.

The propagation of changes in Cells is push-based. That is, when a cell slot is as-
signed a new value, all dependent cells rules are rerun and observers are notified to
reflect the changes. The Cells engine ensures that values that do not change are not
propagated, thereby avoiding wasteful recomputations. It also avoids glitches by ensur-
ing that all dependent cells and observers see only up-to-date values. The temperature
conversion example can be expressed as follows in Cells.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Cousins
(dependencies)



Fran & Yampa (Haskell)

:14 E. Bainomugisha et al.

specifically targeted to its problem domain: animation. In many cases, they eliminate
the need to explicitly lift operators for this particular problem domain.

The first implementation of Fran employs a purely pull-based evaluation model.
However, the recent implementation of Fran [Elliott 2009] (that we refer to as
NewFran in this paper), combines push- and pull-based evaluation models. The com-
bination of these models yields the benefit of values being recomputed only when they
are necessary, and almost instantaneous reactions. The temperature conversion exam-
ple can be realised in Fran as follows.

tempConverter :: Behavior Double
tempConverter = tempF

where
tempC = temp
tempF = (tempC*1.8)+32

tempConverter is a function that returns a behaviour whose value at any given point
in time is the value of the current temperature in degrees Fahrenheit. We assume that
there is a predefined behaviour temp whose value at any given time is the current
temperature in degrees Celsius.

In order to illustrate Fran’s support for the dynamic dataflow structure and high-
order reactivity, we consider an example of drawing a circle on the screen and painting
it red. The colour of the circle then changes to either green when the left mouse button
is pressed or red when the right mouse button is pressed. This example also appears
in [Elliott and Hudak 1997]. Such a program in Fran can be easily expressed as follows:

drawcircle :: ImageB
drawcircle = withColour colour circle

where
colour = stepper red (lbp -=> green .|. rbp -=> red)

In the above example, circle is a predefined behaviour for a circle while lbp and rbp
are events that represent left button presses and right button presses respectively. The
merge operator .|. produces events when either input events have an occurrence. We
use the stepper combinator to create the colour behaviour that starts with red until
the first button press at which point it changes to either green or red. withColour is
a predefined function that takes as argument the colour behaviour and paints the
circle with the colour. Since colour is a behaviour, the function withColour will be
automatically reapplied when the colour behaviour gets a new value.

Yampa
Developed at Yale University, Yampa [Hudak et al. 2003] is a functional reactive lan-
guage that is based on Fran. Like Fran, Yampa is embedded in Haskell. It is specially
designed for programming reactive systems where performance is critical. In Yampa,
a reactive program is expressed using arrows, (a generalisation of monads) [Hughes
2000] which reduce the chance of introducing the problems of space- and time-leaks.

The basic reactive abstractions in Yampa are signal functions and events. Signal
functions differ from behaviours in the sense that they are functions that encapsu-
late time-varying values, but are similar in the sense that they are first-class. Events
in Yampa are represented as signal functions that represent an event stream (event
source) that yields an event carrying a certain value at any point in time. Yampa pro-
vides primitive combinators for composing events (e.g., merging events). Additionally,
it provides a set of switching combinators to provide support for the dynamic dataflow
structure. Its parallel switching combinators allow the support for dynamic collections

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:14 E. Bainomugisha et al.

specifically targeted to its problem domain: animation. In many cases, they eliminate
the need to explicitly lift operators for this particular problem domain.

The first implementation of Fran employs a purely pull-based evaluation model.
However, the recent implementation of Fran [Elliott 2009] (that we refer to as
NewFran in this paper), combines push- and pull-based evaluation models. The com-
bination of these models yields the benefit of values being recomputed only when they
are necessary, and almost instantaneous reactions. The temperature conversion exam-
ple can be realised in Fran as follows.

tempConverter :: Behavior Double
tempConverter = tempF

where
tempC = temp
tempF = (tempC*1.8)+32

tempConverter is a function that returns a behaviour whose value at any given point
in time is the value of the current temperature in degrees Fahrenheit. We assume that
there is a predefined behaviour temp whose value at any given time is the current
temperature in degrees Celsius.

In order to illustrate Fran’s support for the dynamic dataflow structure and high-
order reactivity, we consider an example of drawing a circle on the screen and painting
it red. The colour of the circle then changes to either green when the left mouse button
is pressed or red when the right mouse button is pressed. This example also appears
in [Elliott and Hudak 1997]. Such a program in Fran can be easily expressed as follows:

drawcircle :: ImageB
drawcircle = withColour colour circle

where
colour = stepper red (lbp -=> green .|. rbp -=> red)

In the above example, circle is a predefined behaviour for a circle while lbp and rbp
are events that represent left button presses and right button presses respectively. The
merge operator .|. produces events when either input events have an occurrence. We
use the stepper combinator to create the colour behaviour that starts with red until
the first button press at which point it changes to either green or red. withColour is
a predefined function that takes as argument the colour behaviour and paints the
circle with the colour. Since colour is a behaviour, the function withColour will be
automatically reapplied when the colour behaviour gets a new value.

Yampa
Developed at Yale University, Yampa [Hudak et al. 2003] is a functional reactive lan-
guage that is based on Fran. Like Fran, Yampa is embedded in Haskell. It is specially
designed for programming reactive systems where performance is critical. In Yampa,
a reactive program is expressed using arrows, (a generalisation of monads) [Hughes
2000] which reduce the chance of introducing the problems of space- and time-leaks.

The basic reactive abstractions in Yampa are signal functions and events. Signal
functions differ from behaviours in the sense that they are functions that encapsu-
late time-varying values, but are similar in the sense that they are first-class. Events
in Yampa are represented as signal functions that represent an event stream (event
source) that yields an event carrying a certain value at any point in time. Yampa pro-
vides primitive combinators for composing events (e.g., merging events). Additionally,
it provides a set of switching combinators to provide support for the dynamic dataflow
structure. Its parallel switching combinators allow the support for dynamic collections

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :15

of signal functions that are connected in parallel. Signal functions can be added or
removed from such a collection at runtime in reaction to events.

One of the main differences between Yampa and Fran is that Fran assumes an im-
plicit, fixed “system input” (e.g. the animation loop). which is through which input
sources like the mouse or keyboard connect to the program. In Yampa, such input
sources are explicit, which is why signal functions have an input and output type,
while behaviours in Fran just have an output type.

Yampa provides lifting operators to explicitly lift ordinary functions to the level of
signal functions. As in Fran, Yampa also provides a set of overloaded lifted operators.
Like the earlier version of Fran, the evaluation model of Yampa is pull-based and
employs the same techniques as in Fran to avoid glitches. Multidirectional propagation
of changes is not supported. The temperature conversion example can be realised in
Yampa as follows.

tempConverter = proc -> do
tempC <- tempSF
tempF <- (tempC*1.8)+32

returnA -< tempF

The above code snippet shows a reactive program in Yampa using the arrow syntax.
tempConverter is a signal function that is defined using the proc keyword. proc is
similar to the � in �-expressions only that it defines a signal function instead of a pro-
cedure. We assume that there is a predefined signal function tempSF whose value is the
current temperature in degrees Celsius. The conversion of tempC to degrees Fahrenheit
is bound to the variable tempF that is returned as the value whenever the signal func-
tion is accessed. The reactive machinery is taken care of by the underlying arrows.
The arrow notation avoids the need for explicit lifting if only the instantaneous values
need to be observed (i.e. without tracking and propagating changes over time).

To further illustrate Yampa’s events and signal function operators, we show the im-
plementation of the example of drawing a circle on the screen that starts with colour
red and then changes to either green when the left mouse button is pressed or red
when the right mouse button is pressed. This example can be expressed in Yampa as
follows.

drawCircle = proc input -> do
lbpE <- lbp -< input
rbpE <- rbp -< input
redB <- constantB red
thecolour <- selectcolour (lbpE ’lmerge’ rbpE)
colour <- rSwitch (redB thecolour)

returnA -< circle 0 0 1 1 colour

In the above example, we extract lbpE and rbpE from the user input input using the
lbp and rbp signal functions. We then use the lmerge combinator to combine the two
events into a single event that is then used to determine colour using the selectcolour
function. The lmerge works like the merge operator .|. in Fran but gives the prece-
dence the left event in case the two events occur at the same time. We use the rSwitch
combinator (which is similar to the stepper in Fran) to create the colour behaviour
which starts with redB until the first button press at which point it changes to value of
thecolour. The circle function will be automatically reapplied whenever colour gets
a new value.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :15

of signal functions that are connected in parallel. Signal functions can be added or
removed from such a collection at runtime in reaction to events.

