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Context and Motivation
ever, existing implementations of RP either target specific
kinds of distributed applications (e.g., only client-side [22]),
do not provide safe value propagation [19], or adopt a syn-
chronization and communication schema that is not accept-
able for interactions between remote hosts [3].

We propose Distributed REScala, which implements SID-

UP (Source IDentifier Update Propagation), an algorithm
for propagating changes in a network of dependent reactive
values that is suitable in a distributed setting. It renounces
properties that are undesirable in a distributed setting, such
as global centralized knowledge about the topology of the
dependency structure among reactive values and unneces-
sary communication and synchronization between changes
in completely independent parts of this structure, while
retaining safety guarantees (glitch freedom [22]). To the best
of our knowledge, such a solution has not been proposed
before. The proposed algorithm thus enables distributed
reactive programming (DRP for short), a powerful paradigm
to design distributed applications.

In summary, we makes the following contributions:

• We characterize the design space of existing algorithms
for change propagation in reactive programming, moti-
vating the need for new algorithms that better suit the
requirements of distributed applications.

• We present SID-UP, an algorithm for reactive program-
ming in distributed applications, thus enabling DRP.

• We analyze and compare the complexity of different
change propagation algorithms, including SID-UP.

• We discuss a small-scale case study to indicate design
improvements enabled by DRP and its performance cost
compared to designs based on distributed observer infras-
tructures.

• We empirically evaluate the efficiency of update algo-
rithms in a distributed setting, and show that SID-UP out-
performs existing algorithms.

While the abstract idea of DRP was presented in a vi-
sion paper [23], the SID-UP algorithm, the comprehensive
discussion of the problems with the state of the art, and the
evaluation, are new contributions of this paper. The imple-
mentation of SID-UP in a prototypical reactive language, the
case study, and all evaluation artifacts are available online1.

2. Background and Motivation

In this section, we introduce the case study used throughout
the paper for illustration and evaluation purposes. We intro-
duce key concepts of RP and motivate our work.

Our case study is ProfitReact, a software system that sup-
ports a manufacturing company. It consists of four modules.
Clients place orders on an incoming server. The purchases

1 http://www.stg.tu-darmstadt.de/research/

Figure 1. Reactive network graph of the case study.

department has a module that calculates a plan for acquir-
ing the resources needed to produce the ordered goods. The
sales department equivalently maintains a plan for delivering
the produced goods. Both plans are updated as the order list
changes. Finally, a management module combines the pro-
jected spending and the projected income, derived from the
purchase and delivery plans respectively, into the projected
profit. It defines an invariant that this profit must never be
negative: Whenever this is violated, a notification is sent out
to a responsible manager. To keep individual department’s
operations independent the four modules should run on sep-
arate machines, thus making the application distributed.

2.1 Reactive Architectures

A reactive architecture is well-suited for ProfitReact: There
is a small number of inputs and a lot of derived state that has
to be updated whenever some of the inputs change. In the
following, we briefly introduce the key concepts of a reactive
architecture and illustrate them by the case study.

Values in a reactive architecture are organized in a de-
pendency graph (DG): Nodes therein represent reactive val-
ues and are connected via dependency relations. Figure 1
shows the graph of the case study (without UI components).
Dashed boxes represent individual hosts. The set of nodes in
the DG is denoted by N . Some nodes can be modified im-
peratively through user code. In the example, these are the
list of orders, the fuel and the resource costs. We denote the
set input nodes as I ⊆ N and visualize them as triangles.
Most nodes’ values are the result of a user-defined computa-
tion using values from other nodes as input, i.e. they depend

on other nodes. The formula that calculates the estimated in-
come from the delivery plan is an example – it is associated
with the node “income” that depends on the state of the “de-
livery plan” value. We refer to the set of dependent nodes as
D ⊆ N with D ∩ I = ∅ and visualize them as circles.

We denote incoming dependencies of a node d ∈ D as
−→
depd (arrow points towards node’s name). In application
code, these correspond to input values to the computation
of d. In a reactive framework, for any n ∈ N , outgoing
dependencies

←−
depn (arrow points away from node’s name)

are maintained automatically. Outgoing dependencies point
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Dynamic dependencies
spread over lines 1 to 7 in Figure 3. The same functional-
ity is implemented in the single line 1 in Figure 2. With RP,
the code is reduced to its relevant core. It is not polluted
with the creation of observer instances or callback registry
instantiations and interactions. Further, the implementation
in Figure 3 is more error prone as it uses mutable variables
to coordinate notifications (all var statements). In fact, the
code is vulnerable to glitches due to the race condition be-
tween both observer notifications. Ensuring glitch freedom
would require to break the modularity of the purchases and
sales modules. Currently, their implementations do not dis-
tinguish between a notification caused by an update of the
list of placed orders and one by an update of fuel or resource
costs. In the former case, management has to wait for two
notifications. In the second case, there won’t be be a sec-
ond notification. Exposing this information would require
changes to these modules not related to their core respon-
sibilities. RP instead provides glitch freedom out of the box.

Glitch freedom is as critical in the distributed as in a
local setting. The four dependency edges of the diamond-
shaped graph of the four departments responsible for the
race condition that causes glitches in ProfitReact are routed
over unrelated network connections. For distributed glitch
freedom, edges over network connections thus have to be
respected the same way as local edges. A single propagation
algorithm with a holistic view must be used, as connecting
individually glitch-free networks on each host by observer
notifications would not result in an overall glitch free system.

