We Have a DREAM: Distributed
Reactive Programming with
Consistency Guarantees

Alessandro Margara, Guido Salvaneschi

Presented by Wilfried Daniels

Introduction

* Designing, implementing and maintaining
reactive systems is difficult
— Asynchronous callbacks

— Hard to trace/understand control flow

=» Solution: Reactive Programming

Introduction

* Key concepts:

— time-varying values
— tracking of dependencies

— automatic propagation of changes

1
2
3
4
5}

var a: int = 10
var b: int = a + 2

printin(b) // 12
a=11

printin(b) // 12

Imperative

1
2
3
4
5}

var a: int = 10

var b: int a—+ 2
printin(b) // 12
a=11

printin(b) // 13

Reactive

Introduction

* Advantages vs. classic event-based arch:
— No explicit update logic
— Declarative specification of dependencies

— Runtime manages correct propagation (e.g. glitch
freeness/consistency)

 This work focuses on distributed reactive
programming (DRP)

Introduction

* Previous DRP solutions do not guarantee
distributed consistency (only local)

* This paper presents DREAM, a Distributed
REActive Middleware with three different
levels of consistency guarantees

Background and Motivation

Motivation for different levels of consistency

Running example: financial application system

var marketindex = InputModule.getMarketIndex()
var stockOpts = InputModule.getStockOpts()
var news = InputModule.getNews()

// Forecasts according to different models

var f1(=)Modell.compute(marketindex,stockOpts)
7 var f2 := Model2.compute(marketindex,stockOpts)
s var f3 := Model3.compute(marketindex,news)

1
2
3
4
5
6

B o e e e e e o e e e e e M M e e M M M e e e M e e e e e

2,var financialAlert := ((f1+f2+f3)/3) < MAX :
'if (financialAlert) decrease(stockOpts) !
5,var financialAlert_n := computeAlert_n(f1,2,f3)
_6l|f (financialAlert_n) adjust_n(stockOpts) :

— o e o e e e e e e e e M e e e e M M e e e e e e mm

V3

—

/|

V2

Observable
time-varying variables

Dependent
Reactive expressions

Reactive expressions
resulting in 3
alternative outputs,
each requiring
different consistency
guarantees

Background and Motivation

* Variant 1: Smartphone app
— Just displays output of 3 models
— No consistency required

I S—-— - - S S S S S B S B S B B S B B B B S S B B e S B Eae B e .

e Variant 2: I\/Iodels aggregator
— Aggregates output of 3 models
— Undertakes action when below threshold

1var financialAlert := ((f14+f24+f3)/3) < MAX L2
vif (financialAlert) decrease(stockOpts) !

Background and Motivation

* Variant 2: Models aggregator
— Requires glitch freedom
— Assume initially f1:110, £2:95, £3:99 with MAX:100
— New marketindex: all models recalculate.

— Model f1 finishes first with f1: 90
- STOCKS DECREASED (GLITCH!)

— Other models finish: f2:111, £3:103

Ivar financialAlert := ((f14+f24+f3)/3) < MAX L2
tif (financialAlert) decrease(stockOpts) !

Background and Motivation

* Variant 3: Multiple aggregators

— f1, 2, f3 are dispatched to n aggregators, that
work autonomously

— In case of deviating behaviour, any aggregator can
adjust stockOpts

— No glitch freedom required, but every single
aggregator needs to see f1, f2 and f3 change in
the same order

'var financialAlert_n := computeAlert_n(f1,f2,f3) : V3
llf (financialAlert_n) adjust_n(stockOpts) !

