PL@NES - Reading Club
Actors a |la Akka

Christophe.VanGinneken@cs.kuleuven.be

DistriNet
LTINS «u euven |



mailto:Christophe.VanGinneken@cs.kuleuven.be?subject=

THE FOLLOWING PRESENTATION IS NOT ABOUT A
SCIENTIFIC PAPER. IT INTRODUCES AN INDUSTRY-GRADE
TECHNOLOGY THAT IS REPRESENTATIVE FOR
THE LEVEL OF ADOPTION OF THE ACTOR MODEL.
OR MAYBE NOT...

RECOMMENDED

MIGHT CONTAIN MILD HUMOR. MIGHT

PROVOKE INTELLECTUAL DISCUSSIONS
AND CAUSE FRESH IDEAS TO EMERGE.

christophe.vg distrinet.cs.kuleuven.be



“FIRST BLOOD”

MARIO KASSAR et ANDREW VAINA Présentent
SYLVESTER STALLONE
“RAMBO " |”

RICHARD CRENNA BRIAN DENNEHY. Un film de TED KOTGHEFE

Directeur de la photographie ANDREW LASZLO. Producteurs ex

Musique de JERRY GOLDSMITH
et ANDREW VAJNA. Coproducteur exée

écutifs MARIO KASSAR
utif HERB NANAS. Produit par BUZZ FEITSHANS




What are Actors?




What are Actors?

e 00 Actor (disambiguation) - Wikipedia, the free encyclopedia "

i @ @ @ W https @ en.wikipedia.org/wix

Create account Login

Article Talk Read Edit View history Qr

Actor (disambiguation)

From Wikipedia, the free encyclopedia

WIKIPEDIA

The Free Encyclopedia

Main page An actor is a person who plays a role in theater, cinema or television.
Contents

Featured content

Current events . Actants, also called actors

Wiktisnars Look up actorin Wiktionary,
Actor can also refer to: e the free dictionary.

' d actor-network theory (a general theory of sociological behaviour), the one

Random article who performs the act
- . .:g )
Donate to Wikipedia . in Interactiongy £F" heory, excitations in any medium able 10 produce action, a theory of cybernetics
Wikipedia store '
in computing:
Interaction )
Help Actor (UM Auirements analysis and UML
About Wikipedia . Actor model, in concurrency, refers to a model of concurrent computation
Community portal R S L i A, gl orogramming (OOP)
Recent changes integrated development environment (IDE) for the Windows operating system
Contact page
. Actor (law)
jeos . Actor (mythology), in Greek mythology, refers to a number of characters, including the father of Menoetius

What links here
Related changes
Upload file

and Astyoche
. Actor (policy debate), the entity that enacts a certain policy action
s (alhum). a 2009 album by St. Vincent




I'ne Actor Model

Actor model - wikipedia, the free encyclopedia

e ) EREEE enikipedia 019 -

Create account Log in

Article  Talk Read Edit View history Q

WIKIPEDIA Actor model

The Eree Encyclopedid From Wikipedia, the free encyclopedia
Main page
Colm:mi S This article may require cleanup to meet Wwikipedia's quality standards. No cleanup reason has been

Featured content specified- Please help improve this article if you can- (June 2010)

Current events
The actor model in computer science is @ mathemalical model of concurrent computation that treats nactors” as the universal primitives of concurrent

Random article
computation: in response to 2 message that it receives, an actor can make local decisions, create more actors, send more messages, and determiné how to

Donate t0 Wikipedia
Wikipedia store respond to the next message received. The actor model originaled in 1973.m |t has been used both as a framework fora lheoreiical underslanding of
|nteraction computation and as the theoretical basis for several praciical implememalions of concurrent systems. The relationship of the model to other work is discussed in
Help Indeterminacy in concurrent computation and Actor model and process calculi.
About Wikipedia = h
Community portal ontents s ow]
Recent changes
Contact pagd History (edil
Tools . i
\What links here Main article: History of the Actor model
Related changes According to Carl Hewitt, unlike previous models of computation, the Actor model was inspired by physics, including general relativity and quantum mechanics. It
Upload file was also influenced by the programming languages LisPs gimula and early versions of gmalttalk, as well as capabilily-based systems and packet switching. Its
Special pages development was smotivated by the prospect of highly paralle! computing machines consisting of dozens: hundreds or even thousands of independent

permanent link . L i Lo 2 R I o1 Qi
mlcroprocessors, each with its own local memory and commumcauons processor, commumcahng viaa hlgh-perlormance cornmumcalions network.” 2! Since that