There are several examples of distributed applications
which require consistency guarantees that are lower than
glitch freedom, for instance eventual consistency. As,
though, there are applications, such as ProfitReact, that do
require glitch freedom, we argue that an implementation for
distributed reactive programming should be capable of pro-
viding this level of consistency. Exploring possible trade-
offs between performance and consistency, for example dis-
abling glitch freedom in cases where the performance cost is
too high, is left to future work.

2.3 Dynamic Dependencies

Dependency graphs of reactive applications may be dynamic
in that nodes’ incoming edges can change during update
turns: New edges can be added and existing ones can dis-
appear or be replaced. This supports important features such
as conditionally accessed input values and higher-order re-
actives2.

Conditionally Accessed Input Values. The simplest exam-
ple of dynamic dependencies comes from computations that
access some of their inputs conditionally. An example is a
signal z defined as if c then x else y, where c, x,

2 We do not address dynamic dependency discovery as employed by most
other frameworks’ Signal{ ... } [21, 24] or Rx{ ... } [26] syntax,
but this exhibits the same phenomena in terms of DG changes and can thus
be handled and supported identically.

Figure 4. Dynamic dependencies caused by conditionals.

and y are signals. At any point in time, the value of z de-
pends on the current value of only two of its sub-signals: c
and only one of x or y. Thus, the dependency on either x or
y can be removed from the DG, as depicted in Figure 4: The
dependency of z on c is static, but the incoming edges from
x and y change dynamically, whenever c changes.

Propagating changes of y to z would cause unnecessary
reevaluations of z as long as c is true. Conditionally ac-
cessed input values allow temporarily removal of not needed
dependency edges at the cost of a topology change. This is
a well-known technique to avoid unnecessary re-executions
of potentially expensive computations [8, 22]. For instance,
in the example, when c changes much less frequently than x
and y, such a trade might prove valuable.

Higher-Order Reactives (HOR’s) are reactive values that
refer to other reactive values. For illustration, consider
Figure 5. It depicts the relation between the state of
a GUI and of the underlying DG of a minimal reac-
tive application example. The GUI displays a list of
Person instances (marked 1), from which the user can
select one (shaded gray), which is reflected in the node
selection of type Signal[Person] (marked 3). On
the left-hand side, the selection is personA (marked
2a), on the right-hand side personC (marked 2b). Each
Person has a property name – a mutable string of type
Signal[String], modified from a different source each.
The higher-order signal selectedNameSignal of type
Signal[Signal[String]] (marked 4) is obtained by
mapping the selection signal to its value’s name. We
refer to the higher-order signal as the outer reactive and the
name signal it holds as its current value as the inner reactive.

The signal selectedPersonName is obtained by flat-

tening the HOR selectedNameSignal. Flattening con-
verts a signal of a signal of a value into a regular signal of a
value, thereby hiding that the current value in fact depends
on the current state of multiple nested reactive values. Nodes
that perform flattening depend on the value of both the outer
and inner signal of a HOR and thus entail dynamic incom-
ing dependencies. selectedPersonName depends stati-
cally on the outer signal selectedNameSignal, but dy-
namically on the inner signal name. This inner dependency
switches between name signals of Persons, whenever the
outer signal’s value changes as the user selects a different
Person. In Figure 5 this is depicted by the bold dependency
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Figure 7. Visual comparison of update propagation with different algorithms.

4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do
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4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do
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4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do

369

28���������	
��������������������  messages

7���������	
��������������������  steps 37���������	
��������������������  messages



ELM
Decentralised���������	
��������������������  flooding

Supports pipelining No high-order reactivesBUT

Figure 7. Visual comparison of update propagation with different algorithms.

4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do

369

Round���������	
��������������������  initiatorELM s
Supports HOR

No pipelining
BUT blocks���������	
��������������������  until���������	
��������������������  

the���������	
��������������������  end���������	
��������������������  of���������	
��������������������  
the���������	
��������������������  round



28���������	
��������������������  messages
37���������	
��������������������  messages

SID-UP
New���������	
��������������������  algorithm

Figure 7. Visual comparison of update propagation with different algorithms.

4.1 Example-Based Comparison

To highlight the advantages of SID-UP, Figure 7 shows
how an update propagates through a DG with different ap-
proaches. Bold edges represent pulse notifications pend-
ing processing by their receiving node. Bold-outlined nodes
have just processed their incoming notifications and pulsed.
Nodes shaded gray have reevaluated.

Scala.React and Scala.Rx (1st and 2nd timeline) proceed
in topological order. The processing layer is highlighted by
the overlapping rectangle. Scala.React is single-threaded:
Only a single node in the rectangle is updating (shown in
bold) at any point in time. In Scala.Rx all nodes on the
same layer are updated concurrently, reducing the number of
steps the algorithm requires in trade for some synchroniza-
tion overhead after each level. In Scala.React and Scala.Rx
bold dependency edges and bold-outlined nodes correspond

to messages that have to be transmitted: The former are
transmitted between the nodes at each end of the edge, the
latter between the node and the centralized priority queue.