One of the main differences between Yampa and Fran is that Fran assumes an im-
plicit, fixed “system input” (e.g. the animation loop). which is through which input
sources like the mouse or keyboard connect to the program. In Yampa, such input
sources are explicit, which is why signal functions have an input and output type,
while behaviours in Fran just have an output type.

Yampa provides lifting operators to explicitly lift ordinary functions to the level of
signal functions. As in Fran, Yampa also provides a set of overloaded lifted operators.
Like the earlier version of Fran, the evaluation model of Yampa is pull-based and
employs the same techniques as in Fran to avoid glitches. Multidirectional propagation
of changes is not supported. The temperature conversion example can be realised in
Yampa as follows.

tempConverter = proc -> do
tempC <- tempSF
tempF <- (tempC*1.8)+32

returnA -< tempF

The above code snippet shows a reactive program in Yampa using the arrow syntax.
tempConverter is a signal function that is defined using the proc keyword. proc is
similar to the � in �-expressions only that it defines a signal function instead of a pro-
cedure. We assume that there is a predefined signal function tempSF whose value is the
current temperature in degrees Celsius. The conversion of tempC to degrees Fahrenheit
is bound to the variable tempF that is returned as the value whenever the signal func-
tion is accessed. The reactive machinery is taken care of by the underlying arrows.
The arrow notation avoids the need for explicit lifting if only the instantaneous values
need to be observed (i.e. without tracking and propagating changes over time).

To further illustrate Yampa’s events and signal function operators, we show the im-
plementation of the example of drawing a circle on the screen that starts with colour
red and then changes to either green when the left mouse button is pressed or red
when the right mouse button is pressed. This example can be expressed in Yampa as
follows.

drawCircle = proc input -> do
lbpE <- lbp -< input
rbpE <- rbp -< input
redB <- constantB red
thecolour <- selectcolour (lbpE ’lmerge’ rbpE)
colour <- rSwitch (redB thecolour)

returnA -< circle 0 0 1 1 colour

In the above example, we extract lbpE and rbpE from the user input input using the
lbp and rbp signal functions. We then use the lmerge combinator to combine the two
events into a single event that is then used to determine colour using the selectcolour
function. The lmerge works like the merge operator .|. in Fran but gives the prece-
dence the left event in case the two events occur at the same time. We use the rSwitch
combinator (which is similar to the stepper in Fran) to create the colour behaviour
which starts with redB until the first button press at which point it changes to value of
thecolour. The circle function will be automatically reapplied whenever colour gets
a new value.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.



FrTime & FlapJax 
(Racket & JavaScript)

:16 E. Bainomugisha et al.

FrTime
Developed at Brown University, FrTime [Cooper and Krishnamurthi 2006] is a func-
tional reactive programming language extension to Scheme that is designed to ease the
development of interactive applications. It runs in the DrScheme (which is now known
as Racket) environment [Felleisen et al. 1998] and allows programmers to seamlessly
mix FrTime code and pure Scheme thus enabling reusability of existing libraries such
as the GUI toolkits. FrTime also supports a read-eval-print loop (REPL) that enables
interactive development and allows users to submit new program fragments dynami-
cally. It achieves this by allowing the reactive engine and the REPL to run concurrently
in different threads [Cooper 2008].

The basic reactive abstractions in the language are behaviours and event streams
(which are just events in our terminology) to represent continuous time-varying val-
ues and discrete values, respectively. FrTime provides hold and changes operations for
converting behaviours to events, and vice-versa. The hold primitive is similar to the
stepper in Fran. It consumes an initial value and returns a behaviour with the ini-
tial value as its start value and changes to the event value whenever there is a new
event occurrence. On the other hand, the changes primitive consumes a behaviour and
produces an event value every time the behaviour changes.

Since Scheme is a dynamically typed language, when primitive Scheme functions
are applied to FrTime behaviours, they are automatically lifted (implicit lifting) to
behaviours. Ordinary Scheme functions cannot be applied to events. Instead, the lan-
guage provides a set of event processing combinators (e.g., the filter and map combina-
tors) that can be applied to events in order to obtain new events.

FrTime’s evaluation model is purely push-based. A FrTime program is represented
as a graph of dataflow dependencies with the nodes corresponding to program expres-
sions while the edges correspond to the flow of values between expressions. As the
evaluation model is push-based, the propagation of changes across the graph is initi-
ated by the event sources (e.g., a mouse button click). Whenever a new value arrives at
an event source, all the computations that depend on it are scheduled for re-execution.
To avoid wasteful recomputations, the language makes sure that the computations
dependent on values that did not change are not scheduled for execution.

The language avoids glitches by executing dependent computations in a topologically
sorted order. Each node is assigned a height that is higher than that of any nodes it
depends on. The nodes are then processed in a priority queue using the heights as
the priority. The dataflow graph must be acyclic in order to avoid non-terminating
propagation of changes. This glitch avoidance technique has been adopted by other
reactive languages such as Scala.React [Maier et al. 2010] and Flapjax [Meyerovich
et al. 2009], among others. The temperature conversion example can be realised in
FrTime as follows.

(define (temp-converter)
(let* ((tempC temperature)

(tempF (+ (* tempC 1.8) 32)))
tempF))

The temp-converter function returns a behaviour whose value at any point in time is
the current temperature in degrees Fahrenheit. We assume that there is a predefined
behaviour temperature. FrTime supports implicit lifting, i.e., the operators + and * are
implicitly lifted to operate on behaviours.

We further illustrate FrTime by implementing the example of drawing a circle that
changes colour according to the left or right mouse button press.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :17

(define (drawcircle)
(let ((radius 60)

(colour (new-cell "red")))
(map-e (lambda (e) (set-cell! colour "green")) left-clicks)
(map-e (lambda (e) (set-cell! colour "red")) right-clicks)
(display-shapes
(list
(make-circle mouse-pos radius colour)))))

In the above example, the make-circle function constructs a red circle of radius 60
at the current mouse position and changes to green or red when the left or right mouse
button is pressed. mouse-pos is a predefined behaviour whose value is the current
mouse position. colour is a behaviour whose initial value is "red" (created using the
new-cell construct). We use the FrTime combinator map-e to transform left-clicks
and right-clicks events and derive values for the colour behaviour. When either
the colour behaviour or the mouse-pos behaviour gets a new value, the make-circle
function is automatically reapplied to its arguments.

Flapjax
Flapjax [Meyerovich et al. 2009] is a reactive programming language for web pro-
gramming that is embedded in JavaScript. The design of Flapjax is mostly based on
FrTime [Cooper and Krishnamurthi 2006]. Flapjax can be used as either a JavaScript
library or as a language that is compiled to JavaScript. Flapjax introduces two data ab-
stractions to JavaScript: an event stream which represents a stream of discrete events
(just events in our terminology) and a behaviour which represents a continuous time-
varying value whose changes propagate automatically to all dependent values.

Flapjax supports both explicit and implicit lifting of JavaScript functions into be-
haviours. When used as a library, the programmer needs to explicitly use the lifting
function liftB. When used as a language, the Flapjax compiler automatically trans-
forms regular JavaScript function invocations into invocations of the explicit lifting
function. The compiler also enables Flapjax code to interoperate with JavaScript code.
It is possible to call JavaScript functions from Flapjax and vice-versa.

Like in FrTime, Flapjax’s evaluation model is push-based. Flapjax constructs a
dataflow graph from events to sinks and whenever there is an event occurrence, its
value is pushed through the graph. Nodes of the graph represent computations that
are run when an event is received which in turn may propagate to other dependent
nodes. As in FrTime [Cooper and Krishnamurthi 2006], glitches are avoided by pro-
cessing the dependency graph in a topological order.