Page information ) . _ ) . .
time, the advent of massive concurrency through multi-coreé computer architectures has revived interest in the Actor model.

Wikidata item
Cite this page Following Hewit, Bishop, and Steiger's 1973 publication, Irene Greif developed an operational semantics for the Actor model as part of her doctoral research.!
Prinvexport Two years later, Henry Baker and Hewitt published 2 set of axiomatic |aws for Actor syslems.l"llf'l Other major milestones include William Clinger's 1981
p "
Create a book dissertation introducing & denotational semantics pased on power domainslz- and Gul Agha's 1985 dissertation which further developed 2 lrans'\lion-based
Download as POF semantic model complementary 10 Clinger's.® This resulted in the full development of actor model theory:
Printable version

Major software implememalion work was done by Russ Atkinson, Giuseppe Attardi, Henry Baker, Gerry Barber, Peter Bishop, Peter de Jong, Ken Kahn, Henry
Languages o Lieberman, Carl Manning, Tom Reinhardt, Richard Steiger and Dan Theriault in the Message passing semantics Group at Massachusetts Institute of Technology

Catala
Cettina (MIT). Research groups led by Chuck Seitz at California Institute of Technology (Callech) and Bill Dally at MIT constructed computer architectures that further
Deutsch developed the message passing in the model. See Actor model implememaﬂon.
Frangals Research on the Actor model has been carried out at California Institute of Technology: Kyoto University Tokoro Laboratory, MCC, MIT Artificial Intelligence
Efn?né Laboratory: SR, Stanford University, University of Illinois at Urbana-Champaign,m Pierre and Marie Curie University (University of Paris 6), University of Pisa,
Ol
Pycokih University of Tokyo Yonezawa Laboratory, Centrum Wiskunde & |nformatica (cwh) and elsewhere.
X
Edtinks Fundamental concepts (edi
The Actor model adopts the philosophy that everything is an actor. This is similar to the everything is an object philosophy used by some obieclvoriemed
programm’tng |languages. put differs in that ob]ecl-orienled software is typically executed sequentially. while the Actor model is inherently concurrent.
An actor is @ compu\al‘lonal entity that, in response to a message it receives, can concurrently:
. senda finite umber of messages 0 other actors;
| . create @ finite number of new actors;
. designate the pehavior 10 bé used for the next message it receives.
S O u rC e h tt . S : There is N0 assumed sequence to the above actions and they could be carried out in parallel.

Decoupling the sender from communlcaxlons sentwas 2 lundamenlal advance of the Actor model enabling asynchronous communication and control structures

en.wikipedi s
ed|aO ! Wlkl ACthrpa‘r‘ﬁing essages®

()
Recipie sdchgck are identified by address, sometimes called "mailing address". Thus an actor can only communicate with actors whose addresses it has.

t can obtain those from 2 message it receives, OF if the address is for an actor it has itself created.

i characterized by inherent concurrency f computation within and among actors, dynamic creation of actors, inclusion of actor addresses in

C mrenous message passing with no restriction on message arrival order.


https://en.wikipedia.org/wiki/Actor_model

The Actor Model

The actor model in computer science is a mathematical model of concurrent
computation that treats "actors" as the universal primitives of concurrent
computation: in response to a message that it receives, an actor can make

local decisions, create more actors, send more messages, and determine how
to respond to the next message received.

