
Christophe.VanGinneken@cs.kuleuven.be

PL@NES - Reading Club
Actors à la Akka

mailto:Christophe.VanGinneken@cs.kuleuven.be?subject=

R

THE FOLLOWING PRESENTATION IS NOT ABOUT A
SCIENTIFIC PAPER. IT INTRODUCES AN INDUSTRY-GRADE

TECHNOLOGY THAT IS REPRESENTATIVE FOR
THE LEVEL OF ADOPTION OF THE ACTOR MODEL.

OR MAYBE NOT…

RECOMMENDED
MIGHT CONTAIN MILD HUMOR. MIGHT
PROVOKE INTELLECTUAL DISCUSSIONS
AND CAUSE FRESH IDEAS TO EMERGE.

christophe.vg distrinet.cs.kuleuven.be

What are Actors?

What are Actors?

The Actor Model

source: https://en.wikipedia.org/wiki/Actor_model

https://en.wikipedia.org/wiki/Actor_model

The Actor Model

source: https://en.wikipedia.org/wiki/Actor_model

The actor model in computer science is a mathematical model of concurrent
computation that treats "actors" as the universal primitives of concurrent
computation: in response to a message that it receives, an actor can make
local decisions, create more actors, send more messages, and determine how
to respond to the next message received.

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Concurrent_computation

The Actor Model

source: https://en.wikipedia.org/wiki/Actor_model

According to Carl Hewitt, unlike previous models of computation, the Actor
model was inspired by physics, including general relativity and quantum
mechanics. It was also influenced by the programming languages Lisp, Simula
and early versions of Smalltalk, as well as capability-based systems and packet
switching. Its development was "motivated by the prospect of highly parallel
computing machines consisting of dozens, hundreds or even thousands of
independent microprocessors, each with its own local memory and
communications processor, communicating via a high-performance
communications network."[2] Since that time, the advent of massive
concurrency through multi-core computer architectures has revived interest in
the Actor model.

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Carl_Hewitt
https://en.wikipedia.org/wiki/Lisp_programming_language
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Capability_(computers)
https://en.wikipedia.org/wiki/Packet_switching
https://en.wikipedia.org/wiki/Multi-core_(computing)

The Actor Model

source: https://en.wikipedia.org/wiki/Actor_model

Fundamental concepts !
The Actor model adopts the philosophy that everything is an actor. This is
similar to the everything is an object philosophy used by some object-oriented
programming languages, but differs in that object-oriented software is typically
executed sequentially, while the Actor model is inherently concurrent.!
An actor is a computational entity that, in response to a message it receives,
can concurrently:!
! •! send a finite number of messages to other actors;!
! •! create a finite number of new actors;!
! •! designate the behavior to be used for the next message it receives.!
There is no assumed sequence to the above actions and they could be carried
out in parallel.

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Object-oriented_programming

The Actor Model

source: https://en.wikipedia.org/wiki/Actor_model

This article needs additional citations for verification. Please help improve this article
by adding citations to reliable sources. Unsourced material may be challenged and
removed. (December 2006)

Applications
!

!
!
The Actors model can be used as a framework for modelling, understanding,
and reasoning about, a wide range of concurrent systems. For example:!
! •! Electronic mail (e-mail) can be modeled as an Actor system. Accounts are

modeled as Actors and email addresses as Actor addresses.!
! •! Web Services can be modeled with SOAP endpoints modeled as Actor

addresses.!
! •! Objects with locks (e.g., as in Java and C#) can be modeled as a

Serializer, provided that their implementations are such that messages can
continually arrive (perhaps by being stored in an internal queue). A serializer
is an important kind of Actor defined by the property that it is continually
available to the arrival of new messages; every message sent to a serializer
is guaranteed to arrive.

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Wikipedia:Verifiability
https://en.wikipedia.org/w/index.php?title=Actor_model&action=edit
https://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1
https://en.wikipedia.org/wiki/Concurrent_systems
https://en.wikipedia.org/wiki/Electronic_mail
https://en.wikipedia.org/wiki/E-mail_address
https://en.wikipedia.org/wiki/Web_Services
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

The Actor Model

Mailbox

Mailbox

Mailbox

diagram based on: http://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

http://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

Actor

Actor

Actor

The Actor Model

Mailbox

Mailbox

Mailbox

diagram based on: http://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

Wireless Sensor
Network?

http://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

OOP vs Actor Model

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design." Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.

return

call input “output”

Sequential
Control

Streams
of Data

Class
!

data
!

methods

Actor
!

data
!

params/ports

OOP vs Actor Model

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design." Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.