In Flapjax, developers can write distributed reactive programs on top of the AJAX
library since it allows interoperation of JavaScript and Flapjax. For this, it pro-
vides built-in event abstractions that represent asynchronous client/server requests
and responses as events, which can be processed using the standard event opera-
tors/combinators, and can be easily converted to behaviours. This way, client/server
interactions become a source of change, just like user input. The reactive programming
paradigm allows to concisely combine both in the application logic. However, glitches
are not avoided in the resulting distributed reactive applications (as acknowledged by
the authors). Since interactive web applications are a prominent problem domain, we
discuss support for distribution as an open issue section 5.

In Flapjax the temperature conversion example can be expressed as follows.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:18 E. Bainomugisha et al.

function tempConverter() {
var temp = Temperature();
var tempC = temp;
var tempF = tempC * 1.8 + 32;
insertValueB(tempC, "tempCtext", "innerHTML");
insertValueB(tempF, "tempFtext", "innerHTML");

}

<body onLoad = "tempConverter()">
<div id= "tempCtext"> </div>
<div id= "tempFtext"> </div>
</body>

The tempConverter function implements the functionality of converting temperature
from degrees Celsius to degrees Fahrenheit. We assume that there is a predefined
behaviour Temperature whose value at any given point in time is the current tempera-
ture. The insertValueB function inserts the values of the behaviours tempC and tempF
in the DOM elements.

We further illustrate Flapjax’s support for first-class behaviours and primitive com-
binators using the example of drawing on a circle a screen that changes colour depend-
ing on whether a left or right mouse button is pressed. The example can be expressed
as follows.

//draw circle at (x,y) and paint it colour
function drawcircle(x, y, colour) {...};

//map button press to colour
function handleMouseEvent(evt) {...};

var buttonE = extractEventE(document,"mousedown");
var colourE = buttonE.mapE(handleMouseEvent);
var colourB = startsWith(colourE, "red");
var canvas = document.getElementById(’draw’);
drawcircle(mouseLeftB(canvas), mouseTopB(canvas), colourB);

In the above example, we use Flapjax’s combinators extractEventE and mapE to ex-
tract mousedown events from the DOM and transform them into colour events. The
function handleMouseEvent defines the logic of transforming button presses to colour.
The startsWith combinator is similar to the stepper in Fran. It takes as arguments
the colour event colourE and initial value "red" creates a behaviour with the initial
value as the red colour and changes value to green or red whenever a mouse button
press event occurs. The drawcircle function takes as argument the mouse position
and colour behaviours and draws the circle on the screen when the mouse position
or colour changes. mouseLeftB and mouseTopB are Flapjax’s combinators that create a
behaviour carrying the x- or y-coordinate of the mouse, relative to the specified DOM
element.

Frappé
Frappé [Courtney 2001] is a functional reactive programming library for Java. It ex-
tends the JavaBeans component model [Oracle 1997] with a set of classes that corre-
spond to functional reactive programming combinators. In Frappé, a reactive program
is constructed by instantiating JavaBeans classes and connecting the components us-
ing the FRP combinators. Frappé defines two Java interfaces, FRPEventSource and

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:18 E. Bainomugisha et al.

function tempConverter() {
var temp = Temperature();
var tempC = temp;
var tempF = tempC * 1.8 + 32;
insertValueB(tempC, "tempCtext", "innerHTML");
insertValueB(tempF, "tempFtext", "innerHTML");

}

<body onLoad = "tempConverter()">
<div id= "tempCtext"> </div>
<div id= "tempFtext"> </div>
</body>

The tempConverter function implements the functionality of converting temperature
from degrees Celsius to degrees Fahrenheit. We assume that there is a predefined
behaviour Temperature whose value at any given point in time is the current tempera-
ture. The insertValueB function inserts the values of the behaviours tempC and tempF
in the DOM elements.

We further illustrate Flapjax’s support for first-class behaviours and primitive com-
binators using the example of drawing on a circle a screen that changes colour depend-
ing on whether a left or right mouse button is pressed. The example can be expressed
as follows.

//draw circle at (x,y) and paint it colour
function drawcircle(x, y, colour) {...};

//map button press to colour
function handleMouseEvent(evt) {...};

var buttonE = extractEventE(document,"mousedown");
var colourE = buttonE.mapE(handleMouseEvent);
var colourB = startsWith(colourE, "red");
var canvas = document.getElementById(’draw’);
drawcircle(mouseLeftB(canvas), mouseTopB(canvas), colourB);

In the above example, we use Flapjax’s combinators extractEventE and mapE to ex-
tract mousedown events from the DOM and transform them into colour events. The
function handleMouseEvent defines the logic of transforming button presses to colour.
The startsWith combinator is similar to the stepper in Fran. It takes as arguments
the colour event colourE and initial value "red" creates a behaviour with the initial
value as the red colour and changes value to green or red whenever a mouse button
press event occurs. The drawcircle function takes as argument the mouse position
and colour behaviours and draws the circle on the screen when the mouse position
or colour changes. mouseLeftB and mouseTopB are Flapjax’s combinators that create a
behaviour carrying the x- or y-coordinate of the mouse, relative to the specified DOM
element.

Frappé
Frappé [Courtney 2001] is a functional reactive programming library for Java. It ex-
tends the JavaBeans component model [Oracle 1997] with a set of classes that corre-
spond to functional reactive programming combinators. In Frappé, a reactive program
is constructed by instantiating JavaBeans classes and connecting the components us-
ing the FRP combinators. Frappé defines two Java interfaces, FRPEventSource and

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

language or 
library



Frappé (Java)

A Survey on Reactive Programming :19

Behaviour, which provide methods for the basic abstractions of behaviours and events.
Concrete classes providing the events functionality (such as raising an event) must
implement the FRPEventSource interface. Similarly, concrete classes providing the be-
haviours functionality (such as creating a behaviour and behaviour combinators) must
implement the Behaviour interface.

Since Java is a statically typed language, lifting of regular Java methods to be-
haviours is accomplished explicitly by calling the method liftMethod. JavaBeans prop-
erties may be converted to FRP behaviours using the makeBehaviour method. Similarly,
Frappé provides a method makeFRPEvent to convert JavaBeans events into FRP events.
It is also possible to use JavaBeans properties as output sinks for Frappé behaviours.
Such JavaBeans properties need to be mutable.

Propagation of change in values in Frappé is push-based2. Whenever there is a value
change (e.g., an event occurrence) the Java runtime invokes the appropriate event han-
dler on the Frappé object implementing the behaviour or event primitive. The primi-
tive event handler in turn invokes the event handler of each registered listener. This
is achieved by calling the eventOccurred method for events or the propertyChanged
method for the behaviour change. In Frappé, glitch avoidance is not ensured. The tem-
perature conversion example can be expressed in Frappé as follows.

Temperature temp = new Temperature();
Behavior tempC = FRPUtilities.makeBehavior(sched, temp,

"currentTemp");
Behavior tempF = FRPUtilities.liftMethod(sched, temp,

"temperatureConverter", new Behavior[]{tempC});

Assuming that there is a Java Bean Temperature that provides a bound property
currentTemp whose value at any point in time is the current temperature in degrees
Celsius. It also provides temperatureConverter method for converting the tempera-
ture to degrees Fahrenheit. A behaviour is created from the Temperature Bean using
the FRPUtilities.makeBehavior method. The argument sched is a global scheduling
context used by the Frappé implementation. The method FRPUtilities.liftMethod is
used to lift temperatureConverter to work on the behaviour tempC. It returns the be-
haviour that is bound to the variable tempF whose value at any point in time is the
current temperature in degrees Fahrenheit.

We further illustrate Frappé’s support for reactive programming by implementing
the example of a circle that changes colour depending which mouse button is pressed.

Drawable circle = new ShapeDrawable(
new Ellipse2D.Double(-1,-1,2,2));

FRPEventSource lbp = FRPUtilities.makeFRPEvent(sched,
frame, "franMouse","lbp");

FRPEventSource rbp = FRPUtilities.makeFRPEvent(sched,
frame, "franMouse","rbp");

FRPEventSource lbpgreen = new EventBind(sched, lbp,
FRPUtilities.makeComputation(new ConstB(Colour.green)));

FRPEventSource rbpred = new EventBind(sched, rbp,
FRPUtilities.makeComputation(new ConstB(Colour.red)));

FRPEventSource colourE = new EventMerge(sched,

2Although it has been stated in [Cooper 2008] and [Maier et al. 2010] that the evaluation model of Frappé
mixes push- and pull-based models, our experimentation with Frappé reveal that Frappé employs the push-
based model and glitches may occur.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :19

Behaviour, which provide methods for the basic abstractions of behaviours and events.
Concrete classes providing the events functionality (such as raising an event) must
implement the FRPEventSource interface. Similarly, concrete classes providing the be-
haviours functionality (such as creating a behaviour and behaviour combinators) must
implement the Behaviour interface.