source: https://en.wikipedia.org/wiki/Actor_model



https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Concurrent_computation

The Actor Model

According to Carl Hewitt, unlike previous models of computation, the Actor
model was inspired by physics, including general relativity and quantum
mechanics. It was also influenced by the programming languages Lisp, Simula
and early versions of Smalltalk, as well as capability-based systems and packet
switching. Its development was "motivated by the prospect of highly parallel
computing machines consisting of dozens, hundreds or even thousands of
iIndependent microprocessors, each with its own local memory and
communications processor, communicating via a high-performance
communications network."?] Since that time, the advent of massive
concurrency through multi-core computer architectures has revived interest in
the Actor model.

source: https://en.wikipedia.org/wiki/Actor_model



https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Carl_Hewitt
https://en.wikipedia.org/wiki/Lisp_programming_language
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Capability_(computers)
https://en.wikipedia.org/wiki/Packet_switching
https://en.wikipedia.org/wiki/Multi-core_(computing)

The Actor Model

Fundamental concepts

The Actor model adopts the philosophy that everything is an actor. This is
similar to the ‘everything is an object philosophy used by some object-oriented
programming languages, but differs in that object-oriented software is typically
executed sequentially, while the Actor model is inherently concurrent.
An actor is a computational entity that, in response to a message it receives,
can concurrently:

- ‘send a finite number of messages to other actors;

- ‘create a finite number of new actors;

- ‘designate the behavior to be used for the next message it receives.
There is no assumed sequence to the above actions and they could be carried
out in_ parallel.

source: https://en.wikipedia.org/wiki/Actor_model



https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Object-oriented_programming

1The Actor Model

Applications

@\ This article needs additional citations for verification. Please help improve this article
4 by adding citations to reliable sources. Unsourced material may be challenged and
__ removed. (December 2006).

The Actors model can be used as a framework for modelling, understanding,
and reasoning about, a wide range of concurrent systems. For example:

- Electronic mail (e-mail) can be modeled as an Actor system. Accounts are
modeled as Actors and email addresses as Actor addresses.

- ‘Web Services can be modeled with SOAP endpoints modeled as Actor
addresses.

- ‘ODbjects with locks (e.g., as in Java and C#) can be modeled as a
Serializer, provided that their implementations are such that messages can
continually arrive (perhaps by being stored in an internal queue). A serializer
Is an important kind of Actor defined by the property that it is continually
available to the arrival of new messages; every message sent to a serializer
IS guaranteed to arrive.

source: https://en.wikipedia.org/wiki/Actor_model


https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Wikipedia:Verifiability
https://en.wikipedia.org/w/index.php?title=Actor_model&action=edit
https://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1
https://en.wikipedia.org/wiki/Concurrent_systems
https://en.wikipedia.org/wiki/Electronic_mail
https://en.wikipedia.org/wiki/E-mail_address
https://en.wikipedia.org/wiki/Web_Services
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

1The Actor Model

' Mailb

o

L

' Mailbox

‘ Mailbox

Lo o

diagram based on: htt


http://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

The Actor ﬁ

| Mailbox |

==

S .

=0

Wireless Senso
Nebwork? |

| Mailbox |

[

diagram based on: http://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html



http://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

OOP vs Actor Model

data

mebhods

Sequential Streams
Control of Daka

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design.” Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.



OOP vs Actor Model

text
LA

| Tex&TaSpee.ah

TextToSpeech |

“d v titialize
P\S" isReady |
’ geESpe@ak

00 Interface Actor Inkterface
Procedures to be “Grive me bext,
invoked i sequence. Il give (30@.4,) Speech”

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design.” Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.



OOP vs Actor Model

ar&ms/yor&s

Skreams

Dak .
o-beto Reactive

Programming ?!

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design.” Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.



OOP vs Actor Model

speech

Cmmpomenﬁ Based
Programming ?.

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design.” Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.






g

ﬂu

Actor Model gu 52 J

Component Based
Programmlng



Success”?

When the actor mode] was first proposed, the
development of distributed networks was 1n its
infancy. The conceptual model of actors js easy to
AN understand as it allows state_ to be directly
= | ’Mai.;,ox ; expressed. Also the only side effects of an actor are

“ to send communications and to set a new behaviour.
The simplicity of this mode] suggests that it would
make programming for a distributed system simpler,
but there proved to be difficulties associated with its
implementation.