As outlined at the end of Section 2.4, ELM in its origi-
nal form is not suitable for the distributed setting, because
its pipelining feature renders HORs impossible, and is ac-
tually incomparable to the other algorithms. Yet, for com-
pleteness we include it in the comparison, but make sure
that its differences to the other algorithms show no effect
by looking at a single turn without topology changes in the
graph. ELM (3rd line) does not have a priority queue that re-
stricts reevaluations to a single active layer. As can be seen
from the figure, nodes update in different layers of the graph.
As nodes reevaluate after each incoming edge is bold with-
out authorization from a coordinator, only bold dependency
edges correspond to messages. Nodes with a bold outline do

369

13���������	
��������������������  steps
8���������	
��������������������  steps

7���������	
��������������������  steps5���������	
��������������������  steps 15���������	
��������������������  messages
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priority queue concurrently. As by construction, nodes on
the same layer can not depend on each other and all nodes
on the lowest layer are also ready for reevaluation without
producing glitches. Converting this algorithm into a dis-
tributed version can be done in the same way as with the
basic topological sorting algorithm. The major improvement
is that the layer-wise concurrent execution of several of the
previously synchronous remote calls reduces the length of
the chain of calls. However, the algorithm still relies on un-
bounded one-to-many communication and still enforces a lot
of unnecessary sequentiality: Nodes on different layers that
do not have a path of dependencies between them should not
need to wait for each other.

Decentralized Flooding in ELM. In ELM [9], a central
coordinator broadcasts every update turn’s start to all input
nodes. After the admission phase, all changed input nodes
send out a “change” pulse and all unchanged input nodes
send out a no change pulse. During the propagation phase
nodes act purely based on received pulse notifications with-
out any coordinating entity, updating as soon as they re-
ceived a pulse from each incoming dependency for the cur-
rent turn. Dependent nodes only update when at least one of
their incoming dependencies sent a changed pulse; if they
complete processing a turn where they would not pulse, they
send out a no change pulse instead. Hence, every node, in-
cluding completely unaffected ones, is involved in every
update turn. Devising a distributed version would require
the coordinator for the admission phase to be converted to
a centralized entity. The coordinator is inactive during the
propagation phase, meaning no unnecessary sequentiality
is enforced. But, as the admission phase requires a broad-
cast to all sources from the coordinator, ELM also relies on
unbounded one-to-many communication. Further, process-
ing every update turn at every node implies a lot of wasted
computational resources, as messages have to be processed
in parts of the system that are completely unrelated to the
changed input data.

Unlike other reactive systems, which propagate a single
change at a time, ELM supports pipelining – multiple se-
quential turns can propagate through the dependency graph
at the same time, in the form of sequential wave fronts.
This feature is especially desirable in the distributed set-
ting, where remote communication strongly increases update
turn duration. Unfortunately, ELM’s pipelining is inherently
incompatible with dynamic dependencies in the topology
graph. To allow different nodes to process different turns at
the same time, every edge in ELM buffers every pulse mes-
sage sent over it until its end node reads it while processing
the respective turn. If new edges are created during an up-
date turn, their start node may already be several turns ahead
of their end node. In such a case, the pulse value required
by the end node to complete its turn is no longer available
at the start node and not stored in the buffer, because the
edge did not exist when the value was sent out. Thus the end

Figure 6. A reactive network with source identifier sets.

node is missing that value and gets stuck, unable to com-
plete the turn; this blocks this turn and all successive turns
from further progress, thus breaking the entire application.
Without dynamic dependencies, ELM and its implementa-
tion of pipelining is unable to support higher-order reactives
and hence not feasible for use in any distributed application
with a potentially changing set of connected hosts.

3. The SID-UP Propagation Algorithm

The design of SID-UP was driven by two goals: (a) Reduce
communication outside of the regular pulse messages to a
minimum, and (b) avoid unbounded one-to-many commu-
nication completely. The novelty of SID-UP consists of the
combination of the following properties:

• Support for distributed reactive programming with re-
mote reactives

• Glitch-freedom both in local and distributed settings

• No unbounded one-to-many communication

• No centralized coordinator during propagation phases

• Support for fully-fledged reactive programming, includ-
ing dynamic dependency features – like higher-order re-
actives for dynamic network topologies

• Exploitation of concurrency potential (respecting glitch-
freedom) for node re-evaluations

• Limited amount of remote communication – less than
existing propagation algorithms

To achieve these properties, we implement all dependent
nodes as individually acting threads with their actions gov-
erned solely by the pulses they receive. Each node stores in-
formation about the source nodes it is transitively connected
to. Each pulse carries information about the sources changed
during the admission phase of the update turn. Only nodes
transitively reachable from changed sources and the edges
between them are involved in transmitting and waiting for
pulses. The remainder of this section describes in detail the
inner workings of SID-UP.
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priority queue concurrently. As by construction, nodes on
the same layer can not depend on each other and all nodes
on the lowest layer are also ready for reevaluation without
producing glitches. Converting this algorithm into a dis-
tributed version can be done in the same way as with the
basic topological sorting algorithm. The major improvement
is that the layer-wise concurrent execution of several of the
previously synchronous remote calls reduces the length of
the chain of calls. However, the algorithm still relies on un-
bounded one-to-many communication and still enforces a lot
of unnecessary sequentiality: Nodes on different layers that
do not have a path of dependencies between them should not
need to wait for each other.