Since Java is a statically typed language, lifting of regular Java methods to be-
haviours is accomplished explicitly by calling the method liftMethod. JavaBeans prop-
erties may be converted to FRP behaviours using the makeBehaviour method. Similarly,
Frappé provides a method makeFRPEvent to convert JavaBeans events into FRP events.
It is also possible to use JavaBeans properties as output sinks for Frappé behaviours.
Such JavaBeans properties need to be mutable.

Propagation of change in values in Frappé is push-based2. Whenever there is a value
change (e.g., an event occurrence) the Java runtime invokes the appropriate event han-
dler on the Frappé object implementing the behaviour or event primitive. The primi-
tive event handler in turn invokes the event handler of each registered listener. This
is achieved by calling the eventOccurred method for events or the propertyChanged
method for the behaviour change. In Frappé, glitch avoidance is not ensured. The tem-
perature conversion example can be expressed in Frappé as follows.

Temperature temp = new Temperature();
Behavior tempC = FRPUtilities.makeBehavior(sched, temp,

"currentTemp");
Behavior tempF = FRPUtilities.liftMethod(sched, temp,

"temperatureConverter", new Behavior[]{tempC});

Assuming that there is a Java Bean Temperature that provides a bound property
currentTemp whose value at any point in time is the current temperature in degrees
Celsius. It also provides temperatureConverter method for converting the tempera-
ture to degrees Fahrenheit. A behaviour is created from the Temperature Bean using
the FRPUtilities.makeBehavior method. The argument sched is a global scheduling
context used by the Frappé implementation. The method FRPUtilities.liftMethod is
used to lift temperatureConverter to work on the behaviour tempC. It returns the be-
haviour that is bound to the variable tempF whose value at any point in time is the
current temperature in degrees Fahrenheit.

We further illustrate Frappé’s support for reactive programming by implementing
the example of a circle that changes colour depending which mouse button is pressed.

Drawable circle = new ShapeDrawable(
new Ellipse2D.Double(-1,-1,2,2));

FRPEventSource lbp = FRPUtilities.makeFRPEvent(sched,
frame, "franMouse","lbp");

FRPEventSource rbp = FRPUtilities.makeFRPEvent(sched,
frame, "franMouse","rbp");

FRPEventSource lbpgreen = new EventBind(sched, lbp,
FRPUtilities.makeComputation(new ConstB(Colour.green)));

FRPEventSource rbpred = new EventBind(sched, rbp,
FRPUtilities.makeComputation(new ConstB(Colour.red)));

FRPEventSource colourE = new EventMerge(sched,

2Although it has been stated in [Cooper 2008] and [Maier et al. 2010] that the evaluation model of Frappé
mixes push- and pull-based models, our experimentation with Frappé reveal that Frappé employs the push-
based model and glitches may occur.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:20 E. Bainomugisha et al.

lbpgreen, rbpred);

Behavior colourB = new Switcher(sched,
new ConstB(Colour.red), colourE);

Behavior anim = FRPUtilities.liftMethod(sched,
new ConstB(circle), "withColour",
new Behavior[] {colourB});

In the above example, we use the ShapeDrawable class to create the circle.
lbp and rbp are button press events that are created from JavaBeans using the
FRPUtilities.makeFRPEvent method. The button press event occurrences are then
bound to the colour values green and red using the EventBind combinator. We use
the EventMerge combinator to create the colourE events that carry the lbpgreen or
rbpred occurrence. The Switcher switching combinator similar to the stepper in Fran.
It creates the colourB behaviour whose initial value is colour red. colourB changes to
red or green when the left or right button is pressed. Whenever the colour changes the
circle is redrawn using the withColour method.

AmbientTalk/R
AmbientTalk/R [Carreton et al. 2010] is a reactive extension to AmbientTalk [Cutsem
et al. 2007], which is an actor-based language that is specially designed for developing
mobile applications. AmbientTalk/R integrates reactive programming with the imper-
ative prototype-based object model of AmbientTalk. The basic reactive abstractions
in AmbientTalk/R are based on those found in Fran [Elliott and Hudak 1997] and
FrTime [Cooper and Krishnamurthi 2006]. AmbientTalk/R provides events and be-
haviours. Like Flapjax [Meyerovich et al. 2009], AmbientTalk/R can be used as either
a library or as part of the language.

Events in AmbientTalk/R are realised as first-class messages that are emitted at dis-
crete points in time. Behaviours in AmbientTalk/R are used to represent time-varying
values. AmbientTalk/R provides a snapshot operation that allows capturing of a “snap-
shot” of a behaviour at a certain point in time. However, unlike behaviours where a
change in value is automatically propagated to all its dependents, a snapshot value
does not trigger change propagation. In AmbientTalk/R, behaviours are derived from
events. For example, the mouse position can be derived from the mouseEvent events
provided by the language.

Ordinary AmbientTalk operations are implicitly lifted to behaviours. When a be-
haviour is passed as argument to an AmbientTalk function or method, the result
of that invocation is itself a behaviour. However, there are primitives whose seman-
tics are preserved and are not automatically lifted to behaviours. For example, the
snapshot operator always returns a plain value.

In AmbientTalk/R, the evaluation strategy is push-based (i.e., events trigger com-
putation). The glitch avoidance technique employed by AmbientTalk/R is similar to
that in FrTime [Cooper and Krishnamurthi 2006], Flapjax [Meyerovich et al. 2009],
and Scala.React [Maier et al. 2010]. The language maintains a topologically sorted
dependency graph that is sorted based on the heights of the dependencies.

AmbientTalk/R builds on the actor-based distributed programming model of Ambi-
entTalk to provide support for distributed reactive programming. Reactive values need
not reside on a single host and can be distributed onto multiple hosts. However, unlike
in the local setting where there is glitch avoidance assurance, it is not the case in a
distributed setting. We further discuss distributed reactive programming as an open
issue in Section 5.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

extends 
JavaBeans



A Survey on Reactive Programming :21

The following example shows how to realise the temperature conversion example in
AmbientTalk/R.

def temperatureConverter := object: {
def @Reactive temp := Temperature.new();
def tempC := temp;
def tempF := tempC * 1.8 + 32;

}

In this example, the object: keyword creates a fresh object that is bound to the vari-
able temperatureConverter. The object includes a reactive field temp which is defined
using the annotation Reactive and is initialised to the current temperature value. The
variable tempC has a dependency on the reactive variable temp. Similarly, the variable
tempF creates a dependency on the variable tempC. Therefore, whenever the value of
temp changes, the value of tempC is updated and the value of tempF is recalculated.

The example of a circle that changes colour depending which mouse button is pressed
can be implemented in AmbientTalk/R as follows.

// draw a circle object
def drawCircle(circle) { ... };

def @Reactive circle := object: {
def posx := 0;
def posy := 0;
def colour := Colour.red;

};

def circleEventSource := changes: circle;
circleEventSource.foreach: { |circle| drawCircle(circle);

def handleMouseClickEvent(e) {
// Update the circle object’s coordinates and colour given e.

};

canvas.addMouseClickListener(handleMouseClickEvent);

The circle object is a behaviour which can be updated by setting its fields. This hap-
pens in the handleMouseClickEvent procedure which is registered as a listener to de-
tect mouse clicks. Before that, an event source is extracted from the circle behaviour
to draw a circle with the correct colour for each mouse click.

Scala.React
Scala.React [Maier et al. 2010] is an extension of Scala [Odersky and al. 2004] with the
goal of providing reactive programming abstractions in place of the observer pattern.
Scala.React provides a general interface that represents generic events. The general
interface is represented as a type parameterised Scala class that provides methods to
create events and raise events. Reacting to events involves registering a closure on a
particular event source. Scala.React also provides operations for composing multiple
events into one.

Behaviours in Scala.React are known as signals. A signal expression continuously
evaluates to a new signal value and automatically takes care of synchronisation of data
changes and dependencies. Signals are used to create dependencies among variables.