A model for DRP

* Formal definition of DRP system architecture/
consistency guarantees

 Components: networked nodes in system
Ci1 ... Cp

e Variables: state of component ¢ is
represented by V; = {vi1 : 71 ... Vim : Tim }

A model for DRP

Besides traditional imperative variables,
reactive and observable variables are defined

Reactive: variable that is automatically
updated based on reactive expression

Observable: continuously changing var that is
used to build expressions. Local or Global.

e.g. stock market:
f3,:=Model3.compute(marketIndex, news)

Reactive (+ observable) variable Observable variables

A model for DRP

Dependency Graph:

— Directed graph D = {V, E}, where V is the set of
all observable/reactive variables and E is the set of
all edges that connect directly depending
variables

— E.g. stock market for Variant 1 + 2:

f1
marketindex >
f2 O gui
stockOpts >

\ f3 O financialAlert
news O >

A model for DRP

* Events:
— Write event: w, (v)

* Occurs when value x is written to variable v
— Read event: 7z(v)
* Occurs when value x is read from variable v
— Update event: u(S,w.(v)), S = {wyi(v1) ... wyn(va)}

* Depending variable v is reactively update with value x
due to the write events contained in the set S

A model for DRP

* Consistency Guarantees

— Exactly once delivery: ensures that, in absence of
failure, the communication channel does not lose
or duplicate an update. More formally:

If ws (v) oceurs, thenwu(S;, wy(v;)), ws(v) € S; occurs
exactly once.

A model for DRP

* Consistency Guarantees

— FIFO ordering: changes to a a variable vin a
componentc are propagated to depending
reactive expressions in the same order they occur
inc. More formally:

Vi, v, such that v; depends on v, if wz1(vi) occurs

before w.2(v:), then u(S1), w.1(vi) € S1 occurs before
’LL(SQ),U];EQ(’Ui) c Ss

A model for DRP

* Consistency Guarantees

— Causal ordering: ensures that events that are causally
connected occur in every component in the same
order. More formally:

4

We define a happened before (—) partial order relation:

* If two events €1, €2, occur in the same process, thene1 — ez if and
only ife; occurs before e5

e Ifer = wyz(vi) and ez = u(S;i, wy(v;)), we(vi) € Si, thener — e
(a write happens before an update depending on it)

e Ife1 —e2andez — e3,then e1 — e3 (transitivity)

— No guarantees are made for events that are not
causally connected!

A model for DRP

* Consistency Guarantees

— Glitch freedom: no partial updates due to
propagation delays. More formally:

Consider the set V4, containing all observable variables a
reactive variablevdepends on. Let us call V;; C V5 the
set of variables that depend directly or indirectly from a
variablevi. The update u(S,w.(v)) is a partial update

ifS C Vai. A glitch free system does not have partial
updates.

A model for DRP

* Consistency Guarantees

— Atomic consistency: ensures that: (i) the system

provides FIFO ordering, and (ii) every write event
to an observable variable is atomically propagated

to all (in)directly depending reactive variables.
More formally:

All the update events u(S;, w,(v;))triggered (directly or
indirectly) by w.(v) are executed as a single operation

— This is stricter than glitch freedom

DREAM: API

* DREAM is entirely written in Java

* Observable variables - observable objects
— Inherit from Observable abstract class
— All non-void methods: observable methods

— Generic method m that potentially changes return
value of observable method obm: m impacts obm

— Impacts should be known by runtime
— Java Annotations

DREAM: API

 Example of observable class representing an
Integer:

1 public class ObservableInteger extends Observable {
2 private int val;

3

4 // Constructors ...

5

6 @ImpactsOn (methods = { "get" })
7 public final void set (int val) {
8 this.val = val;

9 }

10

11 public final int get () {

12 return val;

13 }

14 }

DREAM: API

* Reactive variables = Reactive objects
* Created by using the ReactiveFactory class

— Parses reactive expressions (strings with ANTLR)
— Reactive objects can be observable (optional)
* Naming space:

— Unique name: c.obj.obm for observable method
obm of object obj in component c

— For local objects: obj.obm

DREAM: API

* Example:

1 // Component cl

2 ObservableInteger obInt =

3 new ObservablelInteger ("obIntl", 1, LOCAL);
4 ObservableString obStrl =

5 new ObservableString ("obStrl", "a", GLOBAL);
6 ObservableString obStr2 =

7

8 // Component c2

9 ReactivelInteger rInt = ReactiveFactory.

10 getInteger ("obInt.get () *x2");

11 ReactiveString rStr = ReactiveFactory.

12 getString ("obStrl.get () tobStr2.get () ");

13 while (true) {

14 System.out.println(rStr.get ())

15 Thread.sleep (500)

16 }

17

18 // Component c3

19 Reactivelnteger strlen =

20 ReactiveFactory.getnteger

21 ("cl.obStringl.get ().length ()", "obStringlLen™);

DREAM: Implementation

* Architecture consists of two parts:
— A client library on every component

— A distributed event-based infrastructure,
consisting of brokers

* Brokers form an acyclic overlay network,
offering communication between components

* Optional registry for persistence

DREAM: Implementation

 Architecture overview

. Observable
Reactive Object
I Object Watcher
| T
SUbiC”be Notify Advertiie/Notify
|

CommunicationManager

DREAM: Implementation

* Pub-Sub Communication:
Clients register with brokers through 3 primitives:

— advertise(c,obj,obm): used by cif it has a
globally observable method obj.obm()

— subscribe(c,obj,obm): used to register a
component that has a reactive expression
containing c.obj.obm()

— notify(c,obj,obm,val): used by c when
obj.obm() has a new value val

DREAM: Implementation

* Clients
— CommunicationManager:
* Proxy for global communication
* Manage local communication

— Observable objects:
* Have Watcher code woven in through AOP

« Watcher interacts with CommunicationManager to:
1. Advertise new objects through advertise(c,obj,obm)

2. Detect changes to observables and propagate them out
through notify(c,obj,obm,val)

DREAM: Implementation

 Clients

— Reactive Objects:
* When instantiated, for all relevant observable methods

—> subscribe(c,obj,obm) with CommunicationManager

 When new values available, notification from
CommunicationManager

DREAM: Implementation

 Architecture overview

. Observable
Reactive Object
I Object Watcher
| T
SUbiC”be Notify Advertiie/Notify
|

CommunicationManager

DREAMS: Implementation

* Brokers
Run REDS event dispatching
— Brokers are connected in acyclic graph

— Advertisements are propagated through graph +
stored by all brokers, remembering next hop

— When a broker receives a subscription, store in

table and forward to next hop (retrace path of
advertisements)

DREAMS: Implementation

* Consistency Guarantees

— Causal ordering:

* Use point to point TCP for broker-broker and client-
broker communication

* Use single thread for FIFO event processing

— These 2 properties with an acyclic topology are
sufficient for causal ordering

DREAMS: Implementation

* Consistency Guarantees

— Glitch freedom:

* New reactive object: push propagate expression to
all brokers = each broker has dependency graph

* When a chain of operations is triggered, always include
the original write event that caused it in

communications

* Local communication has to go through a broker as
well to ensure glitch freedom

— This information is enough for the brokers to schedule
propagation in a way that avoids partial updates

DREAMS: Implementation

* Consistency Guarantees

— Atomic ordering:
* Adds centralized Ticket Granting Service (TGS)

 When a write event occurs, all it’s directly and
indirectly dependent reactive expressions are
reevaluated atomically (no other write operations)

* On write: get ticket, wait in line and be served one at a
time

- This entails glitch freedom and is an even stronger

consistency guarantee

Evaluation

 Twofold:

1. Large scale emulation: Cost of DRP protocols
with different levels of consistency guarantees/
varying parameters. KPlIs:

 Average propagation delay (ms)
 Network wide traffic throughput (KB/s)

2. Real-world runtime overheads

Evaluation

 Default values for emulation:

Number of brokers

Number of components
Topology of broker network
Percentage of pure forwarders
Distribution of components
Link latency