Decentralized Flooding in ELM. In ELM [9], a central
coordinator broadcasts every update turn’s start to all input
nodes. After the admission phase, all changed input nodes
send out a “change” pulse and all unchanged input nodes
send out a no change pulse. During the propagation phase
nodes act purely based on received pulse notifications with-
out any coordinating entity, updating as soon as they re-
ceived a pulse from each incoming dependency for the cur-
rent turn. Dependent nodes only update when at least one of
their incoming dependencies sent a changed pulse; if they
complete processing a turn where they would not pulse, they
send out a no change pulse instead. Hence, every node, in-
cluding completely unaffected ones, is involved in every
update turn. Devising a distributed version would require
the coordinator for the admission phase to be converted to
a centralized entity. The coordinator is inactive during the
propagation phase, meaning no unnecessary sequentiality
is enforced. But, as the admission phase requires a broad-
cast to all sources from the coordinator, ELM also relies on
unbounded one-to-many communication. Further, process-
ing every update turn at every node implies a lot of wasted
computational resources, as messages have to be processed
in parts of the system that are completely unrelated to the
changed input data.

Unlike other reactive systems, which propagate a single
change at a time, ELM supports pipelining – multiple se-
quential turns can propagate through the dependency graph
at the same time, in the form of sequential wave fronts.
This feature is especially desirable in the distributed set-
ting, where remote communication strongly increases update
turn duration. Unfortunately, ELM’s pipelining is inherently
incompatible with dynamic dependencies in the topology
graph. To allow different nodes to process different turns at
the same time, every edge in ELM buffers every pulse mes-
sage sent over it until its end node reads it while processing
the respective turn. If new edges are created during an up-
date turn, their start node may already be several turns ahead
of their end node. In such a case, the pulse value required
by the end node to complete its turn is no longer available
at the start node and not stored in the buffer, because the
edge did not exist when the value was sent out. Thus the end
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node is missing that value and gets stuck, unable to com-
plete the turn; this blocks this turn and all successive turns
from further progress, thus breaking the entire application.
Without dynamic dependencies, ELM and its implementa-
tion of pipelining is unable to support higher-order reactives
and hence not feasible for use in any distributed application
with a potentially changing set of connected hosts.

3. The SID-UP Propagation Algorithm

The design of SID-UP was driven by two goals: (a) Reduce
communication outside of the regular pulse messages to a
minimum, and (b) avoid unbounded one-to-many commu-
nication completely. The novelty of SID-UP consists of the
combination of the following properties:

• Support for distributed reactive programming with re-
mote reactives

• Glitch-freedom both in local and distributed settings

• No unbounded one-to-many communication

• No centralized coordinator during propagation phases

• Support for fully-fledged reactive programming, includ-
ing dynamic dependency features – like higher-order re-
actives for dynamic network topologies

• Exploitation of concurrency potential (respecting glitch-
freedom) for node re-evaluations

• Limited amount of remote communication – less than
existing propagation algorithms

To achieve these properties, we implement all dependent
nodes as individually acting threads with their actions gov-
erned solely by the pulses they receive. Each node stores in-
formation about the source nodes it is transitively connected
to. Each pulse carries information about the sources changed
during the admission phase of the update turn. Only nodes
transitively reachable from changed sources and the edges
between them are involved in transmitting and waiting for
pulses. The remainder of this section describes in detail the
inner workings of SID-UP.
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Figure 9. Performance of the case study.

The comparison against the unsafe observer implementa-
tion shows that the above advantages still apply to software
that does not require glitch freedom. Removing the man-
ual glitch freedom implementation lessens the gap in terms
of code metrics. Yet, column unsafe observer still exhibits
worse metrics than reactive.

Performance Cost. For the performance comparison, we
inspected again only the part of the application concerning
remote value propagation. Both the application responsive-
ness for the user as well as the amount of data throughput de-
pend mainly on the time it takes for every input value change
to be propagated through the entire application. To measure
this time, we implemented a loop that publishes a new list of
orders at the order depot whenever the previous update had
taken effect in management (cf. Figure 1).

Figure 9 shows the amount of time required to perform an
increasing number of subsequent update turns. Each update
turn sets a new list of ten orders in the order depot. Unsur-
prisingly, the implementation based on remote observers is
faster in completing pushing updates through the applica-
tion. This is easily explained, as the generality of reactive
programming comes at a cost. In our case, this cost consists
of the operations performed with all the source identifier sets
on each node. Though, as the graph shows, the processing
time of reactive programming supported by SID-UP still ex-
hibits similar complexity and only increases required time
by a factor of approximately 10% in this case.

5.2 Benchmarks

To empirically compare SID-UP with existing algorithms,
we implemented a benchmark in form of a reactive network
through which we propagate an update. The algorithms be-
ing compared are expected to perform differently on differ-
ent topologies due to various approaches for parallelism and
message transmissions. Hence, we assembled a graph from
modules implementing various topologies. Figure 10 shows
a schema of the graph we used. The “chain” module im-
plements a linear chain of reactive nodes that does not al-

Figure 10. Graph used in the benchmarks.
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Figure 11. Distribution of dependency degrees.

low parallelism. The “regular” module implements a graph
with some nodes connected with varying degrees of fan-in
and fan-out dependency connections that allows some paral-
lelism. To be realistic, these degrees are chosen according to
statistic distributions, which we measured by instrumenting
20 local reactive applications we developed in previous case
studies; Figure 11 shows the distribution of the number of
nodes for each value of incoming degree (left) and outgo-
ing degree (right). The “fan” module implements a topology
where one node fans out into a lot of immediate successors,
all of which can be reevaluated concurrently. Each module
contains 25 nodes and both “regular” and “fan” contain a
few nodes whose values do not change during the update
turn, i.e. although a dependency changes, they update to an
unchanged pulse value or equivalently do not add their out-
going dependencies to the priority queue. Updates can be
initiated inside each module separately through individual
source nodes, although for the duration benchmarks we al-
ways update all sources to affect the entire graph. Finally, a
dependent node at the end unifies the updates from all mod-
ules to detect the update turn completion.