TextToSpeech
!

initialize
isReady

getSpeech

TextToSpeech
!
!
!

OO Interface
Procedures to be

invoked in sequence.

ASY
NC!

Actor Interface
“Give me text,

I’ll give (you) Speech”

text 
in

speech 
out

!!!

!!!
!!!

OOP vs Actor Model

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design." Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.

Reactive
Programming ?!

input “output”

Streams
of Data

Actor
!

data
!

params/ports

OOP vs Actor Model

source: Lee, Edward A. "Model-driven development-from object-oriented design to actor-oriented design." Workshop on
Software Engineering for Embedded Systems: From Requirements to Implementation (aka The Monterey Workshop),
Chicago. 2003.

Component Based
Programming ?!

TextToSpeech
!
!
!

text 
in

speech 
out

!!!

!!!
!!!

Object Oriented!
Programming

Actor Model
Reactive!

Programming

Object Capability!
Model Flow Based!

Programming
Component Based!

Programming

Success?

source: http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pjm2/

1973 -
1997

When the actor model was first proposed, the development of distributed networks was in its infancy. The conceptual model of actors is easy to understand as it allows state to be directly expressed. Also the only side effects of an actor are to send communications and to set a new behaviour. The simplicity of this model suggests that it would make programming for a distributed system simpler, but there proved to be difficulties associated with its implementation.

• No notion of inheritance/hierarchy

• Changing behaviour (storage,…)

• Dynamic behaviour versus static languages

• Asynchronous messaging versus algorithms

Actor

Actor

Actor

Mailbox

Mailbox

Mailbox

http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pjm2/

What is Akka?!
Scalable real-time transaction processing!!
We believe that writing correct concurrent, fault-tolerant and scalable applications is
too hard. Most of the time it's because we are using the wrong tools and the wrong
level of abstraction. Akka is here to change that. Using the Actor Model we raise the
abstraction level and provide a better platform to build scalable, resilient and
responsive applications—see the Reactive Manifesto for more details. For fault-
tolerance we adopt the "let it crash" model which the telecom industry has used with
great success to build applications that self-heal and systems that never stop. Actors
also provide the abstraction for transparent distribution and the basis for truly
scalable and fault-tolerant applications.!
Akka is Open Source and available under the Apache 2 License.

:-(

http://reactivemanifesto.org/

Actors à la Akka

input “output”Actor
!
!
!

purely reactive component

(act on receive)

Parent (Actor)

failure
create

send

data
!

params/portsbecom
e

creat
e

System

Foo Bar

A B C D E

/Foo/A /Bar/E

/Foo

system.actorOf(props, ”Foo")

addressing/selection
context.actorSelection(“/Bar/E”)

Actors à la Akka

creat
e
Actors à la Akka

send

context.actorSelection(“/Foo/A”).send(msg)

1. at-most-once delivery

Message Delivery Reliability

Actors à la Akka

DEAL!
WITH!

IT.

send

context.actorSelection(“/Foo/A”).send(msg)

1. at-most-once delivery
2. message ordering per sender-receiver pair

Message Delivery Reliability

A

B

C

m2

m2

m3

{m1,m2}

{m3,m2}!
OR!

{m2,m3}

P

C

m1
Kc

{m1,Kc}!
OR!

{Kc,m1}
m1

Actors à la Akka

Actors à la Akkabecom
e

creat
e

System

Foo Bar

A B C D E

/Foo/A /Bar/E

/Foo

addressing/selection
context.actorSelection(“akka.tcp://system@hostY:1234/Bar/E”)

system.actorOf(props, ”Foo")

hostYhostX

+remoting
Actors à la Akka

akka.tcp://system@hostY:1234/Bar/E%E2%80%9D

Actors à la Akka
remoting

The Phi Accrual Failure Detector  
 http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Routers

Remote Events

http://ddg.jaist.ac.jp/pub/HDY+04.pdf

Actors à la Akka
clusterin

g
Ring-structured Cluster  
 à la Dynamo, Riak

Gossip Protocol  
 for membership,  
 leader determination,  
 configuration

Vector Clocks

Leaders are not elected

Actors à la Akka
• Create, send, become

• Parents handle failures

• Purely reactive components

• Remoting with basic guarantees

• Clustering

Actors à la Akka

http://2013.flatmap.no/klang.html

http://www.slideshare.net/christophevg/actors-la-akka

Christophe.VanGinneken@cs.kuleuven.be

http://www.slideshare.net/christophevg/actors-la-akka
mailto:Christophe.VanGinneken@cs.kuleuven.be?subject=