In Scala.React, a signal c that depends on the sum of two signals a and b must be
created as follows:

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

AmbientTalk/R & Scala.React
A Survey on Reactive Programming :21

The following example shows how to realise the temperature conversion example in
AmbientTalk/R.

def temperatureConverter := object: {
def @Reactive temp := Temperature.new();
def tempC := temp;
def tempF := tempC * 1.8 + 32;

}

In this example, the object: keyword creates a fresh object that is bound to the vari-
able temperatureConverter. The object includes a reactive field temp which is defined
using the annotation Reactive and is initialised to the current temperature value. The
variable tempC has a dependency on the reactive variable temp. Similarly, the variable
tempF creates a dependency on the variable tempC. Therefore, whenever the value of
temp changes, the value of tempC is updated and the value of tempF is recalculated.

The example of a circle that changes colour depending which mouse button is pressed
can be implemented in AmbientTalk/R as follows.

// draw a circle object
def drawCircle(circle) { ... };

def @Reactive circle := object: {
def posx := 0;
def posy := 0;
def colour := Colour.red;

};

def circleEventSource := changes: circle;
circleEventSource.foreach: { |circle| drawCircle(circle);

def handleMouseClickEvent(e) {
// Update the circle object’s coordinates and colour given e.

};

canvas.addMouseClickListener(handleMouseClickEvent);

The circle object is a behaviour which can be updated by setting its fields. This hap-
pens in the handleMouseClickEvent procedure which is registered as a listener to de-
tect mouse clicks. Before that, an event source is extracted from the circle behaviour
to draw a circle with the correct colour for each mouse click.

Scala.React
Scala.React [Maier et al. 2010] is an extension of Scala [Odersky and al. 2004] with the
goal of providing reactive programming abstractions in place of the observer pattern.
Scala.React provides a general interface that represents generic events. The general
interface is represented as a type parameterised Scala class that provides methods to
create events and raise events. Reacting to events involves registering a closure on a
particular event source. Scala.React also provides operations for composing multiple
events into one.

Behaviours in Scala.React are known as signals. A signal expression continuously
evaluates to a new signal value and automatically takes care of synchronisation of data
changes and dependencies. Signals are used to create dependencies among variables.

In Scala.React, a signal c that depends on the sum of two signals a and b must be
created as follows:

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:22 E. Bainomugisha et al.

val c = Signal{ a()+b() }

First, the current values of a and b must be extracted by calling the closure that encap-
sulates their current value before they can be summed into a new signal c. Although
this is manual lifting, we still classify Scala.React as a “sibling” language because of
the automatic tracking of dependencies.

Scala.React employs a push-based model for the propagation of changes. As in Fr-
Time [Cooper and Krishnamurthi 2006] and Flapjax [Meyerovich et al. 2009], glitches
are avoided by processing the dependency graph in a topological order. It deals with
dynamic dependencies by aborting the current evaluation in case its level is found to
be higher than the previous one. Then the affected signal is assigned a higher level
and rescheduled for validation in the same propagation cycle.

The temperature conversion example can be realised in Scala.React as follows.

val tempC = Signal{ Temperature() }
val tempF = Signal{ tempC() * 1.8 + 32}

observe(tempC) { C =>
// print on label

}
observe(tempF) { F =>

// print on label
}

Assuming that there is a predefined signal Temperature whose value at any given
point in time is the current temperature in degrees Celsius. The above code snippet
uses the Signal function to create signals tempC and tempF. The tempC is dependent
on the Temperature signal while tempF is dependent on the tempC. In Scala.React, sig-
nals are referred to through a function call in the form of signalName(). The observe
method accepts a closure that is executed whenever the signal value changes. In the
above example, the closures are used to display the values of tempC and tempF in the
GUI.

In Scala.React, the example of a circle that changes colour depending on the left or
right button press can be expressed as follows.

val selectedcolour = mouseDown map {md =>
//transform button press events to colour signal
}
val colour = selectedcolour switchTo Signal{Colour.red}
observe(colour) { c =>
// redraw circle
}

The above example uses the map combinator to extract the kind of button press from
the mouseDown events. The resulting event value is used to create the selectedcolour
signal whose value corresponds to the left or right button press. Then, we create
the colour signal from the selectedcolour or the SignalColour.red signal. Initially,
colour holds the current value of the SignalColour.red and then switches to that of
the selectedcolour signal when the left or right button press event occurs. Every time
the colour signal gets a new value, the closure of the observe method is automatically
invoked resulting in the circle to be redrawn.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:22 E. Bainomugisha et al.

val c = Signal{ a()+b() }

First, the current values of a and b must be extracted by calling the closure that encap-
sulates their current value before they can be summed into a new signal c. Although
this is manual lifting, we still classify Scala.React as a “sibling” language because of
the automatic tracking of dependencies.

Scala.React employs a push-based model for the propagation of changes. As in Fr-
Time [Cooper and Krishnamurthi 2006] and Flapjax [Meyerovich et al. 2009], glitches
are avoided by processing the dependency graph in a topological order. It deals with
dynamic dependencies by aborting the current evaluation in case its level is found to
be higher than the previous one. Then the affected signal is assigned a higher level
and rescheduled for validation in the same propagation cycle.

The temperature conversion example can be realised in Scala.React as follows.

val tempC = Signal{ Temperature() }
val tempF = Signal{ tempC() * 1.8 + 32}

observe(tempC) { C =>
// print on label

}
observe(tempF) { F =>

// print on label
}

Assuming that there is a predefined signal Temperature whose value at any given
point in time is the current temperature in degrees Celsius. The above code snippet
uses the Signal function to create signals tempC and tempF. The tempC is dependent
on the Temperature signal while tempF is dependent on the tempC. In Scala.React, sig-
nals are referred to through a function call in the form of signalName(). The observe
method accepts a closure that is executed whenever the signal value changes. In the
above example, the closures are used to display the values of tempC and tempF in the
GUI.

In Scala.React, the example of a circle that changes colour depending on the left or
right button press can be expressed as follows.

val selectedcolour = mouseDown map {md =>
//transform button press events to colour signal
}
val colour = selectedcolour switchTo Signal{Colour.red}
observe(colour) { c =>
// redraw circle
}

The above example uses the map combinator to extract the kind of button press from
the mouseDown events. The resulting event value is used to create the selectedcolour
signal whose value corresponds to the left or right button press. Then, we create
the colour signal from the selectedcolour or the SignalColour.red signal. Initially,
colour holds the current value of the SignalColour.red and then switches to that of
the selectedcolour signal when the left or right button press event occurs. Every time
the colour signal gets a new value, the closure of the observe method is automatically
invoked resulting in the circle to be redrawn.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

manual 
lifting



• Manual lifting 

• no combinators (e.g., merge, map-‐e, switch) 

• only TempConverter example

A Survey on Reactive Programming :23

Table III. The cousins of reactive programming
Language Host language
Cells [Tilton 2008] CLOS
Lamport Cells [Miller 2003] E
SuperGlue [McDirmid and Hsieh 2006] Java
Trellis [Eby 2008] Python
Radul/Sussman Propagators [Radul and Sussman 2009] MIT/GNU Scheme
Coherence [Edwards 2009] Coherence
.NET Rx [Hamilton and Dyer 2010] C#.NET

4.2. The Cousins of Reactive Programming
As discussed in Section 3.7, there are a few reactive languages that do not provide
primitive abstractions for representation of time-varying values and primitive switch-
ing combinators for dynamic reconfiguration but provide support for automatic prop-
agation of state changes and other features of reactive programming such as glitch
avoidance. Since their abstractions for representing time-varying values do not inte-
grate with the rest of the language, lifting must always performed manually by the
programmer in these languages. We refer to those languages as cousins of reactive
programming. Table III outlines the reactive languages in this category.

As with the FRP siblings, we illustrate each cousin reactive language with the tem-
perature conversion example. However, since these languages do not provide event
and behaviour combinators such as merge, map-e, and switch, it is difficult to express
some applications such as that of drawing a circle that starts with a colour red and
switches to green or red depending on the left or right mouse button is pressed.