Optimizations of the dependency graph’s topology may
improve the performance of reactive programs. Since typi-
cally each node in the graph introduces a certain amount of
overhead, optimizing the topology by reducing the number
of nodes leads to better performance. The most prominent
technique here is Lowering [6]. We performed our analy-
ses without applying such techniques, as they are orthog-
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The comparison against the unsafe observer implementa-
tion shows that the above advantages still apply to software
that does not require glitch freedom. Removing the man-
ual glitch freedom implementation lessens the gap in terms
of code metrics. Yet, column unsafe observer still exhibits
worse metrics than reactive.

Performance Cost. For the performance comparison, we
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ness for the user as well as the amount of data throughput de-
pend mainly on the time it takes for every input value change
to be propagated through the entire application. To measure
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orders at the order depot whenever the previous update had
taken effect in management (cf. Figure 1).
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increasing number of subsequent update turns. Each update
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prisingly, the implementation based on remote observers is
faster in completing pushing updates through the applica-
tion. This is easily explained, as the generality of reactive
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low parallelism. The “regular” module implements a graph
with some nodes connected with varying degrees of fan-in
and fan-out dependency connections that allows some paral-
lelism. To be realistic, these degrees are chosen according to
statistic distributions, which we measured by instrumenting
20 local reactive applications we developed in previous case
studies; Figure 11 shows the distribution of the number of
nodes for each value of incoming degree (left) and outgo-
ing degree (right). The “fan” module implements a topology
where one node fans out into a lot of immediate successors,
all of which can be reevaluated concurrently. Each module
contains 25 nodes and both “regular” and “fan” contain a
few nodes whose values do not change during the update
turn, i.e. although a dependency changes, they update to an
unchanged pulse value or equivalently do not add their out-
going dependencies to the priority queue. Updates can be
initiated inside each module separately through individual
source nodes, although for the duration benchmarks we al-
ways update all sources to affect the entire graph. Finally, a
dependent node at the end unifies the updates from all mod-
ules to detect the update turn completion.

Optimizations of the dependency graph’s topology may
improve the performance of reactive programs. Since typi-
cally each node in the graph introduces a certain amount of
overhead, optimizing the topology by reducing the number
of nodes leads to better performance. The most prominent
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ses without applying such techniques, as they are orthog-
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onal to the propagation algorithm in use. Each algorithm
simply traverses and interacts with the topology graph, opti-
mized to not. Whether or not the graph has had some nodes
collapsed into fewer nodes does not change these interac-
tions. Vice versa, topology optimizations do not require any
involvement from the run-time propagation algorithm and
can be computed statically. That said, we expect such opti-
mizations to benefit SID-UP the most of all included algo-
rithms because SID-UP with its comparatively very complex
set operations has the biggest overhead per node. Evaluat-
ing the effectiveness of different combinations of topology
optimizations and propagation algorithms would be an in-
teresting study, but extends beyond the scope of this paper.

The experiments compare five propagation algorithms3:
Scala.React’s and Scala.Rx’s implementation of sequential
topological sorting with priority queue, Scala.Rx’s imple-
mentation of the parallel propagation strategy and our ref-
erence implementation of SID-UP. We also include our SID-

UP ELM hybrid algorithm ELMs from Section 4.2 to mea-
sure the overhead caused by the set operations used in SID-

UP: As we showed in Section 4.3, SID-UP and ELMs exhibit
the same turn durations in terms of user computations and
only differ in execution time only by their individual com-
putational overhead per node.

We “distribute” the graph in Figure 10 by pretending that
each module runs on an individual host; the source and sink
nodes as well as the coordinator (if needed) run on another
separate host. As no framework except SID-UP actually sup-
ports distribution, we simulate network latency by injecting
waiting times wherever a method call would have to be send
over the network, i.e. whenever a node sends a pulse notifi-

3 All tests were performed with Scala 2.10.3, Sun Java HotSpot Client VM
1.7 update 10, Windows 7 64 bit and an Intel Core i5-3320M with 8 GB of
RAM. To run the benchmarks, we fixed a bug of Scala.Rx’s[26] garbage
collection support present in commit e4f4070cac cloned on 11/26/2013,
which caused linearly increasing execution time.

cation to a node on another host, or whenever the coordinator
sends a command to a node on a different host than its own.
This may seem like a disadvantageous comparison for algo-
rithms dedicated to distributed graphs, since only very few
edges are actually remote connections. But, the main dis-
advantage of the topological sorting-based algorithms stems
from remote communication with the priority queue, which
happens outside of the dependency edges between nodes.
Therefore, these few remote edges suffice to show the full
effect.