Number of reactive graphs

Size of dependency graphs

Size of reactive expressions
Degree of locality in expressions
Frequency of change for observable objects

10

50
Scale-free

50%
Uniform

1 ms—5 ms

10

5

2

1 change/s

Evaluation

Advantages of distribution
— 1 broker vs. 10 brokers
— Causal: no big impact — mainly due to locality

— Glitch free: all propagation through broker
— Having multiple brokers helps

— Atomic: adds TGS delay + traffic
- Same advantages when multiple brokers

Delay (ms) Traffic (KB/s)
Centr. Distr. Centr. Distr.
Causal 4.77 4.76 68.3 69.8

Glitch free 29.53 17.18 205.4 130.9
Atomic 53.41 26.75 265.5 161.3

Evaluation

* Locality of expressions
— General trend: locality cuts costs

Completely remote + causal = glitches!

500 /

60 ; . . ,
_ Causal Causal ——

% 50 Glitch Free —-©-- 1 @ litch Free —-©- -
g Atomic g 400 r Atomic
> 40 1 = T
ks g 300
0o 30 ;. 1 © A
° G- _ I(—E G —-—_
S b T~ E 200 | 5=
g 20 T-O-——-0-——- o —=
o G —-__ ® --— &
> ‘() g’ 100 | =~ 4
< 10 1 o)

0 L L 1 1 0 L L 1 1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 ‘1-:
Degree of Locality Degree of Locality
(a) Delay (b) Traffic

Completely local + causal = 0 costs

Evaluation

* Size of reactive graphs
— General trend: large reactive graphs increase costs

Long chains of reactive vars + causal = glitches!

60

" Causal —— ‘ ‘ 1000 , , : :

% 50 Glitch Free —-©--) = _ Causal ——
£ Atomic 2 800 | Glitch Free —-©--
> 40 | 032 Atomic
% .,::; 600
S 2 _o-0-"9 §
S 20} 9”0__—6 E 400 | P
5 - © A==
Q i5e L =
< 1045 -7 S 200+

® o) G-

0 1 1 1 1 1 0 1 1 1 1 1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Objects per Graph Number of Objects per Graph

(a) Delay (b) Traffic

Evaluation

* Size of expressions

— General trend: bigger expressions increase costs

Average Delay (ms)

100

(0]
o

D
o

N
o
T

N
o

o

More vars/expression + causal = glitches!

" Causal ——
Glitch Free —©--
Atomic
-o-0C--9
o2 |
+——+—|

—_

2 3 4 5 6 7 8
Number of Objects per Expression

(a) Delay

Overall Traffic (KB/s)

1600

1400 |
1200 |
1000 f
800 |
600
400
200 4

A

" Causal ——
Glitch Free —©- -

2 3 4 5 6 7 8
Number of Objects per Expression

(b) Traffic

Evaluation

* Runtime overheads
— Overheads consisting of:

* Intercepting a method call
* Serializing/deserializing
* Propagating the change
* Evaluating reactive expression
— Local scenario: two clients and a broker on 1
machine, with increasing expression length

Evaluation

e Runtime overheads

— Conclusion: runtime overheads are minimal

4 ‘

™ Causal —+—

£ 357 Glitch Free —-©--

>~ 3¢ Atomic

©

© 257+

Q

§ 2 et

E 1.5 B e/ //’e T

> 1(}———@—@-@————9—@ i

Q.

(@)

Dh_ 05t N o : AH/)//-
0 ! 1 1 :

1 10 100 1000
Number of Operators

Conclusion

* Key contributions:

— First abstract model of DRP/formalizing
consistency constraints

— DREAM!: a first DRP middleware supporting 3
propagation semantics

— A thorough evaluation of the costs

Conclusion

e Future work:

— A glitch free protocol that takes advantage of
locality

— Robustness in case of node failure

— More complex expressions (time series and
sequence of changes)

— Different evaluation strategies (lazy, incremental)
to improve efficiency

— More real applications