' Mailbox f

* No notion of inheritance/hierarchy

o Changing behaviour (storage,...)

: Lo e tic Llanquages
e Dynamic behaviour versus ska quag

' 4s algorithms
° Asynchronous messaging versus alg

' ' im2
source: http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2


http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pjm2/

They sent him on a missjon
and set him up to fail, Byt
they made one mistake.

They forgot they were
™, dealing with Rambo,

o\

L Y \
=1 No man, no law, no war can stop him.




AR akka

What is Akka?_

Scalable real-time transsg

[ 4


http://reactivemanifesto.org/

ra

N C [ j — "
- e ey neio.java U<

(oo

1 package sample.hello;
2
3 import akka.actor.Props; :
4 import akka.actor.UntypedActor;
5 import akka.actor.ActorRef; '
: 1
7w public class HelloWorld extends UntypedActor { ’
8
3 @0verride l
10y public void preStart() {| |
11 // create the greeter actor '
12 final ActorRef greeter = getContext().actorOf(Props.create(Greeter.class), "greeter");
13 // tell it to perform the greeting '
14 greeter.tell(Greeter.Msg.GREET, getSelf());
154, } DTG ——— - | greeter.java — Deskt
16 - - :
17 @Override 1 | package sample.hello;
18y public void onReceive(Object msg) { 2
19y if (msg == Greeter.Msg.DONE) { 3 | import akka.actor.UntypedActor;
20 // when the greeter 1is done, stop this actor and with it the af 4
21 getContext().stop(getSelf()); 5w public class Greeter extends UntypedActor {
2 A } else 6
23 unhandled(msqg); 7v| public static enum Msq {
8 GREET, DONE;
9A ¥
10
11 @Override
_______ vy public void onReceive(Object msg) {
13y if (msqg == Msg.GREET) {
14 System.out.println("Hello World!");
15 getSender().tell(Msg.DONE, getSelf());
1 | package sample.hello; 164 } else
17 unhandled(msqg) ;
public class Main { :g“ }
20A| }

public static void main(String[] args) {
akka.Main.main(new String[] { HelloWorld.class.getName() });




A& akka
Actors Ia Akka

| ‘Paren& (ACE@\') ‘

'
e

create /

ﬂfmtu,re

,1‘, R/
A«E::Eor 1 “out F"u’%

send W\pu& 4,




re \
¢ Actors a la Akka

/Foo/A

A& akka

/Bar/k
addressing/selection

context.actorSelection(“/Bar/E")



&
¢ Actors a la Akka

ActorPath

Actor incarnation

e Belongs to a path
e Has a UID
e Has a Mailbox

Resume

Actor
Instance

» Empty path
(

actorOf(...)
e path is reserved

e random UID is assigned to incarnation
e actor instance is created
e preStart() is called on instance

® new instance replaces old
* postRestart()
called on new instance

Restart

e preRestart()
called on old instance

Stop or
context.stop() or
PosionPill

® postStop() is called on instance
e Terminated is sent to watchers

J e path is allowed to be used again

Identify

ActorRef

A& akka

ActorSelection

® Represents a path (or multiple
with wildcards)

® Allows resolving the underlying
ActorRef by sending an Identify
message

. Actorldentity .

® Represents the

incarnation

e Hides the instance

e Has a path
e Has a UID



L A& akka
= Actors a la Akka

context.actorSelection( ) .send(msg)

Message Delivery Reliability

1. at-most-once delivery









& A& akka
" Actors a la Akka

context.actorSelection( ) .send(msg)