The left graph in Figure 12 shows for each algorithm the
time it takes to complete an update turn on the graph in Fig-
ure 10 when simulating various amounts of delay on the
network edges. SID-UP and ELMs clearly outperform the
other algorithms, especially considering the double logarith-
mic scaling. All curves are approximately linear, meaning
that all algorithms scale linearly with increasing network la-
tency. But, because of double logarithmic scaling, the dif-
ferences between these curves indicate different factors of
scaling with latency, with SID-UP and ELMs achieving the
lowest factor.

This is in line with previous findings that mark-and-
sweep algorithms generally outperform those based on topo-
logical sorting [27]. We did not include a straight-forward
mark-and-sweep algorithm in the comparison, as executing
both phases would immediately imply duplicating all re-
mote message delays. But, both SID-UP and ELMs can be
seen as special cases of mark-and-sweep algorithms, where
the sweep phase is done implicitly: In SID-UP, all nodes
n ∈ CC are implicitly marked through the set intersection
test. In ELMs, simply every node is implicitly considered
marked for every turn.

A comparison of the curves of SID-UP and ELMs enables
to estimate the overhead caused by the more complex set op-
erations in SID-UP. As there is barely a difference, this com-
parison indicates that this overhead is negligible. But, the
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onal to the propagation algorithm in use. Each algorithm
simply traverses and interacts with the topology graph, opti-
mized to not. Whether or not the graph has had some nodes
collapsed into fewer nodes does not change these interac-
tions. Vice versa, topology optimizations do not require any
involvement from the run-time propagation algorithm and
can be computed statically. That said, we expect such opti-
mizations to benefit SID-UP the most of all included algo-
rithms because SID-UP with its comparatively very complex
set operations has the biggest overhead per node. Evaluat-
ing the effectiveness of different combinations of topology
optimizations and propagation algorithms would be an in-
teresting study, but extends beyond the scope of this paper.

The experiments compare five propagation algorithms3:
Scala.React’s and Scala.Rx’s implementation of sequential
topological sorting with priority queue, Scala.Rx’s imple-
mentation of the parallel propagation strategy and our ref-
erence implementation of SID-UP. We also include our SID-

UP ELM hybrid algorithm ELMs from Section 4.2 to mea-
sure the overhead caused by the set operations used in SID-

UP: As we showed in Section 4.3, SID-UP and ELMs exhibit
the same turn durations in terms of user computations and
only differ in execution time only by their individual com-
putational overhead per node.

We “distribute” the graph in Figure 10 by pretending that
each module runs on an individual host; the source and sink
nodes as well as the coordinator (if needed) run on another
separate host. As no framework except SID-UP actually sup-
ports distribution, we simulate network latency by injecting
waiting times wherever a method call would have to be send
over the network, i.e. whenever a node sends a pulse notifi-

3 All tests were performed with Scala 2.10.3, Sun Java HotSpot Client VM
1.7 update 10, Windows 7 64 bit and an Intel Core i5-3320M with 8 GB of
RAM. To run the benchmarks, we fixed a bug of Scala.Rx’s[26] garbage
collection support present in commit e4f4070cac cloned on 11/26/2013,
which caused linearly increasing execution time.

cation to a node on another host, or whenever the coordinator
sends a command to a node on a different host than its own.
This may seem like a disadvantageous comparison for algo-
rithms dedicated to distributed graphs, since only very few
edges are actually remote connections. But, the main dis-
advantage of the topological sorting-based algorithms stems
from remote communication with the priority queue, which
happens outside of the dependency edges between nodes.
Therefore, these few remote edges suffice to show the full
effect.

The left graph in Figure 12 shows for each algorithm the
time it takes to complete an update turn on the graph in Fig-
ure 10 when simulating various amounts of delay on the
network edges. SID-UP and ELMs clearly outperform the
other algorithms, especially considering the double logarith-
mic scaling. All curves are approximately linear, meaning
that all algorithms scale linearly with increasing network la-
tency. But, because of double logarithmic scaling, the dif-
ferences between these curves indicate different factors of
scaling with latency, with SID-UP and ELMs achieving the
lowest factor.

This is in line with previous findings that mark-and-
sweep algorithms generally outperform those based on topo-
logical sorting [27]. We did not include a straight-forward
mark-and-sweep algorithm in the comparison, as executing
both phases would immediately imply duplicating all re-
mote message delays. But, both SID-UP and ELMs can be
seen as special cases of mark-and-sweep algorithms, where
the sweep phase is done implicitly: In SID-UP, all nodes
n ∈ CC are implicitly marked through the set intersection
test. In ELMs, simply every node is implicitly considered
marked for every turn.

A comparison of the curves of SID-UP and ELMs enables
to estimate the overhead caused by the more complex set op-
erations in SID-UP. As there is barely a difference, this com-
parison indicates that this overhead is negligible. But, the

373

100

101

102

103

104

105

0.1 1 10

Ti
m
ex
(m
s)

SimulatedxLatencyx(ms)

SID-UP
scala.react

scala.rxxsequential
scala.rxxparallel

ELMs
100

101

102

103

104

105

0.1 1 10

Ti
m
ex
(m
s)

SimulatedxLatencyx(ms)

SID-UP
scala.react

scala.rxxsequential
scala.rxxparallel

ELMs

Figure 12. Update turn completion duration over increasing latency with few and many sources.

onal to the propagation algorithm in use. Each algorithm
simply traverses and interacts with the topology graph, opti-
mized to not. Whether or not the graph has had some nodes
collapsed into fewer nodes does not change these interac-
tions. Vice versa, topology optimizations do not require any
involvement from the run-time propagation algorithm and
can be computed statically. That said, we expect such opti-
mizations to benefit SID-UP the most of all included algo-
rithms because SID-UP with its comparatively very complex
set operations has the biggest overhead per node. Evaluat-
ing the effectiveness of different combinations of topology
optimizations and propagation algorithms would be an in-
teresting study, but extends beyond the scope of this paper.