Cells
Cells [Tilton 2008] is a reactive programming extension to the Common Lisp Object
System (CLOS). It allows programmers to define classes whose instances can have
slots that trigger events when their values change. These slots are known as cells.
Such classes are defined using the defmodel abstraction, which is similar to defclass
for class definition in CLOS, but with support for defining cells as slots.

A programmer can define dependencies between cells such that when a value of
one cell changes, all the dependent cells are updated. In addition, cells can get their
values by evaluating rules that are specified at instance creation time. Rules contain
regular CLOS code as well as reads of other cells. Rules are run immediately after
instantiation and any reads to other cell slots create dependencies between the cell on
which the rule is specified and the cell being read.

Computations external to the object model need to be defined as observer functions.
One can define an observer function that is invoked when a cell of a specified name
is updated to a new value. Any observer function is guaranteed to be invoked at least
once during the instance creation process.

The propagation of changes in Cells is push-based. That is, when a cell slot is as-
signed a new value, all dependent cells rules are rerun and observers are notified to
reflect the changes. The Cells engine ensures that values that do not change are not
propagated, thereby avoiding wasteful recomputations. It also avoids glitches by ensur-
ing that all dependent cells and observers see only up-to-date values. The temperature
conversion example can be expressed as follows in Cells.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Cousins
(dependencies)



:24 E. Bainomugisha et al.

(defmodel TempConverter ()
((tempC :cell t

:initform (c-in Temperature)
:accessor tempC)

(tempF :cell t
:initform (c? (+ (* (^tempC) 1.8) 32))
:accessor tempF)))

The TempConverter class has two slots (cells) tempC and tempF. The slot option :cell
t implies that the slot is managed by the Cells engine giving it a reactive property.
Regular CLOS slots that should not be handled by the Cells engine need to be specified
with :cell nil. Slots are initialised with the (c-in expression) and (c? expression)
forms. The c-in specifies that the cell can be modified (e.g., with the setf form) while
c? specifies that a cell cannot be modified but only changes when the cell it depends on
changes. In the above example we assume that there is a predefined Temperature field
whose value is the current temperature in degrees Celsius that is used to initialise the
tempC cell. A cell can refer to other cells by calling the (^cell-name) function, where
cell-name is the name of another slot in the class. Therefore, (^tempC) implies that
the tempF cell depends on the tempC cell. Whenever the value of tempC changes, the
value of tempF is recomputed.

SuperGlue
SuperGlue [McDirmid and Hsieh 2006] is a reactive language that integrates the no-
tion of time-varying values with component programming. The basic abstractions in
SuperGlue are signals, components, and rules. In SuperGlue, a reactive program is
expressed as a set of signal connections between components. Components interact
with each other’s state through signals. A component provides state for viewing to
other components through its exported interface, and views other components’ state
through its imported interface.

In addition, SuperGlue allows support for expressing an unbounded number of sig-
nal connections between components (i.e., the number of connections need not to be
known in advance). This is achieved by enhancing signals with object-oriented abstrac-
tions. It supports rules that can be used to express new connections through type-based
pattern matching on existing connections. Each signal connection involves objects that
reify the import being connected and the expression that import is being connected to.
The types of these objects are then used to identify the connection when rules are eval-
uated. The types that are used in connection pattern matching are supported through
object-oriented mechanisms: nesting, traits, and extensions.

Connections between components can be identified at runtime by the types of signals
that they connect to. A rule can then create a new connection relation to any existing
connection that matches a specified type pattern. SuperGlue supports such type-based
pattern matching with object-oriented abstractions. Thus, objects in SuperGlue serve
two roles: they are containers of imported and exported signals and they serve as nodes
in the program’s dependency graph.

SuperGlue components are implemented using either Java or SuperGlue code but
the component connections must be expressed in SuperGlue. When implemented us-
ing Java, signals are represented by special Java interfaces that enable wrapping of
existing Java libraries. The evaluation model in SuperGlue is push-based and the im-
plementation ensures that glitches do not occur.

The temperature conversion example can be realised in SuperGlue as follows.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Cells

A Survey on Reactive Programming :25

atom Thermometer {
export temp : Float;

}

atom Label {
import tempCText : String;
import tempFText : String;

}

let model = new Thermometer;
let view = new Label;
let tempF = (model.temp * 1.8) + 32;
view.tempCtext = "Celsius: " + model.temp;
view.tempFtext = "Fahrenheit: "+tempF;

Thermometer is an atom that declares an exported temp signal whose value at any
given point in time is the current temperature in degrees Celsius. The Label atom
declares two imported signals tempCText and tempFText for displaying the values of
temperature in degrees Celsius and Fahrenheit, respectively. The Thermometer and
Label atoms are instantiated to create components that are then bound to model and
view. Interactions between components are established by connecting their signals
together. In this example the tempF signal refers to the temp signal that is exported
from the model component. Therefore, whenever there is a new value of temp, the value
of tempF is recomputed. Similarly, the tempCText and tempFText signals of the view
component are automatically updated to reflect the current temperature value.

Trellis
Trellis [Eby 2008] is a reactive programming library for Python that automatically
manages callback dependencies. It enables programmers to express a reactive pro-
gram in terms of rules. Rules are expressions that operate on values stored in special
attributes known as cells. A cell value may be a variable, a constant or computed value
from a rule. Whenever a value stored in a cell changes, dependent rules are rerun. The
language avoids wasteful recomputations for values that do not change.

Trellis automatically manages the order of dependencies to ensure consistent up-
dates. During each rule execution, it keeps track of dependencies between rules and
automatically rolls back in case of an error or an inconsistent result. This avoids some
glitches, however programmers need to take extra care in order to write completely
glitch free programs. According to the authors, this can be achieved by dividing a Trel-
lis program into input code, processing rules, and output rules. Input code sets Trellis
cells or calls modifier methods but does not run inside Trellis rules. Processing rules
compute values, while output rules send data to other systems (e.g., the display).

The temperature conversion example can be realised in Trellis as follows.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

SuperGlue

:26 E. Bainomugisha et al.

class TempConverter(trellis.Component):
tempC = trellis.attr(Temperature)
tempF = trellis.maintain(

lambda self: self.tempC * 1.8 + 32,
initially = 32

)

@trellis.perform
def viewGUI(self):

display "Celsius: ", self.tempC
display "Fahrenheit: ", self.tempF

The above code snippet defines the TempConverter class that is derived from
trellis.Component. A trellis.Component is an object whose attributes are reactive.
The attr form creates an attribute that is writable. In this example we assume that
there is a predefined variable Temperature whose value is used to initialise the tempC
cell attribute. The value of Temperature at any given point in time is the current tem-
perature in degrees Celsius. The tempF is derived from a maintenance rule that uses
the value tempC to perform temperature conversion. The value of tempF is automati-
cally recalculated whenever the value of tempC changes. @perform defines a rule that is
used to perform non-undoable actions such as output I/O. In this example, a perform
rule is used to display the values of tempC and tempF.

Lamport Cells
Lamport Cells [Miller 2003] is a reactive library for E [Miller et al. 2005]. In Lamport
Cells, a reactive program is expressed in terms of reactors and reporters. Reactors
subscribe to receive reports from the reporters, and reporters accept subscriptions and
send reports to the registered reactors.

Reactors may subscribe either to receive at most one report (whenever-reactors) or
to receive every report (forever-reactors). The subscription for a whenever-reactor lasts
only until the first report is received. The client may then decide to re-subscribe when
it needs a less stale value. In this respect, the evaluation model is pull-based as the
client re-subscribes to receive a new value only when it is needed. On the other hand,
a forever-reactor immediately re-subscribes to continually receive new values. In this
respect, the evaluation model is push-based. The propagation of changes is unidirec-
tional.

Lamport Cells provides support for distributed reactive programming in that the
reactor and the reporter may be located on different hosts in a network. In order to
provide support for distribution, subscriptions and reports are sent asynchronously
with no return values. Lamport Cells tackles the potential space-leak problems, by
only retaining “live” references to each subscribing reactor. However, Lamport Cells
does not avoid glitches (neither in a local nor a distributed setting).