Message Delivery Reliability

1. at-most-once delivery
2. message ordering per sender-receiver pair

{ml,m2} {ml,Kc}
ml| ¢ OR
m2] o {Kc,ml}
0\~

m3 |~ e {m3,m2}
" " OR

{m2,m3}




AL \ A& akka
ve<® Actors a la Akka

8 0 O _| become.java — Desktop
1 v| public class HotSwapActor extends UntypedActor {
2
3w Procedure<Object> angry = new Procedure<Object>() {
4 @Override
5w public void apply(Object message) {
6w if (message.equals("bar")) {
7 getSender().tell("I am already angry?", getSelf());
8 } else if (message.equals("foo")) {
9 getContext().become(happy);
10 A ¥
11 A }
12 A IR
13
14wy Procedure<Object> happy = new Procedure<Object>() {
15 @Override
16 v public void apply(Object message) {
17 v if (message.equals("bar")) {
18 getSender().tell("I am already happy :-)", getSelf());
19 } else if (message.equals("foo")) {
20 getContext().become(angry);
21 A ¥
22 A }
23 A bR
24
25w public void onReceive(Object message) {
26w if (message.equals("bar")) {
27 getContext().become(angry);
28 } else if (message.equals("foo")) {
29 getContext().become(happy);
30 } else {
31 unhandled(message) ;
32 A }
33 A }




oke *’T’émo&&\g & akka
eres Actors a Ia Akka

system.actorOf(props, "“Foo")

[Foo/A ‘
addressing/selection
context.actorSelection(“akka.tcp://system@hostY:1234/Bar/E")



akka.tcp://system@hostY:1234/Bar/E%E2%80%9D

emokin & akka
Actors a la Akka

 Message send to
remote system
* Successful inbound

Idle connection Active

(Connecting or Connected)

The Phi Accrual Failure Detector A P
http://ddg.jaist.ac.jp/pub/HDY +04.pdf

elapses

Catastrophic communication
failure:

* Remote DeathWatch trigger
® System message

delivery failure

® Cluster MemberRemoved
Communication event

G ated failure:

Al oytbound messages o Failed TCP connection
destined to the gated system o Transport FD trigger

are dropped * Name lookup failure
O l I e r S ¢ Remote system shutdown

Successful

inbound our outbound
connection from/to
restarted system

A

Remote Events Quarantined

All outbound and inbound
messages arriving from the
quarantined system are
dropped. Remote system
must be restarted to be able
establish communication
again.



http://ddg.jaist.ac.jp/pub/HDY+04.pdf

A akka

Actors a la Akka
‘ﬁ\_usﬁé\'iﬁv\a

Ring-structured Cluster

a la Dynamo, Riak
join
up leave
(leadey \
._1

Gossip Protocol
for membership,

. . .‘a ‘_. "'..‘.-.';.-'
leader determination, < >‘ (f6*) |
. . unreachable* )W (leader action)
configuration T

>y leaving

V._. (fd*) ‘_.-‘.(fd')

Vector Clocks

| eaders are not elected



Actors a la Akka

Create, send, become

Parents handle failures

Purely reactive components
Remoting with basic guarantees

Clustering

A& akka



A& akka
Actors a la Akka

flatMap(0Oslo)

Paths

Guardian System Actor

http://2013.flatmap.no/klang.html



The first was for himself The second was for his

country,
This time is for his friend.

MARIO KASSAR and ANDREW VAJNA Present
SYLVESTER STALLONE

RAMBO" Il
RICHARD CRENNA Music by JERRY GOL

tography JOHN STANIER. GB.CT,
Associate Producer TONY M UN

KASSAR and ANDREW VAJNA
Based on Characters C ted by DAVID MORRELL V

Nritten by SYLVESTER STALLONE and SHELDON LET TICH A,
Produced by BUZZ FEITSHANS Directed by PETER MACDONALD
CAROLCO ,R\ :‘ir:,;]” 'J‘U “('rv R 2

ATRI-STAR RELEASE
RRELL D0 swemes) 1988 Tri-Star Picture

Inc. Al Rights Reserv




1@ iMinds

Christophe.VanGinneken@cs.kuleuven.be

http://www.slideshare.net/christophevg/actors-la-akka



http://www.slideshare.net/christophevg/actors-la-akka
mailto:Christophe.VanGinneken@cs.kuleuven.be?subject=