The experiments compare five propagation algorithms3:
Scala.React’s and Scala.Rx’s implementation of sequential
topological sorting with priority queue, Scala.Rx’s imple-
mentation of the parallel propagation strategy and our ref-
erence implementation of SID-UP. We also include our SID-

UP ELM hybrid algorithm ELMs from Section 4.2 to mea-
sure the overhead caused by the set operations used in SID-

UP: As we showed in Section 4.3, SID-UP and ELMs exhibit
the same turn durations in terms of user computations and
only differ in execution time only by their individual com-
putational overhead per node.

We “distribute” the graph in Figure 10 by pretending that
each module runs on an individual host; the source and sink
nodes as well as the coordinator (if needed) run on another
separate host. As no framework except SID-UP actually sup-
ports distribution, we simulate network latency by injecting
waiting times wherever a method call would have to be send
over the network, i.e. whenever a node sends a pulse notifi-

3 All tests were performed with Scala 2.10.3, Sun Java HotSpot Client VM
1.7 update 10, Windows 7 64 bit and an Intel Core i5-3320M with 8 GB of
RAM. To run the benchmarks, we fixed a bug of Scala.Rx’s[26] garbage
collection support present in commit e4f4070cac cloned on 11/26/2013,
which caused linearly increasing execution time.

cation to a node on another host, or whenever the coordinator
sends a command to a node on a different host than its own.
This may seem like a disadvantageous comparison for algo-
rithms dedicated to distributed graphs, since only very few
edges are actually remote connections. But, the main dis-
advantage of the topological sorting-based algorithms stems
from remote communication with the priority queue, which
happens outside of the dependency edges between nodes.
Therefore, these few remote edges suffice to show the full
effect.

The left graph in Figure 12 shows for each algorithm the
time it takes to complete an update turn on the graph in Fig-
ure 10 when simulating various amounts of delay on the
network edges. SID-UP and ELMs clearly outperform the
other algorithms, especially considering the double logarith-
mic scaling. All curves are approximately linear, meaning
that all algorithms scale linearly with increasing network la-
tency. But, because of double logarithmic scaling, the dif-
ferences between these curves indicate different factors of
scaling with latency, with SID-UP and ELMs achieving the
lowest factor.

This is in line with previous findings that mark-and-
sweep algorithms generally outperform those based on topo-
logical sorting [27]. We did not include a straight-forward
mark-and-sweep algorithm in the comparison, as executing
both phases would immediately imply duplicating all re-
mote message delays. But, both SID-UP and ELMs can be
seen as special cases of mark-and-sweep algorithms, where
the sweep phase is done implicitly: In SID-UP, all nodes
n ∈ CC are implicitly marked through the set intersection
test. In ELMs, simply every node is implicitly considered
marked for every turn.

A comparison of the curves of SID-UP and ELMs enables
to estimate the overhead caused by the more complex set op-
erations in SID-UP. As there is barely a difference, this com-
parison indicates that this overhead is negligible. But, the
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onal to the propagation algorithm in use. Each algorithm
simply traverses and interacts with the topology graph, opti-
mized to not. Whether or not the graph has had some nodes
collapsed into fewer nodes does not change these interac-
tions. Vice versa, topology optimizations do not require any
involvement from the run-time propagation algorithm and
can be computed statically. That said, we expect such opti-
mizations to benefit SID-UP the most of all included algo-
rithms because SID-UP with its comparatively very complex
set operations has the biggest overhead per node. Evaluat-
ing the effectiveness of different combinations of topology
optimizations and propagation algorithms would be an in-
teresting study, but extends beyond the scope of this paper.

The experiments compare five propagation algorithms3:
Scala.React’s and Scala.Rx’s implementation of sequential
topological sorting with priority queue, Scala.Rx’s imple-
mentation of the parallel propagation strategy and our ref-
erence implementation of SID-UP. We also include our SID-

UP ELM hybrid algorithm ELMs from Section 4.2 to mea-
sure the overhead caused by the set operations used in SID-

UP: As we showed in Section 4.3, SID-UP and ELMs exhibit
the same turn durations in terms of user computations and
only differ in execution time only by their individual com-
putational overhead per node.