The temperature conversion example can be expressed in Lamport Cells as follows.

def tempConverter(){
def tempC := makeLamportSlot(Temperature);
def tempF := whenever([tempC], fn{tempC * 1.8 + 32}, fn{true});
return tempF;

}

The above code defines the tempConverter function. The makeLamportSlot construct
creates a reporter that is then bound to the variable tempC. In this example, the re-
porter is initialised with the value of the predefined variable Temperature whose value

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Trellis

A Survey on Reactive Programming :27

at any moment in time is the current temperature in degrees Celsius. The whenever
construct creates a whenever-reactor that is bound to the variable tempF. It subscribes
to the reporter tempC and specifies the anonymous function (defined with the keyword
fn) that implements the temperature conversion functionality. The fntrue argument
indicates that we automatically re-subscribe. Therefore, whenever tempC gets a new
value, its value is sent asynchronously to the reactor which in turn triggers the exe-
cution of the anonymous function in order to give tempF a new temperature value in
degrees Fahrenheit. Both tempC and tempF can be distributed.

Radul/Sussman Propagators
Developed by Radul and Sussman [Radul and Sussman 2009], Radul/Sussman Prop-
agators is a general purpose propagation model that can be used for functional re-
active programming, constraint programming, and logic programming. It is built on
top of MIT/GNU Scheme. Programs are expressed as a network of propagators inter-
connected by cells. Propagators subscribe to cells of interest and are automatically
scheduled for evaluation whenever the contents of those cells change.

Propagators and cells are the basic reactive primitives in this model. Propagators
represent computations while cells are places for storing values like variables in con-
ventional programming. Propagators continuously produce new values based on the
contents of the cells while cells consume the values. But unlike variables in conven-
tional languages where a variable holds one value, cells are specially designed to hold
multiple values from different event sources at the same time. This property makes it
possible to express more complex dependencies between computations.

The propagation of changes in this model is push-based. The availability of new
data at a cell results in triggering the execution of the propagators that previously
subscribed to it. One distinguishing property of the propagators model is its support
for propagating partial information. This is unlike other reactive languages where
only fully computed values are propagated. Propagating partial information allows
computations to perform useful computations with the currently available data. For
example, in a reactive program where a certain cell is responsible for accumulating
location information (longitude and latitude coordinates), can already propagate the
longitude coordinates even if the latitude coordinates are not yet available.

Scheme primitive functions need to be manually lifted to propagators and native
values such as numbers must be manually added to cells in order to be operated on by
propagators. The model itself does not ensure a glitch free reactive program though
glitches can be avoided by use of dependency-directed tracking techniques [Radul
2009];[Stallman and Sussman 1977]. Multidirectional flow of information is inherently
supported by the propagation model and therefore the propagation of changes is mul-
tidirectional. The temperature conversion example in Radul/Sussman propagators is
expressed as follows:

(define (temp-converter C F)
(let ((nine/five (make-cell))

(C*9/5 (make-cell))
(thirty-two (make-cell)))

((constant 1.8) nine/five)
((constant 32) thirty-two)
(multiplier C nine/five C*9/5)
(adder C*9/5 thirty-two F)))

(define tempC (make-cell Temperature))

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:28 E. Bainomugisha et al.

(define tempF (make-cell))
(temp-converter tempC tempF)

The temp-converter function takes two cells C and F as arguments. It then creates
three additional cells for internal computations. A cell is created using the make-cell
function. adder and multiplier are propagators that represent the lifted versions of
the Scheme primitives + and *, respectively. Propagators perform computations on the
input cells and output the result to the output cell (the last argument). constant is a
special propagator that takes a Scheme value and puts it in a cell. Attaching propa-
gators to cells creates a propagation network that is run when the value of input cells
changes. To illustrate how this works, we create the tempC cell that is initialised with
the value of the current temperature Temperature in degrees Celsius. The cell tempF
represents the output cell to which the temperature in degrees Fahrenheit is output.
The expression (temp-converter tempC tempF) passes the two cells to the network
and the temperature in degrees Fahrenheit is written to the tempF cell. The propa-
gation of changes is multidirectional. Therefore, adding a new temperature value to
either the tempC or tempF cell triggers the computation of the other.

Coherence
Coherence [Edwards 2009] is a language that is essentially designed for automati-
cally coordinating side effects in imperative programming. Coherence uses coherent
reactions to build interactive applications. In Coherence, a coherent reaction is one in
which a reaction is executed before any others that are affected by its effects.

Programmers can express dependencies between variables by way of derivations.
Derivations happen lazily upon need (demand-driven). Derived expressions are re-
evaluated every time they are accessed. To overcome the problem of wasteful recompu-
tations, the language has some support for caching values that are still valid. Deriva-
tions are multidirectional. Changes to a variable can propagate back to the variables
it was derived from. The default semantics of Coherence is reactivity; therefore lifting
of operations is not necessary.

Coherence ensures that the execution of each reaction happens before other com-
putations that depend on it. It avoids glitches by automatically detecting the correct
execution order of reactions. Reactions are arranged in a topologically sorted order, the
same technique used by FrTime [Cooper and Krishnamurthi 2006], Flapjax [Cooper
and Krishnamurthi 2006], and Scala.React [Maier et al. 2010]. Similar to Trellis [Eby
2008], the entire cascade of reactions is processed in a transaction that commits them
atomically or not at all. In addition, the language dynamically detects any incoher-
ences as they occur and the effects of prematurely executed reactions are rolled back
and re-executed later [Edwards 2009].

temperatureConverter: {
tempC = Temperature,
tempF = Sum(Product(tempC, 1.8), 32)}

The above code snippet defines a structure temperatureConverter that contains two
fields tempC and tempF. In this example, we assume that there is some global vari-
able Temperature that contains a time-varying value of the current temperature. The
derivation of one field from another is indicated by the = sign. The field tempC is said
to be derived from Temperature and tempF is derived from the expression on the right
hand side of the equals sign. The derivation expression uses the Sum and Product func-
tions to perform the temperature conversion. Whenever tempF is accessed, the deriva-
tion expression is calculated.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Propagators

(multidirectional)(wraps Java)

(Python)



A Survey on Reactive Programming :29

.NET Rx

.NET Rx [Hamilton and Dyer 2010] is a reactive programming extension to .NET.
It is built on top of LINQ [Microsoft 2007], a project that adds query facilities
to the .NET Framework. As in Scala.React, .NET Rx provides a generic interface
IObservable<T> for representing event sources. The IObservable interface provides a
method Subscribe that enables one to register a closure that will be executed when an
event occurs. In addition, .NET Rx allows event composition. New specific events can
be created from general events using the rich set of LINQ combinators (e.g., aggregate,
selection, joins, etc.).

The propagation of events in .NET Rx is based on the push model. Consumers reg-
ister interest in particular event types and then the events are pushed to them when
they occur. This work is still ongoing and from the available documentation it is not
explained if the language achieves glitch freedom.

The temperature conversion example can be realised in .NET Rx as follows.

var temperature = new Temperature();
temperature.Subscribe( temp =>

{
var tempC = temp.currentTemperature;
var tempF = (tempC*1.8)+32;

})

Temperature is a class that implements the IObservable interface and emits events
when the current temperature changes. The Subscribe method registers a closure that
is executed for each temperature change event. The closure includes the logic of con-
verting the temperature from degrees Celsius to Fahrenheit.

4.3. Synchronous, Dataflow and Synchronous Dataflow Languages
There have been programming paradigms that have been used to model (real-time) re-
active systems. These include synchronous programming, dataflow programming and
synchronous dataflow programming. In this section, we give a brief review of those
paradigms because there exist surveys [Benveniste et al. 2003]; [Whiting and Pascoe
1994]; [Johnston et al. 2004] that give a full review of the research on the languages
in the family of synchronous programming, dataflow programming and synchronous
dataflow programming.

Synchronous programming is the earliest paradigm proposed for the development of
reactive systems with real-time constraints. Synchronous languages are based on the
synchrony hypothesis where reactions are assumed to take no time and are atomic. It
is assumed that a reaction takes no time with respect to the external environment and
that the environment remains unchanged during the execution of the reaction. This as-
sumption simplifies programs and can be compiled into efficient finite-state automata,
which can be translated into a program in a sequential language [Berry and Gonthier
1992]. A number of synchronous languages exist. These include Esterel [Berry and
Gonthier 1992], StateCharts [Harel and Politi 1998], and FairThreads [Boussinot
2006].