We “distribute” the graph in Figure 10 by pretending that
each module runs on an individual host; the source and sink
nodes as well as the coordinator (if needed) run on another
separate host. As no framework except SID-UP actually sup-
ports distribution, we simulate network latency by injecting
waiting times wherever a method call would have to be send
over the network, i.e. whenever a node sends a pulse notifi-

3 All tests were performed with Scala 2.10.3, Sun Java HotSpot Client VM
1.7 update 10, Windows 7 64 bit and an Intel Core i5-3320M with 8 GB of
RAM. To run the benchmarks, we fixed a bug of Scala.Rx’s[26] garbage
collection support present in commit e4f4070cac cloned on 11/26/2013,
which caused linearly increasing execution time.

cation to a node on another host, or whenever the coordinator
sends a command to a node on a different host than its own.
This may seem like a disadvantageous comparison for algo-
rithms dedicated to distributed graphs, since only very few
edges are actually remote connections. But, the main dis-
advantage of the topological sorting-based algorithms stems
from remote communication with the priority queue, which
happens outside of the dependency edges between nodes.
Therefore, these few remote edges suffice to show the full
effect.

The left graph in Figure 12 shows for each algorithm the
time it takes to complete an update turn on the graph in Fig-
ure 10 when simulating various amounts of delay on the
network edges. SID-UP and ELMs clearly outperform the
other algorithms, especially considering the double logarith-
mic scaling. All curves are approximately linear, meaning
that all algorithms scale linearly with increasing network la-
tency. But, because of double logarithmic scaling, the dif-
ferences between these curves indicate different factors of
scaling with latency, with SID-UP and ELMs achieving the
lowest factor.

This is in line with previous findings that mark-and-
sweep algorithms generally outperform those based on topo-
logical sorting [27]. We did not include a straight-forward
mark-and-sweep algorithm in the comparison, as executing
both phases would immediately imply duplicating all re-
mote message delays. But, both SID-UP and ELMs can be
seen as special cases of mark-and-sweep algorithms, where
the sweep phase is done implicitly: In SID-UP, all nodes
n ∈ CC are implicitly marked through the set intersection
test. In ELMs, simply every node is implicitly considered
marked for every turn.

A comparison of the curves of SID-UP and ELMs enables
to estimate the overhead caused by the more complex set op-
erations in SID-UP. As there is barely a difference, this com-
parison indicates that this overhead is negligible. But, the
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Figure 13. Number of messages for propagating through different sub-graphs from Figure 10.

overhead is not constant: The larger the sets involved in these
operations become, the more the overhead for SID-UP will
grow. To evaluate this in detail, we repeat the same experi-
ment with around 150 additional sources spread evenly over
all nodes in the graph. With about two input nodes for every
dependent node, this gives an overestimation of the impact
they will have on SID-UP in normal use cases, as usually de-
pendent nodes make up the majority of a dependency graph.
Further, we do not update those sources to keep their im-
pact on the other algorithms minimal. The right graph in Fig-
ure 12 shows the results: SID-UP and ELMs perform slightly
worse, while there is essentially no impact on the other al-
gorithms. This is to be expected as for SID-UP the identifier
sets grow and ELMs’s global processing has to send addi-
tional messages over all the new sources. However, SID-UP

and ELMs still clearly outperform the other algorithms and
still do not differ much from each other. Hence, we conclude
that even in the presence of many large identifier sets SID-

UP’s overhead remains negligible.
To empirically validate the superiority of SID-UP over

ELMs from the message count analysis in Section 4.3, we
counted the number of message sends by each algorithm
when updating different sets of sources from the graph in
Figure 10. Through this message count the overall usage
of computational resources to process an update turn can
be estimated. This usage is not fully measured in the tim-
ing benchmarks, because it is processed in parallel to the
slower path through the graph along which value changes
are actually computed. Yet, it blocks other workloads and
requires more energy. Figure 13 shows the results: For all
algorithms the number of change pulses is identical in each
case. But, the algorithms differ in their additional messages:
Scala.React and both versions of Scala.Rx require additional
coordinator messages for changed nodes. SID-UP requires
no coordinator messages, but instead propagates a few pulse
messages from unchanged nodes. These two sets of mes-
sages are generally incomparable because the number of ad-
ditional coordinator or respectively unchanged pulse mes-

sages are dependent on the actual value changes from the
user computations that occur during the update turn. ELMs,
however, performs clearly worse: Because of its globally
processed update turns, it requires the same number of mes-
sages for every update. This is the number that SID-UP uses
only in the worst-case, when all sources a, b and c and suc-
cessively the entire graph are updated – a use case that es-
sentially never occurs in practice as user code usually acts
localized and only admits new values to very few select
sources. In all of these common cases, SID-UP uses strictly
less messages to complete the update turn, meaning it con-
sumes less computational resources overall. With the set op-
eration overhead being negligible and the overall resource
consumption being lower, SID-UP thus outperforms ELMs.
Further, ELMs relies on unbounded one-to-many communi-
cation, visible here in the form of one coordinator message
per source. This puts additional requirements on the infras-
tructure that must be available to run ELMs, making it more
difficult to use.

Summarizing, we conclude that SID-UP provides the best
trade-off between update turn completion time and computa-
tional resource usage. Furthermore, it is the only algorithm
that does not rely on unbounded one-to-many communica-
tion, and thus is the easiest to execute in any given dis-
tributed environment.

6. Related Work

We discuss extentions of reactive programming towards par-
allelism and distribution and summarize state of the art in
reactive programming and related fields.

6.1 Parallel and Distributed Reactive Programming.

Scala.Rx [26] implements a propagation algorithm that sup-
ports a limited amount of parallelism during update prop-
agation. ELM [9] enables more parallelism and introduces
concepts of pipelined and asynchronous update turns. Both
of their propagation algorithms, however, have major down-
sides when used in distributed settings. We discussed these
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