Another approach that has been used to model reactive systems is dataflow pro-
gramming (originally developed to simplify parallel programming) [Johnston et al.
2004];[Whiting and Pascoe 1994]. A dataflow program is expressed as a directed graph
with nodes representing operations and arcs representing data dependencies between
computations. The difference between traditional dataflow languages and reactive lan-
guages is that in dataflow languages are first-order. Examples of dataflow languages
include LabVIEW [Kalkman 1995] and Simulink [The MathWorks 1994].

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

.Net RX

Coherence

:28 E. Bainomugisha et al.

(define tempF (make-cell))
(temp-converter tempC tempF)

The temp-converter function takes two cells C and F as arguments. It then creates
three additional cells for internal computations. A cell is created using the make-cell
function. adder and multiplier are propagators that represent the lifted versions of
the Scheme primitives + and *, respectively. Propagators perform computations on the
input cells and output the result to the output cell (the last argument). constant is a
special propagator that takes a Scheme value and puts it in a cell. Attaching propa-
gators to cells creates a propagation network that is run when the value of input cells
changes. To illustrate how this works, we create the tempC cell that is initialised with
the value of the current temperature Temperature in degrees Celsius. The cell tempF
represents the output cell to which the temperature in degrees Fahrenheit is output.
The expression (temp-converter tempC tempF) passes the two cells to the network
and the temperature in degrees Fahrenheit is written to the tempF cell. The propa-
gation of changes is multidirectional. Therefore, adding a new temperature value to
either the tempC or tempF cell triggers the computation of the other.

Coherence
Coherence [Edwards 2009] is a language that is essentially designed for automati-
cally coordinating side effects in imperative programming. Coherence uses coherent
reactions to build interactive applications. In Coherence, a coherent reaction is one in
which a reaction is executed before any others that are affected by its effects.

Programmers can express dependencies between variables by way of derivations.
Derivations happen lazily upon need (demand-driven). Derived expressions are re-
evaluated every time they are accessed. To overcome the problem of wasteful recompu-
tations, the language has some support for caching values that are still valid. Deriva-
tions are multidirectional. Changes to a variable can propagate back to the variables
it was derived from. The default semantics of Coherence is reactivity; therefore lifting
of operations is not necessary.

Coherence ensures that the execution of each reaction happens before other com-
putations that depend on it. It avoids glitches by automatically detecting the correct
execution order of reactions. Reactions are arranged in a topologically sorted order, the
same technique used by FrTime [Cooper and Krishnamurthi 2006], Flapjax [Cooper
and Krishnamurthi 2006], and Scala.React [Maier et al. 2010]. Similar to Trellis [Eby
2008], the entire cascade of reactions is processed in a transaction that commits them
atomically or not at all. In addition, the language dynamically detects any incoher-
ences as they occur and the effects of prematurely executed reactions are rolled back
and re-executed later [Edwards 2009].

temperatureConverter: {
tempC = Temperature,
tempF = Sum(Product(tempC, 1.8), 32)}

The above code snippet defines a structure temperatureConverter that contains two
fields tempC and tempF. In this example, we assume that there is some global vari-
able Temperature that contains a time-varying value of the current temperature. The
derivation of one field from another is indicated by the = sign. The field tempC is said
to be derived from Temperature and tempF is derived from the expression on the right
hand side of the equals sign. The derivation expression uses the Sum and Product func-
tions to perform the temperature conversion. Whenever tempF is accessed, the deriva-
tion expression is calculated.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

Lamport Cells

:26 E. Bainomugisha et al.

class TempConverter(trellis.Component):
tempC = trellis.attr(Temperature)
tempF = trellis.maintain(

lambda self: self.tempC * 1.8 + 32,
initially = 32

)

@trellis.perform
def viewGUI(self):

display "Celsius: ", self.tempC
display "Fahrenheit: ", self.tempF

The above code snippet defines the TempConverter class that is derived from
trellis.Component. A trellis.Component is an object whose attributes are reactive.
The attr form creates an attribute that is writable. In this example we assume that
there is a predefined variable Temperature whose value is used to initialise the tempC
cell attribute. The value of Temperature at any given point in time is the current tem-
perature in degrees Celsius. The tempF is derived from a maintenance rule that uses
the value tempC to perform temperature conversion. The value of tempF is automati-
cally recalculated whenever the value of tempC changes. @perform defines a rule that is
used to perform non-undoable actions such as output I/O. In this example, a perform
rule is used to display the values of tempC and tempF.

Lamport Cells
Lamport Cells [Miller 2003] is a reactive library for E [Miller et al. 2005]. In Lamport
Cells, a reactive program is expressed in terms of reactors and reporters. Reactors
subscribe to receive reports from the reporters, and reporters accept subscriptions and
send reports to the registered reactors.

Reactors may subscribe either to receive at most one report (whenever-reactors) or
to receive every report (forever-reactors). The subscription for a whenever-reactor lasts
only until the first report is received. The client may then decide to re-subscribe when
it needs a less stale value. In this respect, the evaluation model is pull-based as the
client re-subscribes to receive a new value only when it is needed. On the other hand,
a forever-reactor immediately re-subscribes to continually receive new values. In this
respect, the evaluation model is push-based. The propagation of changes is unidirec-
tional.

Lamport Cells provides support for distributed reactive programming in that the
reactor and the reporter may be located on different hosts in a network. In order to
provide support for distribution, subscriptions and reports are sent asynchronously
with no return values. Lamport Cells tackles the potential space-leak problems, by
only retaining “live” references to each subscribing reactor. However, Lamport Cells
does not avoid glitches (neither in a local nor a distributed setting).

The temperature conversion example can be expressed in Lamport Cells as follows.

def tempConverter(){
def tempC := makeLamportSlot(Temperature);
def tempF := whenever([tempC], fn{tempC * 1.8 + 32}, fn{true});
return tempF;

}

The above code defines the tempConverter function. The makeLamportSlot construct
creates a reporter that is then bound to the variable tempC. In this example, the re-
porter is initialised with the value of the predefined variable Temperature whose value

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

(multidirectional)

(distributed)



• combination of the 2 
• graph known at compile time (static scheduling) 
• time plays a key role 
• E.g. Lustre, Signal, [RT-FRP, E-FRP]

• program as a graph 
• nodes: operations 
• arcs: data dependencies 
• E.g. LabVIEW, Simulink

Other languages

Dataflow

Synchronous 
dataflow

• Reactions take no time – atomic 
• Compilation = finite state machine 
• E.g. Esterel, StateCharts, Politi, FairThreads

Synchronous



Open questions
• use of constraints to relate streams vs. 
• explicitly define operations (first-class values)

Can multidirectionality be embedded in “sibling” RP? 

• Need for time-stamping 
• Extra centralised clock? (not great) 
• Use “ticks” – Guarantee all clocks do not deviate 

more than 1 tick-time

Avoiding glitches in a distributed setting?

• suggestion: integrating publish/subscribe-style 
• self-reference to extension of AmbientTalk/R

Handling network failure?



Next meetings
Christophe, 28 Feb: 

Ingo Maier, Tiark Rompf, and Martin Odersky, Deprecating the Observer Pattern 
with Scala.React, Technical report, École Polytechnique Fédérale de Lausanne, 2010 

Candidate papers 
 • Margara, A., & Salvaneschi, G., We have a DREAM: distributed reactive    

programming with consistency guarantees. In: ACM DEBS, 2014. 
 • Evan Czaplicki and Stephen Chong. Asynchronous Functional Reactive    

Programming for GUIs. In: ACM SIGPLAN PLDI, 2013. 
 • Meijer, E., Reactive extensions (Rx): curing your asynchronous programming    

blues, In: ACM SIGPLAN CUFP, 2010. 
 • Andoni L. Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolfgang De Meuter,    

Loosely-coupled distributed reactive programming in mobile ad hoc 
networks. In: TOOLS, 2010. 

 • Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and    
Damien Zufferey - P: Safe Asynchronous Event-Driven Programming, 2012 
(referred to by Prof. Piessens with respect to state of the art in event-driven 
programming) 

 • Geoffrey Mainland Greg Morrisett Matt Welsh - Flask: Staged Functional    
Programming for Sensor Networks, 2008 

 • Frédéroc Boussinot - Reactive C: An Extension of C to Program Reactive    
Systems - 1991 

 • Bob Reynders - FRP overview + previous and ongoing work   


